1,051
Views
25
CrossRef citations to date
0
Altmetric
Review

Recent developments in plant zinc homeostasis and the path toward improved biofortification and phytoremediation programs

Article: e22681 | Received 24 Oct 2012, Accepted 25 Oct 2012, Published online: 06 Dec 2012

References

  • Wintz H, Fox T, Vulpe C. Responses of plants to iron, zinc and copper deficiencies. Biochem Soc Trans 2002; 30:766 - 8; http://dx.doi.org/10.1042/BST0300766; PMID: 12196190
  • Grotz N, Guerinot ML. Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 2006; 1763:595 - 608; http://dx.doi.org/10.1016/j.bbamcr.2006.05.014; PMID: 16857279
  • Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK, et al. Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 2008; 13:464 - 73; http://dx.doi.org/10.1016/j.tplants.2008.06.005; PMID: 18701340
  • Sinclair SA, Krämer U. The zinc homeostasis network of land plants. Biochim Biophys Acta 2012; 1823:1553 - 67; http://dx.doi.org/10.1016/j.bbamcr.2012.05.016; PMID: 22626733
  • Guerinot ML, Eide D. Zeroing in on zinc uptake in yeast and plants. Curr Opin Plant Biol 1999; 2:244 - 9; http://dx.doi.org/10.1016/S1369-5266(99)80042-9; PMID: 10375570
  • Assunção AG, Schat H, Aarts MG. Regulation of the adaptation to zinc deficiency in plants. Plant Signal Behav 2010; 5:1553 - 5; http://dx.doi.org/10.4161/psb.5.12.13469; PMID: 21139426
  • Baker AJM, Brooks RR. Terrestrial higher plants which hyper accumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery 1989; 1:81 - 6
  • Lasat MM, Baker AJ, Kochian LV. Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in thlaspi caerulescens.. Plant Physiol 1998; 118:875 - 83; http://dx.doi.org/10.1104/pp.118.3.875; PMID: 9808732
  • Lasat MM, Baker A, Kochian LV. Physiological Characterization of Root Zn2+ Absorption and Translocation to Shoots in Zn Hyperaccumulator and Nonaccumulator Species of Thlaspi. Plant Physiol 1996; 112:1715 - 22; PMID: 12226473
  • Zhao FJ, Jiang RF, Dunham SJ, McGrath SP. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 2006; 172:646 - 54; http://dx.doi.org/10.1111/j.1469-8137.2006.01867.x; PMID: 17096791
  • Salt DE, Prince RC, Baker AMJ, Raskin I, Pickering IJ. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol 1999; 33:713 - 7; http://dx.doi.org/10.1021/es980825x
  • Schat H, Llugany M, Bernhard R. Metal specific patterns of tolerance, uptake and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: Terry N, Banuelos G, eds. Phytoremediation of contaminated soil and water. CRC Press LLC 2000; 171–188.
  • Lasat MM, Kochian LV. Physiology of Zn hyperaccumulation in Thlaspi caerulescens. In N Terry, G Bañuelos, Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Boca Raton, FL 2000; 159–169.
  • White PJ, Whiting SN, Baker AJM, Broadley MR. Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens?. New Phytol 2002; 153:201 - 7; http://dx.doi.org/10.1046/j.0028-646X.2001.00325.x
  • Williams LE, Pittman JK, Hall JL. Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 2000; 1465:104 - 26; http://dx.doi.org/10.1016/S0005-2736(00)00133-4; PMID: 10748249
  • Hall JL, Williams LE. Transition metal transporters in plants. J Exp Bot 2003; 54:2601 - 13; http://dx.doi.org/10.1093/jxb/erg303; PMID: 14585824
  • Lutsenko S, Kaplan JH. Organization of P-type ATPases: significance of structural diversity. Biochemistry 1995; 34:15607 - 13; http://dx.doi.org/10.1021/bi00048a001; PMID: 7495787
  • Axelsen KB, Palmgren MG. Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 1998; 46:84 - 101; http://dx.doi.org/10.1007/PL00006286; PMID: 9419228
  • Argüello JM. Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol 2003; 195:93 - 108; http://dx.doi.org/10.1007/s00232-003-2048-2; PMID: 14692449
  • Tsai KJ, Lin YF, Wong MD, Yang HH, Fu HL, Rosen BP. Membrane topology of the p1258 CadA Cd(II)/Pb(II)/Zn(II)-translocating P-type ATPase. J Bioenerg Biomembr 2002; 34:147 - 56; http://dx.doi.org/10.1023/A:1016085301323; PMID: 12171064
  • Tsai KJ, Linet AL. Formation of a phosphorylated enzyme intermediate by the cadA Cd(2+)-ATPase. Arch Biochem Biophys 1993; 305:267 - 70; http://dx.doi.org/10.1006/abbi.1993.1421; PMID: 8373163
  • Rensing C, Mitra B, Rosen BP. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci U S A 1997; 94:14326 - 31; PMID: 9452509
  • Rensing C, Mitra B, Rosen BPA. A Zn(II)-translocating P-type ATPase from Proteus mirabilis. Biochem Cell Biol 1998; b 76:787 - 90; PMID: 10353712
  • Voskoboinik I, Brooks H, Smith S, Shen P, Camakaris J. ATP-dependent copper transport by the Menkes protein in membrane vesicles isolated from cultured Chinese hamster ovary cells. FEBS Lett 1998; 435:178 - 82; http://dx.doi.org/10.1016/S0014-5793(98)01059-X; PMID: 9762903
  • Voskoboinik I, Mar J, Strausak D, Camakaris J. The regulation of catalytic activity of the menkes copper-translocating P-type ATPase. Role of high affinity copper-binding sites. J Biol Chem 2001; 276:28620 - 7; http://dx.doi.org/10.1074/jbc.M103532200; PMID: 11373292
  • Fan B, Rosen BP. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase. J Biol Chem 2002; 277:46987 - 92; http://dx.doi.org/10.1074/jbc.M208490200; PMID: 12351646
  • Mandal AK, Cheung WD, Argüello JM. Characterization of a thermophilic P-type Ag+/Cu+-ATPase from the extremophile Archaeoglobus fulgidus.. J Biol Chem 2002; 277:7201 - 8; http://dx.doi.org/10.1074/jbc.M109964200; PMID: 11756450
  • Mana-Capelli S, Mandal AK, Argüello JM. Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain. J Biol Chem 2003; 278:40534 - 41; http://dx.doi.org/10.1074/jbc.M306907200; PMID: 12876283
  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, et al. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 2004; 16:1327 - 39; http://dx.doi.org/10.1105/tpc.020487; PMID: 15100400
  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, et al. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 2004; 576:306 - 12; http://dx.doi.org/10.1016/j.febslet.2004.09.023; PMID: 15498553
  • Mills RF, Krijger GC, Baccarini PJ, Hall JL, Williams LE. Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 2003; 35:164 - 76; http://dx.doi.org/10.1046/j.1365-313X.2003.01790.x; PMID: 12848823
  • Mills RF, Francini A, Ferreira da Rocha PS, Baccarini PJ, Aylett M, Krijger GC, et al. The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 2005; 579:783 - 91; http://dx.doi.org/10.1016/j.febslet.2004.12.040; PMID: 15670847
  • Eren E, Argüello JM. Arabidopsis HMA2, a divalent heavy metal-transporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol 2004; 136:3712 - 23; http://dx.doi.org/10.1104/pp.104.046292; PMID: 15475410
  • Axelsen KB, Palmgren MG. Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 2001; 126:696 - 706; http://dx.doi.org/10.1104/pp.126.2.696; PMID: 11402198
  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, et al. A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 2007; 144:1052 - 65; http://dx.doi.org/10.1104/pp.106.095133; PMID: 17434989
  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, et al. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 2008; 453:391 - 5; http://dx.doi.org/10.1038/nature06877; PMID: 18425111
  • Talke IN, Hanikenne M, Krämer U. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 2006; 142:148 - 67; http://dx.doi.org/10.1104/pp.105.076232; PMID: 16844841
  • Barabasz A, Wilkowska A, Ruszczyńska A, Bulska E, Hanikenne M, Czarny M, et al. Metal response of transgenic tomato plants expressing P(1B) -ATPase. Physiol Plant 2012; 145:315 - 31; http://dx.doi.org/10.1111/j.1399-3054.2012.01584.x; PMID: 22283486
  • Sinclair SA, Sherson SM, Jarvis R, Camakaris J, Cobbett CS. The use of the zinc-fluorophore, Zinpyr-1, in the study of zinc homeostasis in Arabidopsis roots. New Phytol 2007; 174:39 - 45; http://dx.doi.org/10.1111/j.1469-8137.2007.02030.x; PMID: 17335495
  • Mills RF, Valdes B, Duke M, Peaston KA, Lahner B, Salt DE, et al. Functional significance of AtHMA4 C-terminal domain in planta.. PLoS One 2010; 5:e13388; http://dx.doi.org/10.1371/journal.pone.0013388; PMID: 20975991
  • Eren E, Kennedy DC, Maroney MJ, Argüello JM. A novel regulatory metal binding domain is present in the C terminus of Arabidopsis Zn2+-ATPase HMA2. J Biol Chem 2006; 281:33881 - 91; http://dx.doi.org/10.1074/jbc.M605218200; PMID: 16973620
  • Baekgaard L, Mikkelsen MD, Sørensen DM, Hegelund JN, Persson DP, Mills RF, et al. A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. J Biol Chem 2010; 285:31243 - 52; http://dx.doi.org/10.1074/jbc.M110.111260; PMID: 20650903
  • Wong CK, Jarvis RS, Sherson SM, Cobbett CS. Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana.. New Phytol 2009; 181:79 - 88; http://dx.doi.org/10.1111/j.1469-8137.2008.02637.x; PMID: 19076719
  • Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A, et al. Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch. FEBS Lett 2005; 579:1515 - 22; http://dx.doi.org/10.1016/j.febslet.2005.01.065; PMID: 15733866
  • Siemianowski O, Mills RF, Williams LE, Antosiewicz DM. Expression of the P(₁B) -type ATPase AtHMA4 in tobacco modifies Zn and Cd root to shoot partitioning and metal tolerance. Plant Biotechnol J 2011; 9:64 - 74; http://dx.doi.org/10.1111/j.1467-7652.2010.00531.x; PMID: 20492550
  • Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, Doyle A, et al. The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 2003; 31:224 - 8; http://dx.doi.org/10.1093/nar/gkg076; PMID: 12519987
  • Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S. NASCArrays: a repository for microarray data generated by NASC’s transcriptomics service. Nucleic Acids Res 2004; 32:Database issue D575 - 7; http://dx.doi.org/10.1093/nar/gkh133; PMID: 14681484
  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 2004; 136:2621 - 32; http://dx.doi.org/10.1104/pp.104.046367; PMID: 15375207
  • Ball CA, Awad IA, Demeter J, Gollub J, Hebert JM, Hernandez-Boussard T, et al. The Stanford Microarray Database accommodates additional microarray platforms and data formats. Nucleic Acids Res 2005; 33:Database issue D580 - 2; http://dx.doi.org/10.1093/nar/gki006; PMID: 15608265
  • Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, Ledoux P, et al. NCBI GEO: mining millions of expression profiles--database and tools. Nucleic Acids Res 2005; 33:Database issue D562 - 6; http://dx.doi.org/10.1093/nar/gki022; PMID: 15608262
  • Toufighi K, Brady SM, Austin R, Ly E, Provart NJ. The botany array resource: e-northerns, expression angling, and promoter analyses. Plant J 2005; 43:153 - 63; http://dx.doi.org/10.1111/j.1365-313X.2005.02437.x; PMID: 15960624
  • Galuschka C, Schindler M, Bülow L, Hehl R. AthaMap web tools for the analysis and identification of co-regulated genes. Nucleic Acids Res 2007; 35:Database issue D857 - 62; http://dx.doi.org/10.1093/nar/gkl1006; PMID: 17148485
  • Comparative Quantification of Health Risks: Global and Regional Burden of Diseases Attributable to Selected Major Risk Factors, vol. 1–3 Organizacion Mundial de la Salud 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.