5,402
Views
32
CrossRef citations to date
0
Altmetric
MINI-REVIEW

Role of Auxin in Orchid Development

, &
Article: e972277 | Received 24 Jul 2014, Accepted 28 Jul 2014, Published online: 22 Dec 2014

References

  • Cribb PJ, Lell SP, Dixon KW, Barrett RL. Chapter One - Orchid conservation: a global perspective. Orchid conservation: Natural History Publications, 2003:1-24.
  • Hew CS, Yong JWH. Chapter One - The Relevance of Orchid Physiology to the Industry. The physiology of tropical orchids in relation to the industry: World Scientific, 2004:1-10.
  • Swarts ND, Dixon KW. Terrestrial orchid conservation in the age of extinction. Ann Bot 2009; 104:543-56; PMID:19218582; http://dx.doi.org/10.1093/aob/mcp025
  • Arditti J. Micropropagation of orchids, Vol. I and II, 2nd ed: Blackwell, 2008.
  • Teixeira da Silva JA. Orchids: Advances in tissue culture, genetics, phytochemistry and transgenic biotechnology. Floricult Ornam Biotech 2013; 7:1-52
  • Chen T-Y, Chen J-T, Chang W-C. Multiple shoot formation and plant regeneration from stem nodal explants of Phaphiopedilum orchids. In Vitro Cell Dev Biol Plant 2002; 38:595-7; http://dx.doi.org/10.1079/IVP2002332
  • Mohanty P, Das MC, Kumaria S, Tandon P. High-efficiency cryopreservation of the medicinal orchid Dendrobium nobile Lindl. Plant Cell Tissue Organ Cult 2012; 109:297-305; http://dx.doi.org/10.1007/s11240-011-0095-4
  • Novak SD, Whitehouse GA. Auxin regulates first leaf development and promotes the formation of protocorm trichomes and rhizome-like structures in developing seedlings of Spathoglottis plicata (Orchidaceae). AoB Plants 2013; 5:pls053; http://dx.doi.org/10.1093/aobpla/pls053
  • Godo T, Komori M, Nakaoki E, Yukawa T, Miyoshi K. Germination of mature seeds of Calanthe tricarinata Lindl., an endangered terrestrial orchid, by asymbiotic culture in vitro. In Vitro Cell Dev Biol Plant 2010; 46:323-8; http://dx.doi.org/10.1007/s11627-009-9271-1
  • De KK, Majumdar S, Sharma R, Sharma B. Green pod culture and rapid micropropagation of Dendrobium chrysanthum Wall.-a horticultural and medicinal orchid. Folia Hortic 2006; 18:81-90
  • Wilkinson KG, Dixon KW, Sivasithamparam K, Ghisalberti EL. Effect of IAA on symbiotic germination of an Australian orchid and its production by orchid-associated bacteria. Plant Soil 1994; 159:291-5; http://dx.doi.org/10.1007/BF00009292
  • Miyoshi K, Mii M. Phytohormone pre-treatment for the enhancement of seed germination and protocorm formation by the terrestrial orchid, Calanthe discolor (Orchidaceae), in asymbiotic culture. Sci Hortic (Amsterdam) 1995; 63:263-7; http://dx.doi.org/10.1016/0304-4238(95)00813-9
  • Zhang XS, O’Neill SD. Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell 1993; 5:403-18; PMID:12271070; http://dx.doi.org/10.1105/tpc.5.4.403
  • Tsai W-C, Hsiao Y-Y, Pan Z-J, Kuoh C-S, Chen W-H, Chen H-H. The role of ethylene in orchid ovule development. Plant Sci 2008; 175:98-105; http://dx.doi.org/10.1016/j.plantsci.2008.02.011
  • Vanneste S, Friml J. Auxin: a trigger for change in plant development. Cell 2009; 136:1005-16; PMID:19303845; http://dx.doi.org/10.1016/j.cell.2009.03.001
  • Reinhardt D, Mandel T, Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 2000; 12:507-18; PMID:10760240; http://dx.doi.org/10.1105/tpc.12.4.507
  • Swarup R, Bennett M. Auxin transport: the fountain of life in plants? Dev Cell 2003; 5:824-6; PMID:14667404; http://dx.doi.org/10.1016/S1534-5807(03)00370-8
  • Baluska F, Schlicht M, Volkmann D, Mancuso S. Vesicular secretion of auxin: Evidences and implications. Plant Signal Behav 2008; 3:254-6; PMID:19704646; http://dx.doi.org/10.4161/psb.3.4.5183
  • Dhonukshe P, Huang F, Galvan-Ampudia CS, Mähönen AP, Kleine-Vehn J, Xu J, Quint A, Prasad K, Friml J, Scheres B, et al. Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development 2010; 137:3245-55; PMID:20823065; http://dx.doi.org/10.1242/dev.052456
  • Titapiwatanakun B, Blakeslee JJ, Bandyopadhyay A, Yang H, Mravec J, Sauer M, Cheng Y, Adamec J, Nagashima A, Geisler M, et al. ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. Plant J 2009; 57:27-44; PMID:18774968; http://dx.doi.org/10.1111/j.1365-313X.2008.03668.x
  • Blakeslee JJ, Peer WA, Murphy AS. Auxin transport. Curr Opin Plant Biol 2005; 8:494-500; PMID:16054428; http://dx.doi.org/10.1016/j.pbi.2005.07.014
  • Friml J, Palme K. Polar auxin transport–old questions and new concepts? Plant Mol Biol 2002; 49:273-84; PMID:12036254; http://dx.doi.org/10.1023/A:1015248926412
  • Muday GK, DeLong A. Polar auxin transport: controlling where and how much. Trends Plant Sci 2001; 6:535-42; PMID:11701382; http://dx.doi.org/10.1016/S1360-1385(01)02101-X
  • Scanlon MJ. The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize. Plant Physiol 2003; 133:597-605; PMID:14500790; http://dx.doi.org/10.1104/pp.103.026880
  • Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 2002; 415:806-9; PMID:11845211; http://dx.doi.org/10.1038/415806a
  • Arditti J, Knauft RL. The effects of auxin, actinomycin D, ethionine and puromycin on post-pollination behavior in Cymbidium (Orchidaceae) flowers. Am J Bot 1969; 56:620-8; http://dx.doi.org/10.2307/2440436
  • Arditti J, Jeffrey DC, Flick BH. Postpollination phenomena in orchid flowers. III. Effects and interactions of auxin, kinetin or gibberellin. New Phytol 1971; 70:1125-41; http://dx.doi.org/10.1111/j.1469-8137.1971.tb04595.x
  • Ketsa S, Wisutiamonkul A, van Doorn WG. Auxin is required for pollination-induced ovary growth in Dendrobium orchids. Funct Plant Biol 2006; 33:887-92; http://dx.doi.org/10.1071/FP06034
  • Ketsa S, Rugkong A. Ethylene production, senescence and ethylene sensitivity of Dendrobium ‘Pompadour’ flowers following pollination. J Hortic Sci Biotechnol 2000; 75:149-53
  • Bui AQ, O’Neill SD. Three 1-aminocyclopropane-1-carboxylate synthase genes regulated by primary and secondary pollination signals in orchid flowers. Plant Physiol 1998; 116:419-28; PMID:9449850; http://dx.doi.org/10.1104/pp.116.1.419
  • Burg SP, Dijkman MJ. Ethylene and auxin participation in pollen induced fading of vanda orchid blossoms. Plant Physiol 1967; 42:1648-50; PMID:16656700; http://dx.doi.org/10.1104/pp.42.11.1648
  • Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, Pan ZJ, Chuang MH, Kuoh CS, Chen WH, Chen HH. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 2005; 46:1125-39; PMID:15890679; http://dx.doi.org/10.1093/pcp/pci125
  • Attri LK, Nayyar H, Bhanwra RK, Pehwal A. Pollination-induced oxidative stress in floral organs of Cymbidium pendulum (Roxb.) Sw. and Cymbidium aloifolium (L.) Sw. (Orchidaceae): a biochemical investigation. Sci Hortic (Amsterdam) 2008; 116:311-7; http://dx.doi.org/10.1016/j.scienta.2008.01.009
  • Attri LK, Nayyar H, Bhanwra RK, Vij SP. Pollination-induced floral senescence in orchids: status of oxidative stress. Russ J Plant Physiol 2008; 55:821-8; http://dx.doi.org/10.1134/S1021443708060125
  • Attri LK, Nayyar H, Bhanwra RK, Vij SP. Post-pollination biochemical changes in floral organs of Rhynchostylis retusa (L.) Bl. and Aerides multiflora Roxb. (Orchidaceae). J Plant Biol 2007; 50:548-56; http://dx.doi.org/10.1007/BF03030708
  • Hew CS, Tan SC, Chin TY, Ong TK. Influence of ethylene on enzyme activities and mobilization of materials in pollinated Arachnis orchid flowers. J Plant Growth Regul 1989; 8:121-30; http://dx.doi.org/10.1007/BF02025279
  • Blanchard MG, Runkle ES. Benzyladenine promotes flowering in Doritaenopsis and Phalaenopsis orchids. J Plant Growth Regul 2008; 27:141-50; http://dx.doi.org/10.1007/s00344-008-9040-0
  • Goh CJ. Hormonal regulation of flowering in a sympodial orchid hybrid Dendrobium louisae. New Phytol 1979; 82:375-80; http://dx.doi.org/10.1111/j.1469-8137.1979.tb02663.x
  • Goh CJ, Yang AL. Effects of growth regulators and decapitation on flowering of Dendrobium orchid hybrids. Plant Sci Lett 1978; 12:287-92; http://dx.doi.org/10.1016/0304-4211(78)90080-9
  • Goh CJ, Seetoh HC. Apical control of flowering in an orchid hybrid Aranda Deborah. [abstract]. Ann Bot (Lond) 1973; 37:112-9; http://aob.oxfordjournals.org/content/37/1/113.
  • de Melo Ferreira W, Barbante Kerbauy G, Elizabeth Kraus J, Pescador R, Mamoru Suzuki R. Thidiazuron influences the endogenous levels of cytokinins and IAA during the flowering of isolated shoots of Dendrobium. J Plant Physiol 2006; 163:1126-34; PMID:17032618; http://dx.doi.org/10.1016/j.jplph.2005.07.012
  • Kostenyuk I, Oh BJ, So IS. Induction of early flowering in Cymbidium niveo marginatum Mak. in vitro. Plant Cell Rep 1999; 19:1-5; http://dx.doi.org/10.1007/s002990050701
  • Goh CJ. Regulation of floral initiation and development in an orchid hybrid Aranda Deborah. [abstract]. Ann Bot (Lond) 1977; 41:763-9; http://aob.oxfordjournals.org/content/41/4/763.
  • Su YH, Liu YB, Zhang XS. Auxin-cytokinin interaction regulates meristem development. Mol Plant 2011; 4:616-25; PMID:21357646; http://dx.doi.org/10.1093/mp/ssr007
  • Vinogradova T, Andronova EV. Chapter Four - Development of orchid seeds and seedlings. Orchid Biology: Reviews and Perspectives VIII: Kluwer Academic Publishers, 2002:167-234.
  • Lee YI, Hsu ST, Yeung EC. Orchid protocorm-like bodies are somatic embryos. Am J Bot 2013; 100:2121-31; PMID:24136821; http://dx.doi.org/10.3732/ajb.1300193
  • Arditti J, Ghani AKA. Tansley review, 110. Numerical and physical properties of orchid seeds and their biological implications. New Phytol 2000; 145:367-421; http://dx.doi.org/10.1046/j.1469-8137.2000.00587.x
  • Yam TW, Yeung EC, Ye X-L, Zee S-Y, Arditti J. Chapter Six - Orchid Embryos. Orchid biology: reviews and perspectives VIII. Kluwer Academic Publishers, 2002; 287-384.
  • Dutra D, Kane ME, Richardson L. Asymbiotic seed germination and in vitro seedling development of Cyrtopodium punctatum: a propagation protocol for an endangered Florida native orchid. Plant Cell Tissue Organ Cult 2009; 96:235-43; http://dx.doi.org/10.1007/s11240-008-9480-z
  • Yamazaki J, Miyoshi K. In vitro asymbiotic germination of immature seed and formation of protocorm by Cephalanthera falcata (Orchidaceae). Ann Bot 2006; 98:1197-206; PMID:17071633; http://dx.doi.org/10.1093/aob/mcl223
  • Dutra D, Johnson TR, Kauth PJ, Stewart SL, Kane ME, Richardson L. Asymbiotic seed germination, in vitro seedling development, and greenhouse acclimatization of the threatened terrestrial orchid Bletia purpurea. Plant Cell Tissue Organ Cult 2008; 94:11-21; http://dx.doi.org/10.1007/s11240-008-9382-0
  • Novak SD, Pardiwala RS, Gray BL. A study of NaOCl-induced necrosis indicates that only half of the embryo is required for seedling establishment in Spathoglottis plicata. Lindleyana 2008; 21:32-8
  • Lim WL, Loh CS. Endopolyploidy in Vanda Miss Joaquim (Orchidaceae). New Phytol 2003; 159:279-87; http://dx.doi.org/10.1046/j.1469-8137.2003.00797.x
  • Hadley G, Harvais G. The effect of certain growth substances on asymbiotic germination and development of Orchis purpurella. New Phytol 1968; 67:441-5; http://dx.doi.org/10.1111/j.1469-8137.1968.tb06393.x
  • Sharma SK, Tandon P. Influence of growth regulators on asymbiotic germination and early seedling development of Coelogyne punctulata Lindl. Biology, Conservation, and culture of orchids. Papers presented at a national seminar organized by the Orchid Society of India, Panjab University, 1986:441-51.
  • Deb CR, Pongener A. Asymbiotic seed germination and in vitro seedling development of Cymbidium aloifolium (L.) Sw.: a multipurpose orchid. J Plant Biochem Biotechnol 2011; 20:90-5; http://dx.doi.org/10.1007/s13562-010-0031-4
  • Hadley G. The interaction of kinetin, auxin and other factors in the development of north temperate orchids. New Phytol 1970; 69:549-55; http://dx.doi.org/10.1111/j.1469-8137.1970.tb07607.x
  • Furutani M, Vernoux T, Traas J, Kato T, Tasaka M, Aida M. PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 2004; 131:5021-30; PMID:15371311; http://dx.doi.org/10.1242/dev.01388
  • Roy J, Banerjee N. Induction of callus and plant regeneration from shoot tip explants of Dendrobium fimbriatum Lindl Var. oculatum Hk. f. Sci Hortic (Amsterdam) 2003; 97:333-40; http://dx.doi.org/10.1016/S0304-4238(02)00156-5
  • Chen J, Chang W. Efficient plant regeneration through somatic embryogenesis from callus cultures of Oncidium (Orchidaceae). Plant Sci 2000; 160:87-93; PMID:11164580; http://dx.doi.org/10.1016/S0168-9452(00)00367-8
  • Huan LVT, Takamura T, Tanaka M. Callus formation and plant regeneration from callus through somatic embryo structures in Cymbidium orchid. Plant Sci 2004; 166:1443-9; http://dx.doi.org/10.1016/j.plantsci.2004.01.023
  • Teng WL, Nicholson L, Teng MC. Micropropagation of Spathoglottis plicata. Plant Cell Rep 1997; 16:831-5; http://dx.doi.org/10.1007/s002990050329
  • Hossain MM, Dey R. Multiple regeneration pathways in Spathoglottis plicata Blume — A study in vitro. S Afr J Bot 2013; 85:56-62; http://dx.doi.org/10.1016/j.sajb.2012.12.005
  • Kuo HL, Chen JT, Chang WC. Efficient plant regeneration through direct somatic embryogenesis from leaf explants of Phalaenopsis ‘Little Steve’. In Vitro Cell Dev Biol Plant 2005; 41:453-6; http://dx.doi.org/10.1079/IVP2005644
  • Chen JT, Chang WC. TIBA affects the induction of direct somatic embryogenesis from leaf explants of Oncidium. Plant Cell Tissue Organ Cult 2004; 79:315-20; http://dx.doi.org/10.1007/s11240-004-4613-5
  • Smith RS. The role of auxin transport in plant patterning mechanisms. PLoS Biol 2008; 6:e323; PMID:19090623; http://dx.doi.org/10.1371/journal.pbio.0060323
  • Tanaka H, Dhonukshe P, Brewer PB, Friml J. Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 2006; 63:2738-54; PMID:17013565; http://dx.doi.org/10.1007/s00018-006-6116-5
  • Harvais G. An improved culture medium for growing the orchid Cypripedium reginae axenically. Can J Bot 1982; 60:2547-55; http://dx.doi.org/10.1139/b82-309
  • Peres LEP, Kerbauy GB. High cytokinin accumulation following root tip excision changes the endogenous auxin-to-cytokinin ratio during root-to-shoot conversion in Catasetum fimbriatum Lindl (Orchidaceae). Plant Cell Rep 1999; 18:1002-6; http://dx.doi.org/10.1007/s002990050698
  • Faria DC, Dias ACF, Melo IS, de Carvalho Costa FE. Endophytic bacteria isolated from orchid and their potential to promote plant growth. World J Microbiol Biotechnol 2013; 29:217-21; PMID:23014841; http://dx.doi.org/10.1007/s11274-012-1173-4
  • Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 2005; 15:1899-911; PMID:16271866; http://dx.doi.org/10.1016/j.cub.2005.09.052
  • Aloni R, Aloni E, Langhans M, Ullrich CI. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 2006; 97:883-93; PMID:16473866; http://dx.doi.org/10.1093/aob/mcl027
  • Panwar D, Ram K, Shekhawat HNS. In vitro propagation of Eulophia nuda Lindl., an endangered orchid. Sci Hortic (Amsterdam) 2012; 139:46-52; http://dx.doi.org/10.1016/j.scienta.2012.01.011
  • Mohapatra A, Rout GR. In vitro micropropagation of Geoderum purpureum R. Br Ind J Biotech 2005; 4:568-70
  • Malabadi RB, Mulgund GS, Nataraja K. Efficient regeneration of Vanda coerulea, an endangered orchid using thidiazuron. Plant Cell Tissue Organ Cult 2004; 76:289-93; http://dx.doi.org/10.1023/B:TICU.0000009255.69476.b7
  • Zhang NG, Yong JWH, Hew CS, Zhou X. The production of cytokinin, abscisic acid and auxin by CAM orchid aerial roots. J Plant Physiol 1995; 147:371-7; http://dx.doi.org/10.1016/S0176-1617(11)82170-X
  • Rafique R, Fatima B, Mushtaq S, Iqbal MS, Rasheed M, Ali M, Hasan SZU. Effect of indole-3-butyric acid (IBA) on in vitro root induction in Dendrobium orchid (Dendrobium sabin H.). Afr J Biotechnol 2012; 11:4673-5; http://dx.doi.org/10.5897/AJB11.2319
  • Asghar S, Ahmad T, Hafiz IA, Yaseen M. In vitro propagation of orchid (Dendrobium nobile) var. Emma white. Afr J Biotechnol 2011; 10:3097-103; http://dx.doi.org/10.5897/AJB10.401
  • Chutima R, Lumyong S. Production of indole-3-acetic acid by Thai native orchid-associated fungi. Symbiosis 2012; 56:35-44; http://dx.doi.org/10.1007/s13199-012-0158-2
  • Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI. Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 2007; 162:69-76; PMID:17140781; http://dx.doi.org/10.1016/j.micres.2006.07.014
  • Galdiano RF Jr., Pedrinho EAN, Castellane TCL, Lemos EGDM. Auxin-producing bacteria isolated from the roots of Cattleya walkeriana, an endangered Brazilian orchid, and their role in acclimatization. R Bras Ci Solo 2011; 35:729-37; http://dx.doi.org/10.1590/S0100-06832011000300008
  • Shimasaki K, Uemoto S. Micropropagation of a terrestrial Cymbidium species using rhizomes, developed from seeds and pseudobulbs. Plant Cell Tissue Organ Cult 1990; 22:237-44; http://dx.doi.org/10.1007/BF00033642
  • Sheelavantmath SS, Murthy HN, Pyati AN, Ashok Kumar HG, Ravishankar BV. In vitro propagation of the endangered orchid Geodorum densiflorum (Lam.) Schltr. through rhizome section culture. Plant Cell Tissue Organ Cult 2000; 60:151-4; http://dx.doi.org/10.1023/A:1006426905052
  • Bapat VA, Narayanaswamy S. Rhizogenesis in a tissue culture of the orchid Spathoglottis. Bull Torrey Bot Club 1977; 104:2-4; http://dx.doi.org/10.2307/2484656
  • Paek KY, Yeung EC. The effect of 1-naphthalene acetic acid and N6- benzyladenine on the growth of Cymbidium forrestii rhizomes in vitro. Plant Cell Tissue Organ Cult 1991; 24:65-71; http://dx.doi.org/10.1007/BF00039732
  • Roy J, Banerjee N. Rhizome and shoot development during in vitro propagation of Geodorum densiflorum (Lam.). Schltr. Sci Hortic (Amsterdam) 2002; 94:181-92; http://dx.doi.org/10.1016/S0304-4238(01)00373-9
  • Traw MB, Bergelson J. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 2003; 133:1367-75; PMID:14551332; http://dx.doi.org/10.1104/pp.103.027086
  • Ishida T, Kurata T, Okada K, Wada T. A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol 2008; 59:365-86; PMID:18257710; http://dx.doi.org/10.1146/annurev.arplant.59.032607.092949
  • Chang C, Chen YC, Yen HF. Protocorm or rhizome? The morphology of seed germination in Cymbidium dayanum Reichb. Bot Bull Acad Sin 2005; 46:71-4
  • Warcup JH. Rhizanthella gardneri (Orchidaceae), its Rhizoctonia endophyte and close association with Melaleuca uncinata (Myrtaceae) in Western Australia. New Phytol 1985; 99:273-80; http://dx.doi.org/10.1111/j.1469-8137.1985.tb03656.x
  • Griesbach RJ. The use of indoleacetylamino acids in the in vitro propagation of Phalaenopsis orchids. Sci Hortic (Amsterdam) 1983; 19:363-6; http://dx.doi.org/10.1016/0304-4238(83)90085-7
  • Tokuhara K, Mii M. Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds. Plant Cell Rep 1993; 13:7-11; PMID:24196174; http://dx.doi.org/10.1007/BF00232306
  • Mohanty P, Paul S, Das CM, Kumaria S, Tandon P. A simple and efficient protocol for the mass propagation of Cymbidium mastersii: an ornamental orchid of Northeast India. AoB Plants 2012; 2012pls023; PMID:22997547; http://dx.doi.org/10.1093/aobpla/pls023
  • Chang C, Chang WC. Plant regeneration from callus culture of Cymbidium ensifolium var. misericors. Plant Cell Rep 1998; 17:251-5; http://dx.doi.org/10.1007/s002990050387
  • Nasiruddin KM, Begum R, Yasmin S. Protocorm like bodies and plantlet regeneration from Dendrobium formosum leaf callus. As J. Plant Sci 2003; 2:955-7
  • Rahman MS, Hasan MF, Das R, Hossain MS, Rahman M. In vitro micropropagation of orchid (Vanda tessellate L.) from shoot tip explant. J Biosci 2009; 17:139-44
  • Ogura-Tsujita Y, Okubo H. Promotion of in vitro shoot formation from protocorm-like bodies of a hybrid between tropical and temperate Cymbidium species. J Jpn Soc Hortic Sci 2006; 75:334-6; http://dx.doi.org/10.2503/jjshs.75.334
  • Chen TY, Chen JT, Chang WC. Plant regeneration through direct shoot bud formation from leaf cultures of Paphiopedilum orchids. Plant Cell Tissue Organ Cult 2004; 76:11-5; http://dx.doi.org/10.1023/A:1025858211320
  • Naing AH, Chung JD, Park IS, Lim KB. Efficient plant regeneration of the endangered medicinal orchid Coelogyne cristata using protocorm-like bodies. Acta Physiol Plant 2011; 33:659-66; http://dx.doi.org/10.1007/s11738-010-0586-7
  • Bhadra SK, Hossain MM. In vitro germination and micropropagation of Geodorum densiflorum (Lam.) Schltr., and endangered orchid species. Plant Tissue Cult 13:165-71.