9,128
Views
451
CrossRef citations to date
0
Altmetric
Review

Phenolic acids act as signaling molecules in plant-microbe symbioses

, &
Pages 359-368 | Received 06 Dec 2009, Accepted 07 Dec 2009, Published online: 01 Apr 2010

References

  • Martens DA. Relationship between plant phenolic acids released during soil mineralization and aggregate stabilization. Soil Sci Soc Am J 2002; 66:1857 - 1867
  • Harkin JM. Butler GW, Bailey RW. Lignin (forage plants). Chemistry and biochemistry of herbage 1973; Academic Press New York 323 - 373
  • Harborne JB. Bell EA, Charlwood BV. Plant phenolics. Encyclopedia of Plant Physiology, Secondary Plant Products 1980; 8:Berlin Heidelberg New York Springer-Verlag 329 - 395
  • Carpita N, McCann M. Buchanan, et al. The cell wall. Biochemistry and molecular biology of plants 2000; Rockville MD American Society of Plant Physiologists 52 - 108
  • Croteau R, Kutchan TM, Lewis NG. Buchanan, et al. Natural products (secondary metabolites). Biochemistry andmolecular biology of plants 2000; Rockville MD American Society of Plant Physiologists 1250 - 1318
  • Moorman TB, Becerril JM, Lydon J, Duke SO. Production of hydroxybenzoic acids by Bradyrhizobiumjaponicum strains after treatment with glyphosphate. J Agric Food Chem 1992; 40:289 - 293
  • Sarakanen KV, Ludwig CH. Lignins: occurance, formation, structure and reactions 1971; New York Wiley-Interscience
  • van Loon LC. Slusarenko AJ, Fraser RSS, Van Loon LC. Systemic induced resistance. Mechanisms of resistance to plant diseases 2000; Dordrecht, The Netherlands Kluwer Academic Publishers 521 - 574
  • Pieterse C, Van Loon LC. Salicylic acid-independent plant defence pathways. Trends Plant Sci 1999; 4:52 - 58
  • Feys B, Parker JE. Interplay of signaling pathways in plant disease resistance. Trends Genet 2000; 16:449 - 455
  • Kefeli VI, Kalevitch MV, Borsari B. Phenolic cycle in plants and environment. J Cell Mol Biol 2003; 2:13 - 18
  • Chen YP, Dilworth MJ, Glenn AR. Uptake and oxidation of aromatic substances by Rhizobium leguminosarum MNF 8841 and Rhizobium trifolii TA1. FEMS Microbiol Lett 1984; 21:201 - 205
  • Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama AJ, et al. Anaerobic catabolism of aromatic compounds: a genetic and genomic View. Microbiol Mol Biol R 2009; 73:71 - 133
  • Whitehead DC, Dibb H, Hartley RD. Bound phenolic compounds in water extract of soils, plant roots and leaf litter. Soil Biol Biochem 1983; 15:133 - 136
  • Chan YK. Utilization of simple phenolics for dinitrogen fixation by soil diazotrophic bacteria. Plant Soil 2006; 90:141 - 150
  • Funa N, Ozawa H, Hirata A, Horinouchi S. Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii. Proc Natl Acad Sci USA 2006; 103:6356 - 6361
  • Harley JL, Smith SE. Symbiosis 1983; London UK Academic Press
  • Ling-Lee M, Chilvers GA, Ashford AE. A histochemical study of phenolic materials in mycorrhizal and uninfected roots of Eucalyptus fastigata Dean & Maid. New Phytol 1977; 78:313 - 328
  • Devi MC, Reddy MN. Phenolic acid metabolism of groundnut (Arachis hypogaea L.) plants inoculated with VAM fungus and Rhizobium. Plant Growth Regul 2002; 37:151 - 156
  • Bekkara F, Jay M, Viricel MR, Rome S. Distribution of phenolic compounds within seed and seedlings of two Vicia faba cvs differing in their seed tannin content, and study of their seed and root phenolic exudations. Plant Soil 1998; 203:27 - 36
  • Staman K, Blum U, Louws F, Robertson D. Can simultaneous inhibition of seedling growth and stimulation of rhizosphere bacterial populations provide evidence for phytotoxin transfer from plant residues in the bulk soil to the rhizosphere of sensitive species?. J Chem Ecol 2001; 27:807 - 829
  • Blum U, Stamen KL, Flint LJ, Shafer SR. Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J Chem Ecol 2000; 26:2059 - 2078
  • van Rossum D, Schuuramns FB, Gillis M, Muyotcha A, van Versveld HW, Stouthamer AH, Boogerd FC. Genetic and phenetic analyses of Bradyrhizobium strains nodulating peanut (Arachis hypogaea L.) roots. Appl Environ Microbiol 1995; 61:1599 - 1609
  • Irisarri P, Milnitsky, Monza J, Bedmar EJ. Characterization of rhizobia nodulating Lotus subbliforus from Uruguayan soil. Plant Soil 1996; 180:39 - 47
  • Chakraborty D, Mandal SM. Fractional changes in phenolic acids composition in root nodules of Arachis hypogaea L. Plant Growth Regul 2008; 55:159 - 163
  • Mandal SM, Mandal M, Das AK, Pati BR, Ghosh AK. Stimulation of indoleacetic acid production in a Rhizobium isolate of Vigna mungo by root nodule phenolic acids. Arch Microbiol 2009; 191:389 - 393
  • Dixon RA. Natural products and plant disease resistance. Nature 2001; 411:843 - 847
  • Boudet AM. Evolution and current status of research in phenolic compounds. Phytochemistry 2007; 68:2722 - 2735
  • Whiting DA. Natural phenolic compounds 1900–2000: a bird's eye view of a centuries chemistry. Nat Prod Rep 2001; 18:583 - 606
  • Mann J. Secondary Metabolism 1978; Oxford Clarendon Press 316
  • Koukol J, Conn EE. The metabolism of aromatic compounds in higher plants. IV Purification and properties of the phenylalaninedea minase of Hordeum vulgare. J Biol Chem 1961; 236:2692 - 2698
  • Hahlbrock K, Scheel D. Physiology and molecular biology of phenylpropanoid metabolism. Plant Mol Biol 1989; 40:347 - 369
  • Blount JW, Korth KL, Masoud SA, Rasmussen S, Lamb C, Dixon RA. Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol 2000; 122:107 - 116
  • Cheng SH, Sheen J, Gerrish C, Bolwell GP. Molecular identification of phenylalanineammonia-lyase as a substrate of aspecific constitutively active Arabidopsis CDPK expressed in maize protoplasts. FEBS Lett 2001; 503:185 - 188
  • Stafford HA. Possible multienzyme complexes regulating the formation of C6-C3 phenolic compounds and lignins in higher plants. Recent Adv Phytochem 1974; 8:53 - 79
  • Rasmussen S, Dixon RA. Transgene-mediated and elicitor-induced perturbation of metabolic channeling at the entry point into the phenylpropanoid pathway. Plant Cell 1999; 11:1537 - 1552
  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA. Colocalization of L-phenylalanineammonia-lyase and cinnamate4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 2004; 16:3098 - 3109
  • Ro DK, Douglas CJ. Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway. J Biol Chem 2004; 279:2600 - 2607
  • Moore BS, Hertweck C, Hopke JN, Izumikawa M, Kalaitzis JS, Nilsen G, et al. Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalone. J Nat Prod 2002; 65:1956 - 1962
  • Xiang L, Moore BS. Biochemical characterization of a prokaryotic phenylalanine ammonia lyase. J Bacteriol 2005; 187:4286 - 4289
  • Hill AM, Thompson BL, Harris JP, Segret R. Investigation of the early stages in soraphen A biosynthesis. Chem Commun 2003; 21:1358 - 1359
  • Bezanson GS, Desaty D, Emes AV, Vining LC. Biosynthesis on cinnamamide and detection of phenylalanine ammonia-lyase in Streptomyces verticillatus. Can J Microbiol 1970; 16:147 - 151
  • Kalaitzis JA, Izumikawa M, Xiang L, Hertweck C, Moore BS. Mutasynthesis of enterocin and wailupemycin analogues. J Am Chem Soc 2003; 125:9290 - 9291
  • Jack RW, Tagg JR, Ray B. Bacteriocins of grampositive bacteria. Microbiol Rev 1995; 59:171 - 200
  • Brook I. Bacterial interference. Crit Rev Microbiol 1999; 25:155 - 172
  • van Belkum MJ, Stiles ME. Nonlantibiotic antibacterial peptides from lactic acid bacteria. Nat Prod Rep 2000; 17:323 - 325
  • Moffitt MC, Louie GV, Bowman ME, Pence J, Noel JP, Moore BS. Discovery of two cyanobacterial phenylalanine ammonia lyases: kinetic and structural characterization. Biochemistry 2007; 46:1004 - 1012
  • Juvvadi PR, Seshime Y, Kitamoto K. Genomicsreveals traces of fungal phenylpropanoid—flavonoid metabolic pathway in the filamentous fungus Aspergillus oryzae. J Microbiol 2005; 43:475 - 486
  • Seshime Y, Rao PR, Fujii I, Kitamoto K. Genomic evidences for the existence of a phenylpropanoid metabolic pathway in Aspergillus oryzae. Biochem Biophy Res Comm 2005; 337:747 - 751
  • Poppe L, Retey J. Friedel-Crafts-type mechanism for the enzymatic elimination of ammonia from histidine and phenylalanine. Angew Chem Int Ed Engl 2005; 44:3668 - 3688
  • Ferrer JL, Austin MB, Stewart C Jr, Noel JP. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 2008; 46:356 - 370
  • Heredia A, Jimenez A, Guillen R. Composition of plant cell walls. Z Lebensm Unters Forsch 1995; 200:24 - 31
  • Boerjan W, Ralph J, Baucher M. Lignin Biosynthesis. Annu Rev Plant Biol 2003; 54:519 - 546
  • Chen C, Meyermans H, Burggraeve B, De Rycke RM, Inoue K, et al. Cell-specific and conditional expression of caffeoyl-CoA O-methyltransferase in poplar. Plant Physiol 2000; 123:853 - 867
  • Ishii T. Structure and functions of feruloylated polysaccharides. Plant Sci 1997; 127:111 - 127
  • Lewis NG, Yamamoto E. Lignin occurance, biogenesis and biodegradation. Ann Rev Plant Physiol Plant Mol Biol 1990; 41:455 - 496
  • Bahri H, Dignac M-F, Rumpel C, Rasse DP, Chenu C, Mariotti A. Lignin turnover kinetics in an agricultural soil is monomer specific. Soil Biol Biochem 2006; 38:1977 - 1988
  • Higuchi T. Biodegradation mechanism of lignin by white-rot basidiomycetes. J Biotechnol 1993; 30:1 - 8
  • Odier E, Janin G, Monties B. Poplar lignin decomposition by gram negative aerobic bacteria. Appl Environ Microbiol 1981; 41:337 - 341
  • Higuchi T. Microbial degradation of lignin: role of lignin peroxidase, manganese peroxidase and laccase. Proc Jpn Acad Ser (B) 2004; 80:204 - 214
  • El Hanafy AA, Abd-Elsalam HE, Hafez EE. Fingerprinting for the lignin degrading bacteria from soil. J Appl Sci Res 2007; 3:470 - 475
  • de Ascensao AR, Dubery IA. Soluble and wall bound phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f.sp. cubense. Phytochem 2003; 63:679 - 686
  • Harborne JB. Phytochemical methods 1998; UK Chapman & Hall
  • Seneviratne G, Jayasinghearachchi HS. Phenolic acids: possible agents of modifying N2-fixing symbiosis through rhizobial alteration?. Plant Soil 2003; 252:385 - 395
  • Makoi JHJR, Ndakidemi PA. Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. Afr J Biotechnol 2007; 6:1358 - 1368
  • Wojtaszek P, Peretiatkowicz M. A simple method for visualization of phenolics exudation by roots of intact lupin plants; the effect of nitrate and pH. Acta Biochimca Polonica 1992; 39:307 - 316
  • Eva C, Josep P. Is there a feedback between N availability in siliceous and calcareous soils and Cistus albidus leaf chemical composition. Oecoi 2003; 136:183 - 192
  • Blum U. Effects of microbial utilization of phenolic acid breakdown products on allelopathic interactions. J Chem Ecol 1998; 24:685 - 708
  • Morel C, Hinsinger P. Root induced modifications of the exchange of phosphate ion between soil solution and solid phase. Plant Soil 1999; 211:103 - 110
  • Micales JA. Localization and induction of oxalate decarboxylase in the brown rot wood decay fungus Postia placenta. Int Biodereioration Biodegrad 1997; 39:125 - 132
  • Becker BU, Kosch K, Parniske M, Müller P. Exopolysaccharide (EPS) synthesis in Bradyrhizobium japonicum: sequence, operon structure and mutational analysis of an exo gene cluster. Mol Gen Genet 1998; 259:161 - 171
  • Schauser L, Roussis A, Stiller J, Stougaard J. A plant regulator controlling development of symbiotic root nodules. Nature 1999; 402:191 - 195
  • Broughton WJ, Jabbouri S, Perret X. Keys to symbiotic harmony. J Bacteriol 2000; 182:5641 - 5652
  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nature Rev Microbiol 2007; 5:619 - 633
  • Kondorsi A, Schultze M. Regulation of symbiotic root nodule development. Annu Rev Genet 1998; 32:33 - 57
  • Geurts R, Fedorova E, Bisseling T. Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol 2005; 8:346 - 352
  • Phillips DA, Torrey JG. Studies on cytokinin production by Rhizobium. Plant Physiol 1972; 49:11 - 15
  • Hartwig U, Joseph C, Phillips DA. Flavonoids released naturally from alfalfa seeds enhance growth rate of Rhizobium meliloti. Plant Physiol 1991; 95:797 - 803
  • Caetano-Anolles G, Wall LG, De Micheli AT, Macchi EM, Bauer WD, Favelukes G. Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. Plant Physiol 1988; 86:1228 - 1235
  • Fox JE, Starcevic M, Kow KY, Burow ME, McLachlan JA. Endocrine disrupters and flavonoid signaling. Nature 2001; 413:128 - 129
  • Cooper JE, Rao R. Localised changes in flavonoid biosynthesis in roots of Lotus pendiculatus after infection by Rhizobium loti. Plant Physiol 1992; 100:444 - 450
  • Zuanazzi JAS, Clergeot PH, Quirion J-C, Husson HP, Kondorosi P, Ratet P. Production of Sinorhizobium meliloti nod gene activation and repressor flavonoids from Medicago sativa roots. Mol Plant Microbe Interact 1998; 11:784 - 794
  • Rice-Evans C. Flavonoid antioxidants. Curr Med Chem 2001; 8:797 - 807
  • D'Arcy-Lameta A, Jay M. Study of soybean and lentil root exudates III. Influence of soybean isoflavonoids on the growth of rhizobia and some rhizospheric microorganisms. Plant Soil 1987; 101:267 - 272
  • Zawoznik MS, Garrido LM, del Pero Martinez MA, Tomaro ML. Effect of vanillin on growth and symbiotic ability of Bradyrhizobium sp. (Arachis) strain. Proc Int Plant Growth-promoting Rhizobacteria 2000; http:/www.ag.auburn.edu/argentina
  • Novikova TL. Influence of natural phenols on Trifolium pratense-Rhizobium trifoli symbiosis. Acta Hort 1994; 381:421 - 424
  • Djordjevic M, Rolfe B. Bothe H, de Bruijn F, Newton F. Recognition process in the Rhizobium trifolii-white clover symbiosis. nitrogen fixation: hundred years after 1988; Stuttgart, Germany Gustav Fischer 431 - 436
  • Gerdemann JW. Vesicular-arbuscular mycorrhiza and plant growth. Ann Rev Phytopathol 1968; 6:397 - 418
  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, et al. Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 2003; 131:1496 - 1507
  • Mosse B. Some studies relating to “independent” growth of vesicular-arbuscular endophytes. Can J Bot 1988; 66:2533 - 2540
  • Nagahashi G, Douds DD Jr. Partial separation of root exudates components and their effects upon the growth of germinated spores of AM fungi. Mycol Res 2000; 104:1453 - 1464
  • Mosse B, Hepper CE. Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 1975; 5:2015 - 2223
  • Giovannetti M, Sbrana C, Citernesi AS, Avio L. Analysis of factors involved in fungal recognition responses to host derived signals by arbuscular mycorrhizal fungi. New Phytol 1996; 133:65 - 71
  • Gianinazzi-Pearson V, Branzanti B, Gianinazzi S. In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 1989; 7:243 - 255
  • Siqueira J, Safir G, Nair M. Stimulation of vesicular-arbuscular mycorrhiza formation and growth of white clover by flavonoid compounds. New Phytol 1991; 118:87 - 93
  • Tsai SM, Phillips DA. Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 1991; 57:85 - 88
  • Poulin MJ, Simard J, Catford JG, Labrie F, Piche Y. Response of symbiotic endomycorrhizal fungi to estrogen and antiestrogens. Mol Plant Microbe Interact 1997; 10:481 - 487
  • Harrison MJ, Dixon RA. Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant-Microbe Interact 1993; 6:643 - 654
  • Harrison MJ, Dixon RA. Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J 1994; 6:9 - 20
  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A. Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 2005; 109:789 - 794
  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A. Arbuscular mycorrhizal colonization of tomato by Gigaspora and Glomus species in the presence of root flavonoids. J Plant Physiol 2005; 162:625 - 633
  • Silva-Junior P, Siqueira JO. Colonização micorrízica e crescimento da soja com diferentes fungos e aplicação do isoflavonóide formononetina. Pesquisa Agropecuária Brasileira 1998; 33:953 - 959
  • Ponce M, Scervino J, Erra-Balsells R, Ocampo J, Godeas A. Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry 2004; 65:1925 - 1930
  • Selvaraj JT, Subramanian G. Phenols and lipids in mycorrhizal and non-mycorrhizal roots of Sesamum indicum. Cur Sci 1990; 59:471 - 473
  • Fries LLM, Pacovsky RS, Safir GR, Siqueira JO. Plant growth and arbuscular mycorrhizal fungal colonization affected by exogenously applied phenolic compounds. J Chem Ecol 1997; 23:755 - 1767
  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 2005; 139:920 - 934
  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierhailig H. Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 2007; 12:1290 - 1306
  • Gomez-Roldan V, Roux C, Girard D, Bécard G, Puech V. Strigolactones: Promising plant signals. Plant Signal Behav 2007; 2:163 - 164
  • Akiyama K, Hayashi H. Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 2006; 97:925 - 931
  • Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH. Secondary metabolites signaling in host-parasitic plant interactions. Curr Opin Plant Biol 2003; 6:358 - 364
  • Horvath B, Bachem CWB, Schell J, Kondorsi A. Host specific regulation of nodulation genes in Rhizobium is mediated by a plant signal, interacting with the nodD gene product. The EMBO J 1987; 6:841 - 848
  • Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG. Flavones induce expression of nodulation genes in Rhizobium. Nature 1986; 323:632 - 635
  • van Rhijn P, Vanderleyden J. The Rhizobium-plant symbiosis. Microbiol Rev 1995; 59:124 - 142
  • Spaink HP. Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 2000; 54:257 - 288
  • Ferguson BJ, Mathesius U. Signaling interactions during nodule development. Plant Growth Regul 2003; 22:47 - 72
  • Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, Greef JD, et al. Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS Lett 1991; 282:53 - 55
  • Theunis M, Kobayashi H, Broughton WJ, Prinsen E. Flavonoids, NodD1, NodD2 and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant-Microbe Interact 2004; 10:1153 - 1161
  • Hirsch A. Developmental biology of legume nodulation. New Phytol 1992; 122:211 - 237
  • deBilly F, Grosjean C, May S, Bennett M, Cullimore JV. Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. Mol Plant Microbe Interact 2001; 14:267 - 277
  • Lippincott JA, Lippincott BB, Starr MP. Starr MP, Stoip H, Trupper HG, Balows A, Schiegel HG. The Prokaryotes 1981; 1:New York Springer 842 - 855
  • Heath JD, Charles TC, Nester EW. Hoch JA, Silhavy TJ. Two-component signal transduction 1995; Washington, DC Am Soc Microbiol 367 - 385
  • Lee K, Dudley MW, Hess KM, Lynn DG, Joerger RD, Binns AN. Mechanism of activation of Agrobacterium virulence genes: identification of phenol-binding proteins. Proc Natl Acad Sci USA 1992; 89:8666 - 8670
  • Lee YW, Jin S, Sims WS, Nester EW. Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 1995; 92:12245 - 12249
  • Harrier LA, Wright F, Hooker JE. Isolation of the 3-phosphoglycerate kinase gene of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe. Curr Genet 1998; 34:386 - 392
  • Martin-Laurent F, van Tuinen D, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S, Franken P. Differential display analysis of RNA accumulation in arbuscular mycorrhiza of pea and isolation of a novel symbiosis-regulated plant gene. Mol Genet Genomics 1997; 256:37 - 44
  • Requena N, Mann P, Hampp R, Franken P. Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae: identification of GmGin1 a novel gene with homology to the C-terminus of metazoan hedgehog proteins. Plant Soil 2002; 244:129 - 139
  • Requena N, Serrano E, Ocon A, Breuninger M. Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry 2007; 68:33 - 40
  • Chester KS. The problem of acquired physiological immunity in plants. Quart Rev Biol 1993; 8:275 - 324
  • Aist JR, Gold RE. Prevention of fungal ingress: The role of papillae and calcium 1987; Tokyo/Springer-Verlag, Berlin Japan Sci Soc Press 47 - 58
  • Redman RS, Freeman S, Clifton DR, Morrel J, Brown G, Rodriguez RJ. Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of colletotrichum magna. Plant Physiol 2003; 119:795 - 804
  • Metraux JP. Systemic acquired resistance and salicylic acid: current state of knowledge. Eur J Plant Pathol 2001; 107:13 - 18
  • Ndakidemi PA, Dakora FD. Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Rev Funct Plant Biol 2003; 30:729 - 745
  • Inderjit, Duke SO. Ecophysiological aspects of allelopathy. Planta 2003; 217:529 - 539
  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 2006; 57:233 - 266
  • Dakora FD. Plant flavonoids: biological molecules for useful exploitation. Aust J Plant Physiol 1995; 22:87 - 99
  • Dakora FD, Phillips DA. Diverse functions of isoflavonoids in legumes transcend ant-microbial definitions of phytoalexins. Physiol Mol Plant Pathol 1996; 49:1 - 20
  • Nicholson RL, Hammerschmidt R. Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 1992; 30:369 - 389
  • Sarma BK, Singh UP. Ferulic acid prevents infection by Sclerotium rolfsii in Cicer arietinum. World J Microbiol Biotechnol 2003; 19:123 - 127
  • Field B, Jordon F, Osbourn. First encounters-deployment of defence related natural products by plants. New Phytol 2006; 172:193 - 207
  • Shaw L, Phil Morris J, Hooker JE. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 2006; 8:1867 - 1880
  • Walker T, Bias H, Grotewold E, Vivanco J. Root exudation and rhizosphere biology. Plant Physiol 2003; 132:44 - 51
  • Volpin H, Elland Y, Okon Y, Kapulnik Y. A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defence response in alfalfa roots. Plant Physiol 1994; 104:683 - 689
  • Rao JR, Cooper JE. Soybean nodulating rhizobia modify nod gene inducers daidzein and genistein to yield aromatic products that can influence geneinducing activity. Mol Plant Microbe Interact 1995; 8:855 - 862
  • Pieterse CMJ, Van Pelt JA, Van Wees SCM, Ton J, L'eon-Kloosterziel KM, Keurentjes JJB, et al. Rhizobacteria-mediated induced systemic resistance: triggering, signalling and expression. Eur J Plant Pathol 2001; 107:51 - 61
  • Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E. Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 2007; 276:1 - 11
  • Samac DA, Graham MA. Recent advances in legume-microbe interactions: recognition, defense response and symbiosis from a genomic perspective. Plant Physiol 2007; 144:582 - 587
  • Vaughan D, Ord B. Influence of phenolic acids on morphological changes in roots of Pisum sativum. J Sci Food Agric 1990; 52:289 - 299
  • Mishra RPN, Singh RK, Jaiswal HK, Kumar V, Maurya S. Rhizobium-Mediated Induction of Phenolics and Plant Growth Promotion in Rice (Oryza sativa L.). Curr Microbiol 2006; 52:383 - 389
  • Aguilar JMM, Ashby AM, Richards AJM, Loake GJ, Watson MD, Shaw CH. Chemotaxis of Rhizobium leguminosarum biovar phaseoli towards flavonoid inducers of the symbiotic nodulation genes. J Gen Microbiol 1988; 134:2741 - 2746
  • Moran JF, Klucas RV, Grayer RJ, Abian J, Becana M. Complexes of Iron with Phenolic Compounds from Soybean Nodules and Other Legume Tissues: Prooxidant and Antioxidant Properties. Free Radic Biol Med 1997; 22:861 - 870
  • Sobolev VS, Horn BW, Potter TL, Deyrup ST, Gloer JB. Production of Stilbenoids and Phenolic Acids by the Peanut Plant at Early Stages of Growth. J Agric Food Chem 2006; 54:3505 - 3511
  • van Spronsen PC, Tak T, Rood AMM, van Brussel AAN, Kijne JW, Boot KJM. Salicylic acid inhibits indeterminate-type nodulation but not determinate-type nodulation. Mol Plant-Microb Interact 2003; 16:83 - 91
  • Stacey G, Mc Alvin CB, Kim SY, Olivares J, Soto MJ. Effects of Endogenous Salicylic Acid on Nodulation in the Model Legumes Lotus japonicus and Medicago truncatula. Plant Physiol 2006; 141:1473 - 1481
  • Sato T, Fujikake H, Ohtake N, Sueyoshi K, Takahashi T, Sato A, Ohyama T. Effect of exogenous salicylic acid supply on nodulation formation of hypernodulating mutant and wild type of soybean. Soil Sci Plant Nutr 2002; 48:413 - 420

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.