657
Views
14
CrossRef citations to date
0
Altmetric
Short Communication

Defense activation triggers differential expression of phospholipase-C (PLC) genes and elevated temperature induces phosphatidic acid (PA) accumulation in tomato

, , , &
Pages 1073-1078 | Published online: 17 Aug 2012

References

  • Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature 2001; 411:826 - 33; http://dx.doi.org/10.1038/35081161; PMID: 11459065
  • Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 2010; 11:539 - 48; http://dx.doi.org/10.1038/nrg2812; PMID: 20585331
  • van der Luit AH, Piatti T, van Doorn A, Musgrave A, Felix G, Boller T, et al. Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol 2000; 123:1507 - 16; http://dx.doi.org/10.1104/pp.123.4.1507; PMID: 10938366
  • de Jong CF, Laxalt AM, Bargmann BOR, de Wit PJGM, Joosten MHAJ, Munnik T. Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J 2004; 39:1 - 12; http://dx.doi.org/10.1111/j.1365-313X.2004.02110.x; PMID: 15200638
  • Vossen JH, Abd-El-Haliem A, Fradin EF, van den Berg GC, Ekengren SK, Meijer HJG, et al. Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J 2010; 62:224 - 39; http://dx.doi.org/10.1111/j.1365-313X.2010.04136.x; PMID: 20088897
  • Meldrum E, Parker PJ, Carozzi A. The PtdIns-PLC superfamily and signal transduction. Biochim Biophys Acta 1991; 1092:49 - 71; http://dx.doi.org/10.1016/0167-4889(91)90177-Y; PMID: 1849017
  • Meijer HJ, Munnik T. Phospholipid-based signaling in plants. Annu Rev Plant Biol 2003; 54:265 - 306; http://dx.doi.org/10.1146/annurev.arplant.54.031902.134748; PMID: 14502992
  • Streb H, Irvine RF, Berridge MJ, Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 1983; 306:67 - 9; http://dx.doi.org/10.1038/306067a0; PMID: 6605482
  • Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 2007; 446:640 - 5; http://dx.doi.org/10.1038/nature05731; PMID: 17410169
  • Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci U S A 2005; 102:12612 - 7; http://dx.doi.org/10.1073/pnas.0504172102; PMID: 16107538
  • Arisz SA, Testerink C, Munnik T. Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta 2009; 1791:869 - 75; PMID: 19394438
  • Kishimoto A, Takai Y, Mori T, Kikkawa U, Nishizuka Y. Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J Biol Chem 1980; 255:2273 - 6; PMID: 7358670
  • Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochem J 1998; 332:281 - 92; PMID: 9601053
  • Imagawa W, Bandyopadhyay G, Nandi S. Multifunctional phosphatidic acid signaling in mammary epithelial cells: stimulation of phosphoinositide hydrolysis and conversion to diglyceride. J Cell Physiol 1995; 163:561 - 9; http://dx.doi.org/10.1002/jcp.1041630317; PMID: 7775598
  • Testerink C, Munnik T. Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 2005; 10:368 - 75; http://dx.doi.org/10.1016/j.tplants.2005.06.002; PMID: 16023886
  • Wang X, Devaiah SP, Zhang W, Welti R. Signaling functions of phosphatidic acid. Prog Lipid Res 2006; 45:250 - 78; http://dx.doi.org/10.1016/j.plipres.2006.01.005; PMID: 16574237
  • Li M, Hong Y, Wang X. Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim Biophys Acta 2009; 1791:927 - 35; PMID: 19289179
  • Yamaguchi T, Kuroda M, Yamakawa H, Ashizawa T, Hirayae K, Kurimoto L, et al. Suppression of a phospholipase D gene, OsPLDbeta1, activates defense responses and increases disease resistance in rice. Plant Physiol 2009; 150:308 - 19; http://dx.doi.org/10.1104/pp.108.131979; PMID: 19286937
  • Mishkind M, Vermeer JE, Darwish E, Munnik T. Heat stress activates phospholipase D and triggers PIP accumulation at the plasma membrane and nucleus. Plant J 2009; 60:10 - 21; http://dx.doi.org/10.1111/j.1365-313X.2009.03933.x; PMID: 19500308
  • Wissing JB, Behrbohm H. Phosphatidate kinase, a novel enzyme in phospholipid metabolism (purification, subcellular localization, and occurrence in the plant kingdom). Plant Physiol 1993; 102:1243 - 9; PMID: 12231900
  • Munnik T, de Vrije T, Irvine RF, Musgrave A. Identification of diacylglycerol pyrophosphate as a novel metabolic product of phosphatidic acid during G-protein activation in plants. J Biol Chem 1996; 271:15708 - 15; http://dx.doi.org/10.1074/jbc.271.26.15708; PMID: 8663116
  • Meijer HJG, ter Riet B, van Himbergen JA, Musgrave A, Munnik T. KCl activates phospholipase D at two different concentration ranges: distinguishing between hyperosmotic stress and membrane depolarization. Plant J 2002; 31:51 - 9; http://dx.doi.org/10.1046/j.1365-313X.2002.01336.x; PMID: 12100482
  • van Schooten B, Testerink C, Munnik T. Signalling diacylglycerol pyrophosphate, a new phosphatidic acid metabolite. Biochim Biophys Acta 2006; 1761:151 - 9; PMID: 16469533
  • Chiang CY, Veckman V, Limmer K, David M. Phospholipase Cγ-2 and intracellular calcium are required for lipopolysaccharide-induced Toll-like receptor 4 (TLR4) endocytosis and interferon regulatory factor 3 (IRF3) activation. J Biol Chem 2012; 287:3704 - 9; http://dx.doi.org/10.1074/jbc.C111.328559; PMID: 22158869
  • Wang D, Feng J, Wen R, Marine JC, Sangster MY, Parganas E, et al. Phospholipase Cgamma2 is essential in the functions of B cell and several Fc receptors. Immunity 2000; 13:25 - 35; http://dx.doi.org/10.1016/S1074-7613(00)00005-4; PMID: 10933392
  • Takata M, Homma Y, Kurosaki T. Requirement of phospholipase C-gamma 2 activation in surface immunoglobulin M-induced B cell apoptosis. J Exp Med 1995; 182:907 - 14; http://dx.doi.org/10.1084/jem.182.4.907; PMID: 7561693
  • Cai X, Takken FL, Joosten MH, De Wit PJ. Specific recognition of AVR4 and AVR9 results in distinct patterns of hypersensitive cell death in tomato, but similar patterns of defence-related gene expression. Mol Plant Pathol 2001; 2:77 - 86; http://dx.doi.org/10.1046/j.1364-3703.2001.00053.x; PMID: 20572994
  • Stulemeijer IJ, Joosten MH, Jensen ON. Quantitative phosphoproteomics of tomato mounting a hypersensitive response reveals a swift suppression of photosynthetic activity and a differential role for hsp90 isoforms. J Proteome Res 2009; 8:1168 - 82; http://dx.doi.org/10.1021/pr800619h; PMID: 19178300
  • de Jong CF, Takken FLW, Cai X, de Wit PJGM, Joosten MHAJ. Attenuation of Cf-mediated defense responses at elevated temperatures correlates with a decrease in elicitor-binding sites. Mol Plant Microbe Interact 2002; 15:1040 - 9; http://dx.doi.org/10.1094/MPMI.2002.15.10.1040; PMID: 12437302
  • Ruelland E, Cantrel C, Gawer M, Kader JC, Zachowski A. Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol 2002; 130:999 - 1007; http://dx.doi.org/10.1104/pp.006080; PMID: 12376663
  • Arisz SA, van Himbergen JA, Musgrave A, van den Ende H, Munnik T. Polar glycerolipids of Chlamydomonas moewusii. Phytochemistry 2000; 53:265 - 70; http://dx.doi.org/10.1016/S0031-9422(99)00505-1; PMID: 10680181
  • Frank W, Munnik T, Kerkmann K, Salamini F, Bartels D. Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 2000; 12:111 - 24; PMID: 10634911
  • Arisz SA, Valianpour F, van Gennip AH, Munnik T. Substrate preference of stress-activated phospholipase D in Chlamydomonas and its contribution to PA formation. Plant J 2003; 34:595 - 604; http://dx.doi.org/10.1046/j.1365-313X.2003.01750.x; PMID: 12787242
  • Testerink C, Dekker HL, Lim ZY, Johns MK, Holmes AB, Koster CG, et al. Isolation and identification of phosphatidic acid targets from plants. Plant J 2004; 39:527 - 36; http://dx.doi.org/10.1111/j.1365-313X.2004.02152.x; PMID: 15272872

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.