2,684
Views
89
CrossRef citations to date
0
Altmetric
Review

RNA helicases in splicing

&
Pages 83-95 | Received 07 Aug 2012, Accepted 13 Oct 2012, Published online: 10 Dec 2012

References

  • Will CL, Lührmann R. Spliceosome structure and function. Cold Spring Harb Perspect Biol 2011; 3:0003707; http://dx.doi.org/10.1101/cshperspect.a003707; PMID: 21441581
  • Hoskins AA, Moore MJ. The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem Sci 2012; 37:179 - 88; http://dx.doi.org/10.1016/j.tibs.2012.02.009; PMID: 22480731
  • Fabrizio P, Dannenberg J, Dube P, Kastner B, Stark H, Urlaub H, et al. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol Cell 2009; 36:593 - 608; http://dx.doi.org/10.1016/j.molcel.2009.09.040; PMID: 19941820
  • Jurica MS, Moore MJ. Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 2003; 12:5 - 14; http://dx.doi.org/10.1016/S1097-2765(03)00270-3; PMID: 12887888
  • Warkocki Z, Odenwälder P, Schmitzová J, Platzmann F, Stark H, Urlaub H, et al. Reconstitution of both steps of Saccharomyces cerevisiae splicing with purified spliceosomal components. Nat Struct Mol Biol 2009; 16:1237 - 43; http://dx.doi.org/10.1038/nsmb.1729; PMID: 19935684
  • Pleiss JA, Whitworth GB, Bergkessel M, Guthrie C. Rapid, transcript-specific changes in splicing in response to environmental stress. Mol Cell 2007; 27:928 - 37; http://dx.doi.org/10.1016/j.molcel.2007.07.018; PMID: 17889666
  • Staley JP, Woolford JL Jr.. Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines. Curr Opin Cell Biol 2009; 21:109 - 18; http://dx.doi.org/10.1016/j.ceb.2009.01.003; PMID: 19167202
  • Stevens SW, Abelson J. Yeast pre-mRNA splicing: methods, mechanisms, and machinery. Methods Enzymol 2002; 351:200 - 20; http://dx.doi.org/10.1016/S0076-6879(02)51849-8; PMID: 12073346
  • Lesser CF, Guthrie C. Mutational analysis of pre-mRNA splicing in Saccharomyces cerevisiae using a sensitive new reporter gene, CUP1. Genetics 1993; 133:851 - 63; PMID: 8462846
  • Cooper TA. Use of minigene systems to dissect alternative splicing elements. Methods 2005; 37:331 - 40; http://dx.doi.org/10.1016/j.ymeth.2005.07.015; PMID: 16314262
  • Pleiss JA, Whitworth GB, Bergkessel M, Guthrie C. Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components. PLoS Biol 2007; 5:e90; http://dx.doi.org/10.1371/journal.pbio.0050090; PMID: 17388687
  • Martinson HG. An active role for splicing in 3′-end formation. Wiley Interdiscip Rev RNA 2011; 2:459 - 70; http://dx.doi.org/10.1002/wrna.68; PMID: 21957037
  • de la Mata M, Kornblihtt AR. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat Struct Mol Biol 2006; 13:973 - 80; http://dx.doi.org/10.1038/nsmb1155; PMID: 17028590
  • Raczynska KD, Simpson CG, Ciesiolka A, Szewc L, Lewandowska D, McNicol J, et al. Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 2010; 38:265 - 78; http://dx.doi.org/10.1093/nar/gkp869; PMID: 19864257
  • Cordin O, Hahn D, Beggs JD. Structure, function and regulation of spliceosomal RNA helicases. Curr Opin Cell Biol 2012; 24:431 - 8; http://dx.doi.org/10.1016/j.ceb.2012.03.004; PMID: 22464735
  • Koonin EV. Similarities in RNA helicases. Nature 1991; 352:290; http://dx.doi.org/10.1038/352290c0; PMID: 1852203
  • Fairman-Williams ME, Guenther UP, Jankowsky E. SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 2010; 20:313 - 24; http://dx.doi.org/10.1016/j.sbi.2010.03.011; PMID: 20456941
  • Jankowsky E. RNA helicases at work: binding and rearranging. Trends Biochem Sci 2011; 36:19 - 29; http://dx.doi.org/10.1016/j.tibs.2010.07.008; PMID: 20813532
  • Cordin O, Banroques J, Tanner NK, Linder P. The DEAD-box protein family of RNA helicases. Gene 2006; 367:17 - 37; http://dx.doi.org/10.1016/j.gene.2005.10.019; PMID: 16337753
  • Yang Q, Jankowsky E. ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 2005; 44:13591 - 601; http://dx.doi.org/10.1021/bi0508946; PMID: 16216083
  • Shepard PJ, Hertel KJ. The SR protein family. Genome Biol 2009; 10:242; http://dx.doi.org/10.1186/gb-2009-10-10-242; PMID: 19857271
  • Björk P, Jin S, Zhao J, Singh OP, Persson JO, Hellman U, et al. Specific combinations of SR proteins associate with single pre-messenger RNAs in vivo and contribute different functions. J Cell Biol 2009; 184:555 - 68; http://dx.doi.org/10.1083/jcb.200806156; PMID: 19221196
  • Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J 2009; 417:15 - 27; http://dx.doi.org/10.1042/BJ20081501; PMID: 19061484
  • Murzin AG. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 1993; 12:861 - 7; PMID: 8458342
  • Walbott H, Mouffok S, Capeyrou R, Lebaron S, Humbert O, van Tilbeurgh H, et al. Prp43p contains a processive helicase structural architecture with a specific regulatory domain. EMBO J 2010; 29:2194 - 204; http://dx.doi.org/10.1038/emboj.2010.102; PMID: 20512115
  • Lebaron S, Papin C, Capeyrou R, Chen YL, Froment C, Monsarrat B, et al. The ATPase and helicase activities of Prp43p are stimulated by the G-patch protein Pfa1p during yeast ribosome biogenesis. EMBO J 2009; 28:3808 - 19; http://dx.doi.org/10.1038/emboj.2009.335; PMID: 19927118
  • He Y, Andersen GR, Nielsen KH. Structural basis for the function of DEAH helicases. EMBO Rep 2010; 11:180 - 6; http://dx.doi.org/10.1038/embor.2010.11; PMID: 20168331
  • Silverman EJ, Maeda A, Wei J, Smith P, Beggs JD, Lin RJ. Interaction between a G-patch protein and a spliceosomal DEXD/H-box ATPase that is critical for splicing. Mol Cell Biol 2004; 24:10101 - 10; http://dx.doi.org/10.1128/MCB.24.23.10101-10110.2004; PMID: 15542821
  • Roy J, Kim K, Maddock JR, Anthony JG, Woolford JL Jr.. The final stages of spliceosome maturation require Spp2p that can interact with the DEAH box protein Prp2p and promote step 1 of splicing. RNA 1995; 1:375 - 90; PMID: 7493316
  • Aksaas AK, Larsen AC, Rogne M, Rosendal K, Kvissel AK, Skålhegg BS. G-patch domain and KOW motifs-containing protein, GPKOW; a nuclear RNA-binding protein regulated by protein kinase A. J Mol Signal 2011; 6:10; http://dx.doi.org/10.1186/1750-2187-6-10; PMID: 21880142
  • Korneta I, Magnus M, Bujnicki JM. Structural bioinformatics of the human spliceosomal proteome. Nucleic Acids Res 2012; 40:7046 - 65; http://dx.doi.org/10.1093/nar/gks347; PMID: 22573172
  • Schneider S, Schwer B. Functional domains of the yeast splicing factor Prp22p. J Biol Chem 2001; 276:21184 - 91; http://dx.doi.org/10.1074/jbc.M101964200; PMID: 11283007
  • Schneider S, Hotz HR, Schwer B. Characterization of dominant-negative mutants of the DEAH-box splicing factors Prp22 and Prp16. J Biol Chem 2002; 277:15452 - 8; http://dx.doi.org/10.1074/jbc.M112473200; PMID: 11856747
  • Edwalds-Gilbert G, Kim DH, Silverman E, Lin RJ. Definition of a spliceosome interaction domain in yeast Prp2 ATPase. RNA 2004; 10:210 - 20; http://dx.doi.org/10.1261/rna.5151404; PMID: 14730020
  • Wang Y, Guthrie C. PRP16, a DEAH-box RNA helicase, is recruited to the spliceosome primarily via its nonconserved N-terminal domain. RNA 1998; 4:1216 - 29; http://dx.doi.org/10.1017/S1355838298980992; PMID: 9769096
  • Hotz HR, Schwer B. Mutational analysis of the yeast DEAH-box splicing factor Prp16. Genetics 1998; 149:807 - 15; PMID: 9611193
  • Martin A, Schneider S, Schwer B. Prp43 is an essential RNA-dependent ATPase required for release of lariat-intron from the spliceosome. J Biol Chem 2002; 277:17743 - 50; http://dx.doi.org/10.1074/jbc.M200762200; PMID: 11886864
  • Santosa KS, Mozaffari-Jovin S, Webera G, Pena V, Lührmann R, Wahl MC. Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Proc Natl Acad Sci USA 2012; •••; http://dx.doi.org/10.1073/pnas.1208098109
  • Hahn D, Kudla G, Tollervey D, Beggs MC. Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. Genes Dev 2012; 26 In press
  • Hahn D, Beggs JD. Brr2p RNA helicase with a split personality: insights into structure and function. Biochem Soc Trans 2010; 38:1105 - 9; http://dx.doi.org/10.1042/BST0381105; PMID: 20659012
  • van Nues RW, Beggs JD. Functional contacts with a range of splicing proteins suggest a central role for Brr2p in the dynamic control of the order of events in spliceosomes of Saccharomyces cerevisiae.. Genetics 2001; 157:1451 - 67; PMID: 11290703
  • Pena V, Jovin SM, Fabrizio P, Orlowski J, Bujnicki JM, Lührmann R, et al. Common design principles in the spliceosomal RNA helicase Brr2 and in the Hel308 DNA helicase. Mol Cell 2009; 35:454 - 66; http://dx.doi.org/10.1016/j.molcel.2009.08.006; PMID: 19716790
  • Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, et al. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol 2009; 16:731 - 9; http://dx.doi.org/10.1038/nsmb.1625; PMID: 19525970
  • Woodman IL, Bolt EL. Molecular biology of Hel308 helicase in archaea. Biochem Soc Trans 2009; 37:74 - 8; http://dx.doi.org/10.1042/BST0370074; PMID: 19143605
  • Richards JD, Johnson KA, Liu H, McRobbie AM, McMahon S, Oke M, et al. Structure of the DNA repair helicase hel308 reveals DNA binding and autoinhibitory domains. J Biol Chem 2008; 283:5118 - 26; http://dx.doi.org/10.1074/jbc.M707548200; PMID: 18056710
  • Büttner K, Nehring S, Hopfner KP. Structural basis for DNA duplex separation by a superfamily-2 helicase. Nat Struct Mol Biol 2007; 14:647 - 52; http://dx.doi.org/10.1038/nsmb1246; PMID: 17558417
  • Fleckner J, Zhang M, Valcárcel J, Green MR. U2AF65 recruits a novel human DEAD box protein required for the U2 snRNP-branchpoint interaction. Genes Dev 1997; 11:1864 - 72; http://dx.doi.org/10.1101/gad.11.14.1864; PMID: 9242493
  • Chang J, Schwer B, Shuman S. Structure-function analysis and genetic interactions of the yeast branchpoint binding protein Msl5. Nucleic Acids Res 2012; 40:4539 - 52; http://dx.doi.org/10.1093/nar/gks049; PMID: 22287628
  • Shen H, Zheng X, Shen J, Zhang L, Zhao R, Green MR. Distinct activities of the DExD/H-box splicing factor hUAP56 facilitate stepwise assembly of the spliceosome. Genes Dev 2008; 22:1796 - 803; http://dx.doi.org/10.1101/gad.1657308; PMID: 18593880
  • Kistler AL, Guthrie C. Deletion of MUD2, the yeast homolog of U2AF65, can bypass the requirement for sub2, an essential spliceosomal ATPase. Genes Dev 2001; 15:42 - 9; http://dx.doi.org/10.1101/gad.851301; PMID: 11156604
  • Raghunathan PL, Guthrie C. RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr Biol 1998; 8:847 - 55; http://dx.doi.org/10.1016/S0960-9822(07)00345-4; PMID: 9705931
  • Kim DH, Rossi JJ. The first ATPase domain of the yeast 246-kDa protein is required for in vivo unwinding of the U4/U6 duplex. RNA 1999; 5:959 - 71; http://dx.doi.org/10.1017/S135583829999012X; PMID: 10411139
  • Shen H. UAP56- a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export. BMB Rep 2009; 42:185 - 8; http://dx.doi.org/10.5483/BMBRep.2009.42.4.185; PMID: 19403039
  • Meignin C, Davis I. UAP56 RNA helicase is required for axis specification and cytoplasmic mRNA localization in Drosophila. Dev Biol 2008; 315:89 - 98; http://dx.doi.org/10.1016/j.ydbio.2007.12.004; PMID: 18237727
  • Libri D, Graziani N, Saguez C, Boulay J. Multiple roles for the yeast SUB2/yUAP56 gene in splicing. Genes Dev 2001; 15:36 - 41; http://dx.doi.org/10.1101/gad.852101; PMID: 11156603
  • Jensen TH, Boulay J, Rosbash M, Libri D. The DECD box putative ATPase Sub2p is an early mRNA export factor. Curr Biol 2001; 11:1711 - 5; http://dx.doi.org/10.1016/S0960-9822(01)00529-2; PMID: 11696331
  • Wisskirchen C, Ludersdorfer TH, Müller DA, Moritz E, Pavlovic J. The cellular RNA helicase UAP56 is required for prevention of double-stranded RNA formation during influenza A virus infection. J Virol 2011; 85:8646 - 55; http://dx.doi.org/10.1128/JVI.02559-10; PMID: 21680511
  • Li Y, Wang X, Zhang X, Goodrich DW. Human hHpr1/p84/Thoc1 regulates transcriptional elongation and physically links RNA polymerase II and RNA processing factors. Mol Cell Biol 2005; 25:4023 - 33; http://dx.doi.org/10.1128/MCB.25.10.4023-4033.2005; PMID: 15870275
  • Perriman R, Barta I, Voeltz GK, Abelson J, Ares M Jr.. ATP requirement for Prp5p function is determined by Cus2p and the structure of U2 small nuclear RNA. Proc Natl Acad Sci U S A 2003; 100:13857 - 62; http://dx.doi.org/10.1073/pnas.2036312100; PMID: 14610285
  • Wang J, Smith PJ, Krainer AR, Zhang MQ. Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes. Nucleic Acids Res 2005; 33:5053 - 62; http://dx.doi.org/10.1093/nar/gki810; PMID: 16147989
  • Wells SE, Neville M, Haynes M, Wang J, Igel H, Ares M Jr.. CUS1, a suppressor of cold-sensitive U2 snRNA mutations, is a novel yeast splicing factor homologous to human SAP 145. Genes Dev 1996; 10:220 - 32; http://dx.doi.org/10.1101/gad.10.2.220; PMID: 8566755
  • Yan D, Perriman R, Igel H, Howe KJ, Neville M, Ares M Jr.. CUS2, a yeast homolog of human Tat-SF1, rescues function of misfolded U2 through an unusual RNA recognition motif. Mol Cell Biol 1998; 18:5000 - 9; PMID: 9710584
  • Perriman RJ, Ares M Jr.. Rearrangement of competing U2 RNA helices within the spliceosome promotes multiple steps in splicing. Genes Dev 2007; 21:811 - 20; http://dx.doi.org/10.1101/gad.1524307; PMID: 17403781
  • Shao W, Kim HS, Cao Y, Xu YZ, Query CCA. A U1-U2 snRNP interaction network during intron definition. Mol Cell Biol 2012; 32:470 - 8; http://dx.doi.org/10.1128/MCB.06234-11; PMID: 22064476
  • Strauss EJ, Guthrie C. A cold-sensitive mRNA splicing mutant is a member of the RNA helicase gene family. Genes Dev 1991; 5:629 - 41; http://dx.doi.org/10.1101/gad.5.4.629; PMID: 2010088
  • Strauss EJ, Guthrie C. PRP28, a ‘DEAD-box’ protein, is required for the first step of mRNA splicing in vitro. Nucleic Acids Res 1994; 22:3187 - 93; http://dx.doi.org/10.1093/nar/22.15.3187; PMID: 7520570
  • Staley JP, Guthrie C. An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p. Mol Cell 1999; 3:55 - 64; http://dx.doi.org/10.1016/S1097-2765(00)80174-4; PMID: 10024879
  • Chen JY, Stands L, Staley JP, Jackups RR Jr., Latus LJ, Chang TH. Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor. Mol Cell 2001; 7:227 - 32; http://dx.doi.org/10.1016/S1097-2765(01)00170-8; PMID: 11172727
  • Hage R, Tung L, Du H, Stands L, Rosbash M, Chang TH. A targeted bypass screen identifies Ynl187p, Prp42p, Snu71p, and Cbp80p for stable U1 snRNP/Pre-mRNA interaction. Mol Cell Biol 2009; 29:3941 - 52; http://dx.doi.org/10.1128/MCB.00384-09; PMID: 19451230
  • Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, et al. The genetic landscape of a cell. Science 2010; 327:425 - 31; http://dx.doi.org/10.1126/science.1180823; PMID: 20093466
  • Brenner TJ, Guthrie C. Genetic analysis reveals a role for the C terminus of the Saccharomyces cerevisiae GTPase Snu114 during spliceosome activation. Genetics 2005; 170:1063 - 80; http://dx.doi.org/10.1534/genetics.105.042044; PMID: 15911574
  • Kuhn AN, Reichl EM, Brow DA. Distinct domains of splicing factor Prp8 mediate different aspects of spliceosome activation. Proc Natl Acad Sci U S A 2002; 99:9145 - 9; http://dx.doi.org/10.1073/pnas.102304299; PMID: 12087126
  • Mathew R, Hartmuth K, Möhlmann S, Urlaub H, Ficner R, Lührmann R. Phosphorylation of human PRP28 by SRPK2 is required for integration of the U4/U6-U5 tri-snRNP into the spliceosome. Nat Struct Mol Biol 2008; 15:435 - 43; http://dx.doi.org/10.1038/nsmb.1415; PMID: 18425142
  • Häcker I, Sander B, Golas MM, Wolf E, Karagöz E, Kastner B, et al. Localization of Prp8, Brr2, Snu114 and U4/U6 proteins in the yeast tri-snRNP by electron microscopy. Nat Struct Mol Biol 2008; 15:1206 - 12; http://dx.doi.org/10.1038/nsmb.1506; PMID: 18953335
  • Weber G, Cristão VF, de L Alves F, Santos KF, Holton N, Rappsilber J, et al. Mechanism for Aar2p function as a U5 snRNP assembly factor. Genes Dev 2011; 25:1601 - 12; http://dx.doi.org/10.1101/gad.635911; PMID: 21764848
  • Mozaffari-Jovin S, Santos KF, Hsiao H-H, Will CL, Urlaub H, Wahl MC, et al. The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev 2012; 26 In press
  • Maeder C, Kutach AK, Guthrie C. ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C terminus of Prp8. Nat Struct Mol Biol 2009; 16:42 - 8; http://dx.doi.org/10.1038/nsmb.1535; PMID: 19098916
  • Bellare P, Small EC, Huang X, Wohlschlegel JA, Staley JP, Sontheimer EJ. A role for ubiquitin in the spliceosome assembly pathway. Nat Struct Mol Biol 2008; 15:444 - 51; http://dx.doi.org/10.1038/nsmb.1401; PMID: 18425143
  • Small EC, Leggett SR, Winans AA, Staley JP. The EF-G-like GTPase Snu114p regulates spliceosome dynamics mediated by Brr2p, a DExD/H box ATPase. Mol Cell 2006; 23:389 - 99; http://dx.doi.org/10.1016/j.molcel.2006.05.043; PMID: 16885028
  • Bartels C, Klatt C, Lührmann R, Fabrizio P. The ribosomal translocase homologue Snu114p is involved in unwinding U4/U6 RNA during activation of the spliceosome. EMBO Rep 2002; 3:875 - 80; http://dx.doi.org/10.1093/embo-reports/kvf172; PMID: 12189173
  • Boon KL, Grainger RJ, Ehsani P, Barrass JD, Auchynnikava T, Inglehearn CF, et al. prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP maturation defect in yeast. Nat Struct Mol Biol 2007; 14:1077 - 83; http://dx.doi.org/10.1038/nsmb1303; PMID: 17934474
  • Zhao C, Bellur DL, Lu S, Zhao F, Grassi MA, Bowne SJ, et al. Autosomal-dominant retinitis pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Am J Hum Genet 2009; 85:617 - 27; http://dx.doi.org/10.1016/j.ajhg.2009.09.020; PMID: 19878916
  • Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 2006; 440:631 - 6; http://dx.doi.org/10.1038/nature04532; PMID: 16429126
  • Stevens SW, Barta I, Ge HY, Moore RE, Young MK, Lee TD, et al. Biochemical and genetic analyses of the U5, U6, and U4/U6 x U5 small nuclear ribonucleoproteins from Saccharomyces cerevisiae.. RNA 2001; 7:1543 - 53; PMID: 11720284
  • Bouveret E, Rigaut G, Shevchenko A, Wilm M, Séraphin B. A Sm-like protein complex that participates in mRNA degradation. EMBO J 2000; 19:1661 - 71; http://dx.doi.org/10.1093/emboj/19.7.1661; PMID: 10747033
  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.. Nature 2006; 440:637 - 43; http://dx.doi.org/10.1038/nature04670; PMID: 16554755
  • Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 2007; 446:806 - 10; http://dx.doi.org/10.1038/nature05649; PMID: 17314980
  • Ren L, McLean JR, Hazbun TR, Fields S, Vander Kooi C, Ohi MD, et al. Systematic two-hybrid and comparative proteomic analyses reveal novel yeast pre-mRNA splicing factors connected to Prp19. PLoS One 2011; 6:e16719; http://dx.doi.org/10.1371/journal.pone.0016719; PMID: 21386897
  • Lardelli RM, Thompson JX, Yates JR 3rd, Stevens SW. Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing. RNA 2010; 16:516 - 28; http://dx.doi.org/10.1261/rna.2030510; PMID: 20089683
  • Yeh TC, Liu HL, Chung CS, Wu NY, Liu YC, Cheng SC. Splicing factor Cwc22 is required for the function of Prp2 and for the spliceosome to escape from a futile pathway. Mol Cell Biol 2011; 31:43 - 53; http://dx.doi.org/10.1128/MCB.00801-10; PMID: 20956557
  • Teigelkamp S, McGarvey M, Plumpton M, Beggs JD. The splicing factor PRP2, a putative RNA helicase, interacts directly with pre-mRNA. EMBO J 1994; 13:888 - 97; PMID: 8112302
  • Ohrt T, Prior M, Dannenberg J, Odenwälder P, Dybkov O, Rasche N, et al. Prp2-mediated protein rearrangements at the catalytic core of the spliceosome as revealed by dcFCCS. RNA 2012; 18:1244 - 56; http://dx.doi.org/10.1261/rna.033316.112; PMID: 22535589
  • Goldfeder MB, Oliveira CC. Cwc24p, a novel Saccharomyces cerevisiae nuclear ring finger protein, affects pre-snoRNA U3 splicing. J Biol Chem 2008; 283:2644 - 53; http://dx.doi.org/10.1074/jbc.M707885200; PMID: 17974558
  • Hegele A, Kamburov A, Grossmann A, Sourlis C, Wowro S, Weimann M, et al. Dynamic protein-protein interaction wiring of the human spliceosome. Mol Cell 2012; 45:567 - 80; http://dx.doi.org/10.1016/j.molcel.2011.12.034; PMID: 22365833
  • Couto JR, Tamm J, Parker R, Guthrie C. A trans-acting suppressor restores splicing of a yeast intron with a branch point mutation. Genes Dev 1987; 1:445 - 55; http://dx.doi.org/10.1101/gad.1.5.445; PMID: 2890553
  • Schwer B, Guthrie C. PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome. Nature 1991; 349:494 - 9; http://dx.doi.org/10.1038/349494a0; PMID: 1825134
  • Tseng CK, Liu HL, Cheng SC. DEAH-box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps. RNA 2011; 17:145 - 54; http://dx.doi.org/10.1261/rna.2459611; PMID: 21098140
  • Koodathingal P, Novak T, Piccirilli JA, Staley JP. The DEAH box ATPases Prp16 and Prp43 cooperate to proofread 5′ splice site cleavage during pre-mRNA splicing. Mol Cell 2010; 39:385 - 95; http://dx.doi.org/10.1016/j.molcel.2010.07.014; PMID: 20705241
  • Villa T, Guthrie C. The Isy1p component of the NineTeen complex interacts with the ATPase Prp16p to regulate the fidelity of pre-mRNA splicing. Genes Dev 2005; 19:1894 - 904; http://dx.doi.org/10.1101/gad.1336305; PMID: 16103217
  • Query CC, Konarska MM. Suppression of multiple substrate mutations by spliceosomal prp8 alleles suggests functional correlations with ribosomal ambiguity mutants. Mol Cell 2004; 14:343 - 54; http://dx.doi.org/10.1016/S1097-2765(04)00217-5; PMID: 15125837
  • Madhani HD, Guthrie C. Genetic interactions between the yeast RNA helicase homolog Prp16 and spliceosomal snRNAs identify candidate ligands for the Prp16 RNA-dependent ATPase. Genetics 1994; 137:677 - 87; PMID: 8088513
  • Schwer B, Guthrie C. A conformational rearrangement in the spliceosome is dependent on PRP16 and ATP hydrolysis. EMBO J 1992; 11:5033 - 9; PMID: 1464325
  • Schwer B, Gross CH. Prp22, a DExH-box RNA helicase, plays two distinct roles in yeast pre-mRNA splicing. EMBO J 1998; 17:2086 - 94; http://dx.doi.org/10.1093/emboj/17.7.2086; PMID: 9524130
  • Schneider S, Campodonico E, Schwer B. Motifs IV and V in the DEAH box splicing factor Prp22 are important for RNA unwinding, and helicase-defective Prp22 mutants are suppressed by Prp8. J Biol Chem 2004; 279:8617 - 26; http://dx.doi.org/10.1074/jbc.M312715200; PMID: 14688266
  • Aronova A, Bacíková D, Crotti LB, Horowitz DS, Schwer B. Functional interactions between Prp8, Prp18, Slu7, and U5 snRNA during the second step of pre-mRNA splicing. RNA 2007; 13:1437 - 44; http://dx.doi.org/10.1261/rna.572807; PMID: 17626844
  • Company M, Arenas J, Abelson J. Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature 1991; 349:487 - 93; http://dx.doi.org/10.1038/349487a0; PMID: 1992352
  • James SA, Turner W, Schwer B. How Slu7 and Prp18 cooperate in the second step of yeast pre-mRNA splicing. RNA 2002; 8:1068 - 77; http://dx.doi.org/10.1017/S1355838202022033; PMID: 12212850
  • McPheeters DS, Schwer B, Muhlenkamp P. Interaction of the yeast DExH-box RNA helicase prp22p with the 3′ splice site during the second step of nuclear pre-mRNA splicing. Nucleic Acids Res 2000; 28:1313 - 21; http://dx.doi.org/10.1093/nar/28.6.1313; PMID: 10684925
  • McPheeters DS, Muhlenkamp P. Spatial organization of protein-RNA interactions in the branch site-3′ splice site region during pre-mRNA splicing in yeast. Mol Cell Biol 2003; 23:4174 - 86; http://dx.doi.org/10.1128/MCB.23.12.4174-4186.2003; PMID: 12773561
  • Schwer B. A conformational rearrangement in the spliceosome sets the stage for Prp22-dependent mRNA release. Mol Cell 2008; 30:743 - 54; http://dx.doi.org/10.1016/j.molcel.2008.05.003; PMID: 18570877
  • Grainger RJ, Barrass JD, Jacquier A, Rain JC, Beggs JD. Physical and genetic interactions of yeast Cwc21p, an ortholog of human SRm300/SRRM2, suggest a role at the catalytic center of the spliceosome. RNA 2009; 15:2161 - 73; http://dx.doi.org/10.1261/rna.1908309; PMID: 19854871
  • Teigelkamp S, Whittaker E, Beggs JD. Interaction of the yeast splicing factor PRP8 with substrate RNA during both steps of splicing. Nucleic Acids Res 1995; 23:320 - 6; http://dx.doi.org/10.1093/nar/23.3.320; PMID: 7885825
  • Tsai RT, Fu RH, Yeh FL, Tseng CK, Lin YC, Huang YH, et al. Spliceosome disassembly catalyzed by Prp43 and its associated components Ntr1 and Ntr2. Genes Dev 2005; 19:2991 - 3003; http://dx.doi.org/10.1101/gad.1377405; PMID: 16357217
  • Tanaka N, Aronova A, Schwer B. Ntr1 activates the Prp43 helicase to trigger release of lariat-intron from the spliceosome. Genes Dev 2007; 21:2312 - 25; http://dx.doi.org/10.1101/gad.1580507; PMID: 17875666
  • Arenas JE, Abelson JN. Prp43: An RNA helicase-like factor involved in spliceosome disassembly. Proc Natl Acad Sci U S A 1997; 94:11798 - 802; http://dx.doi.org/10.1073/pnas.94.22.11798; PMID: 9342317
  • Pandit S, Lynn B, Rymond BC. Inhibition of a spliceosome turnover pathway suppresses splicing defects. Proc Natl Acad Sci U S A 2006; 103:13700 - 5; http://dx.doi.org/10.1073/pnas.0603188103; PMID: 16945917
  • Lebaron S, Froment C, Fromont-Racine M, Rain JC, Monsarrat B, Caizergues-Ferrer M, et al. The splicing ATPase prp43p is a component of multiple preribosomal particles. Mol Cell Biol 2005; 25:9269 - 82; http://dx.doi.org/10.1128/MCB.25.21.9269-9282.2005; PMID: 16227579
  • Combs DJ, Nagel RJ, Ares M Jr., Stevens SW. Prp43p is a DEAH-box spliceosome disassembly factor essential for ribosome biogenesis. Mol Cell Biol 2006; 26:523 - 34; http://dx.doi.org/10.1128/MCB.26.2.523-534.2006; PMID: 16382144
  • Leeds NB, Small EC, Hiley SL, Hughes TR, Staley JP. The splicing factor Prp43p, a DEAH box ATPase, functions in ribosome biogenesis. Mol Cell Biol 2006; 26:513 - 22; http://dx.doi.org/10.1128/MCB.26.2.513-522.2006; PMID: 16382143
  • Pandit S, Paul S, Zhang L, Chen M, Durbin N, Harrison SM, et al. Spp382p interacts with multiple yeast splicing factors, including possible regulators of Prp43 DExD/H-Box protein function. Genetics 2009; 183:195 - 206; http://dx.doi.org/10.1534/genetics.109.106955; PMID: 19581443
  • Tsai RT, Tseng CK, Lee PJ, Chen HC, Fu RH, Chang KJ, et al. Dynamic interactions of Ntr1-Ntr2 with Prp43 and with U5 govern the recruitment of Prp43 to mediate spliceosome disassembly. Mol Cell Biol 2007; 27:8027 - 37; http://dx.doi.org/10.1128/MCB.01213-07; PMID: 17893323
  • Herrmann G, Kais S, Hoffbauer J, Shah-Hosseini K, Brüggenolte N, Schober H, et al. Conserved interactions of the splicing factor Ntr1/Spp382 with proteins involved in DNA double-strand break repair and telomere metabolism. Nucleic Acids Res 2007; 35:2321 - 32; http://dx.doi.org/10.1093/nar/gkm127; PMID: 17389648
  • Boon KL, Auchynnikava T, Edwalds-Gilbert G, Barrass JD, Droop AP, Dez C, et al. Yeast ntr1/spp382 mediates prp43 function in postspliceosomes. Mol Cell Biol 2006; 26:6016 - 23; http://dx.doi.org/10.1128/MCB.02347-05; PMID: 16880513
  • Semlow DR, Staley JP. Staying on message: ensuring fidelity in pre-mRNA splicing. Trends Biochem Sci 2012; 37:263 - 73; http://dx.doi.org/10.1016/j.tibs.2012.04.001; PMID: 22564363
  • Egecioglu DE, Chanfreau G. Proofreading and spellchecking: a two-tier strategy for pre-mRNA splicing quality control. RNA 2011; 17:383 - 9; http://dx.doi.org/10.1261/rna.2454711; PMID: 21205840
  • Horowitz DS. The splice is right: guarantors of fidelity in pre-mRNA splicing. RNA 2011; 17:551 - 4; http://dx.doi.org/10.1261/rna.2577511; PMID: 21357751
  • Xu YZ, Query CC. Competition between the ATPase Prp5 and branch region-U2 snRNA pairing modulates the fidelity of spliceosome assembly. Mol Cell 2007; 28:838 - 49; http://dx.doi.org/10.1016/j.molcel.2007.09.022; PMID: 18082608
  • Perriman R, Ares M Jr.. Invariant U2 snRNA nucleotides form a stem loop to recognize the intron early in splicing. Mol Cell 2010; 38:416 - 27; http://dx.doi.org/10.1016/j.molcel.2010.02.036; PMID: 20471947
  • Burgess SM, Guthrie C. A mechanism to enhance mRNA splicing fidelity: the RNA-dependent ATPase Prp16 governs usage of a discard pathway for aberrant lariat intermediates. Cell 1993; 73:1377 - 91; http://dx.doi.org/10.1016/0092-8674(93)90363-U; PMID: 8324826
  • Burgess S, Couto JR, Guthrie C. A putative ATP binding protein influences the fidelity of branchpoint recognition in yeast splicing. Cell 1990; 60:705 - 17; http://dx.doi.org/10.1016/0092-8674(90)90086-T; PMID: 2138057
  • Mayas RM, Maita H, Staley JP. Exon ligation is proofread by the DExD/H-box ATPase Prp22p. Nat Struct Mol Biol 2006; 13:482 - 90; http://dx.doi.org/10.1038/nsmb1093; PMID: 16680161
  • Hoskins AA, Gelles J, Moore MJ. New insights into the spliceosome by single molecule fluorescence microscopy. Curr Opin Chem Biol 2011; 15:864 - 70; http://dx.doi.org/10.1016/j.cbpa.2011.10.010; PMID: 22057211
  • Perriman RJ, Ares M Jr.. Alternative splicing variability: exactly how similar are two identical cells?. Mol Syst Biol 2011; 7:505; http://dx.doi.org/10.1038/msb.2011.44; PMID: 21734644
  • Luna R, Gaillard H, González-Aguilera C, Aguilera A. Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 2008; 117:319 - 31; http://dx.doi.org/10.1007/s00412-008-0158-4; PMID: 18427828
  • Alexander RD, Innocente SA, Barrass JD, Beggs JD. Splicing-dependent RNA polymerase pausing in yeast. Mol Cell 2010; 40:582 - 93; http://dx.doi.org/10.1016/j.molcel.2010.11.005; PMID: 21095588
  • Alexander R, Beggs JD. Cross-talk in transcription, splicing and chromatin: who makes the first call?. Biochem Soc Trans 2010; 38:1251 - 6; http://dx.doi.org/10.1042/BST0381251; PMID: 20863294
  • Kotovic KM, Lockshon D, Boric L, Neugebauer KM. Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast. Mol Cell Biol 2003; 23:5768 - 79; http://dx.doi.org/10.1128/MCB.23.16.5768-5779.2003; PMID: 12897147
  • Moore MJ, Schwartzfarb EM, Silver PA, Yu MC. Differential recruitment of the splicing machinery during transcription predicts genome-wide patterns of mRNA splicing. Mol Cell 2006; 24:903 - 15; http://dx.doi.org/10.1016/j.molcel.2006.12.006; PMID: 17189192
  • Lacadie SA, Tardiff DF, Kadener S, Rosbash M. In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants. Genes Dev 2006; 20:2055 - 66; http://dx.doi.org/10.1101/gad.1434706; PMID: 16882983
  • Bentley DL. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol 2005; 17:251 - 6; http://dx.doi.org/10.1016/j.ceb.2005.04.006; PMID: 15901493
  • Chanarat S, Seizl M, Strässer K. The Prp19 complex is a novel transcription elongation factor required for TREX occupancy at transcribed genes. Genes Dev 2011; 25:1147 - 58; http://dx.doi.org/10.1101/gad.623411; PMID: 21576257
  • Tang L, Nogales E, Ciferri C. Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog Biophys Mol Biol 2010; 102:122 - 8; http://dx.doi.org/10.1016/j.pbiomolbio.2010.05.001; PMID: 20493208
  • Mohrmann L, Verrijzer CP. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. [Review] Biochim Biophys Acta 2005; 1681:59 - 73; http://dx.doi.org/10.1016/j.bbaexp.2004.10.005; PMID: 15627498
  • Kwek KY, Murphy S, Furger A, Thomas B, O’Gorman W, Kimura H, et al. U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Biol 2002; 9:800 - 5; PMID: 12389039
  • Millevoi S, Geraghty F, Idowu B, Tam JL, Antoniou M, Vagner S. A novel function for the U2AF 65 splicing factor in promoting pre-mRNA 3′-end processing. EMBO Rep 2002; 3:869 - 74; http://dx.doi.org/10.1093/embo-reports/kvf173; PMID: 12189174
  • Albulescu LO, Sabet N, Gudipati M, Stepankiw N, Bergman ZJ, Huffaker TC, et al. A quantitative, high-throughput reverse genetic screen reveals novel connections between Pre-mRNA splicing and 5′ and 3′ end transcript determinants. PLoS Genet 2012; 8:e1002530; http://dx.doi.org/10.1371/journal.pgen.1002530; PMID: 22479188
  • Kaida D, Berg MG, Younis I, Kasim M, Singh LN, Wan L, et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 2010; 468:664 - 8; http://dx.doi.org/10.1038/nature09479; PMID: 20881964
  • Collins SR, Kemmeren P, Zhao XC, Greenblatt JF, Spencer F, Holstege FC, et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae.. Mol Cell Proteomics 2007; 6:439 - 50; http://dx.doi.org/10.1074/mcp.M600381-MCP200; PMID: 17200106
  • Batisse J, Batisse C, Budd A, Böttcher B, Hurt E. Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J Biol Chem 2009; 284:34911 - 7; http://dx.doi.org/10.1074/jbc.M109.062034; PMID: 19840948
  • Shatkin AJ, Manley JL. The ends of the affair: capping and polyadenylation. Nat Struct Biol 2000; 7:838 - 42; http://dx.doi.org/10.1038/79583; PMID: 11017188
  • Lewis JD, Görlich D, Mattaj IW. A yeast cap binding protein complex (yCBC) acts at an early step in pre-mRNA splicing. Nucleic Acids Res 1996; 24:3332 - 6; http://dx.doi.org/10.1093/nar/24.17.3332; PMID: 8811086
  • Lewis JD, Izaurralde E, Jarmolowski A, McGuigan C, Mattaj IW. A nuclear cap-binding complex facilitates association of U1 snRNP with the cap-proximal 5′ splice site. Genes Dev 1996; 10:1683 - 98; http://dx.doi.org/10.1101/gad.10.13.1683; PMID: 8682298
  • Cooke C, Alwine JC. The cap and the 3′ splice site similarly affect polyadenylation efficiency. Mol Cell Biol 1996; 16:2579 - 84; PMID: 8649365
  • Colot HV, Stutz F, Rosbash M. The yeast splicing factor Mud13p is a commitment complex component and corresponds to CBP20, the small subunit of the nuclear cap-binding complex. Genes Dev 1996; 10:1699 - 708; http://dx.doi.org/10.1101/gad.10.13.1699; PMID: 8682299
  • Fortes P, Kufel J, Fornerod M, Polycarpou-Schwarz M, Lafontaine D, Tollervey D, et al. Genetic and physical interactions involving the yeast nuclear cap-binding complex. Mol Cell Biol 1999; 19:6543 - 53; PMID: 10490594
  • Görnemann J, Kotovic KM, Hujer K, Neugebauer KM. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol Cell 2005; 19:53 - 63; http://dx.doi.org/10.1016/j.molcel.2005.05.007; PMID: 15989964
  • Schwer B, Erdjument-Bromage H, Shuman S. Composition of yeast snRNPs and snoRNPs in the absence of trimethylguanosine caps reveals nuclear cap binding protein as a gained U1 component implicated in the cold-sensitivity of tgs1Δ cells. Nucleic Acids Res 2011; 39:6715 - 28; http://dx.doi.org/10.1093/nar/gkr279; PMID: 21558325
  • Oeffinger M, Wei KE, Rogers R, DeGrasse JA, Chait BT, Aitchison JD, et al. Comprehensive analysis of diverse ribonucleoprotein complexes. Nat Methods 2007; 4:951 - 6; http://dx.doi.org/10.1038/nmeth1101; PMID: 17922018
  • Reed R, Hurt E. A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 2002; 108:523 - 31; http://dx.doi.org/10.1016/S0092-8674(02)00627-X; PMID: 11909523
  • Luo ML, Zhou Z, Magni K, Christoforides C, Rappsilber J, Mann M, et al. Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature 2001; 413:644 - 7; http://dx.doi.org/10.1038/35098106; PMID: 11675789
  • Strässer K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, Rodriguez-Navarro S, et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 2002; 417:304 - 8; http://dx.doi.org/10.1038/nature746; PMID: 11979277
  • Strässer K, Hurt E. Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p. Nature 2001; 413:648 - 52; http://dx.doi.org/10.1038/35098113; PMID: 11675790
  • Jimeno S, Rondón AG, Luna R, Aguilera A. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J 2002; 21:3526 - 35; http://dx.doi.org/10.1093/emboj/cdf335; PMID: 12093753
  • Linder P, Stutz F. mRNA export: travelling with DEAD box proteins. Curr Biol 2001; 11:R961 - 3; http://dx.doi.org/10.1016/S0960-9822(01)00574-7; PMID: 11728322
  • Le Hir H, Izaurralde E, Maquat LE, Moore MJ. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 2000; 19:6860 - 9; http://dx.doi.org/10.1093/emboj/19.24.6860; PMID: 11118221
  • Le Hir H, Moore MJ, Maquat LE. Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev 2000; 14:1098 - 108; PMID: 10809668
  • Gatfield D, Le Hir H, Schmitt C, Braun IC, Köcher T, Wilm M, et al. The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila. Curr Biol 2001; 11:1716 - 21; http://dx.doi.org/10.1016/S0960-9822(01)00532-2; PMID: 11696332
  • Masuda S, Das R, Cheng H, Hurt E, Dorman N, Reed R. Recruitment of the human TREX complex to mRNA during splicing. Genes Dev 2005; 19:1512 - 7; http://dx.doi.org/10.1101/gad.1302205; PMID: 15998806
  • Taniguchi I, Ohno M. ATP-dependent recruitment of export factor Aly/REF onto intronless mRNAs by RNA helicase UAP56. Mol Cell Biol 2008; 28:601 - 8; http://dx.doi.org/10.1128/MCB.01341-07; PMID: 17984224
  • Nojima T, Hirose T, Kimura H, Hagiwara M. The interaction between cap-binding complex and RNA export factor is required for intronless mRNA export. J Biol Chem 2007; 282:15645 - 51; http://dx.doi.org/10.1074/jbc.M700629200; PMID: 17363367
  • Abruzzi KC, Lacadie S, Rosbash M. Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. EMBO J 2004; 23:2620 - 31; http://dx.doi.org/10.1038/sj.emboj.7600261; PMID: 15192704
  • Kota KP, Wagner SR, Huerta E, Underwood JM, Nickerson JA. Binding of ATP to UAP56 is necessary for mRNA export. J Cell Sci 2008; 121:1526 - 37; http://dx.doi.org/10.1242/jcs.021055; PMID: 18411249
  • Dufu K, Livingstone MJ, Seebacher J, Gygi SP, Wilson SA, Reed R. ATP is required for interactions between UAP56 and two conserved mRNA export proteins, Aly and CIP29, to assemble the TREX complex. Genes Dev 2010; 24:2043 - 53; http://dx.doi.org/10.1101/gad.1898610; PMID: 20844015
  • Sugiura T, Sakurai K, Nagano Y. Intracellular characterization of DDX39, a novel growth-associated RNA helicase. Exp Cell Res 2007; 313:782 - 90; http://dx.doi.org/10.1016/j.yexcr.2006.11.014; PMID: 17196963
  • Stewart M. Nuclear export of mRNA. Trends Biochem Sci 2010; 35:609 - 17; http://dx.doi.org/10.1016/j.tibs.2010.07.001; PMID: 20719516
  • Guglielmi B, Werner M. The yeast homolog of human PinX1 is involved in rRNA and small nucleolar RNA maturation, not in telomere elongation inhibition. J Biol Chem 2002; 277:35712 - 9; http://dx.doi.org/10.1074/jbc.M205526200; PMID: 12107183
  • Pertschy B, Schneider C, Gnädig M, Schäfer T, Tollervey D, Hurt E. RNA helicase Prp43 and its co-factor Pfa1 promote 20 to 18 S rRNA processing catalyzed by the endonuclease Nob1. J Biol Chem 2009; 284:35079 - 91; http://dx.doi.org/10.1074/jbc.M109.040774; PMID: 19801658
  • Bohnsack MT, Martin R, Granneman S, Ruprecht M, Schleiff E, Tollervey D. Prp43 bound at different sites on the pre-rRNA performs distinct functions in ribosome synthesis. Mol Cell 2009; 36:583 - 92; http://dx.doi.org/10.1016/j.molcel.2009.09.039; PMID: 19941819
  • Libri D, Dower K, Boulay J, Thomsen R, Rosbash M, Jensen TH. Interactions between mRNA export commitment, 3′-end quality control, and nuclear degradation. Mol Cell Biol 2002; 22:8254 - 66; http://dx.doi.org/10.1128/MCB.22.23.8254-8266.2002; PMID: 12417728
  • González-Aguilera C, Tous C, Gómez-González B, Huertas P, Luna R, Aguilera A. The THP1-SAC3-SUS1-CDC31 complex works in transcription elongation-mRNA export preventing RNA-mediated genome instability. Mol Biol Cell 2008; 19:4310 - 8; http://dx.doi.org/10.1091/mbc.E08-04-0355; PMID: 18667528
  • Bousquet-Antonelli C, Presutti C, Tollervey D. Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 2000; 102:765 - 75; http://dx.doi.org/10.1016/S0092-8674(00)00065-9; PMID: 11030620

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.