1,215
Views
9
CrossRef citations to date
0
Altmetric
Review

Diversity of CRISPR systems in the euryarchaeal Pyrococcales

, , &
Pages 659-670 | Received 12 Dec 2012, Accepted 08 Feb 2013, Published online: 19 Feb 2013

References

  • Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 2007; 8:172; http://dx.doi.org/10.1186/1471-2105-8-172; PMID: 17521438
  • Karginov FV, Hannon GJ. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell 2010; 37:7 - 19; http://dx.doi.org/10.1016/j.molcel.2009.12.033; PMID: 20129051
  • Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 2011; 45:273 - 97; http://dx.doi.org/10.1146/annurev-genet-110410-132430; PMID: 22060043
  • Westra ER, Swarts DC, Staals RH, Jore MM, Brouns SJ, van der Oost J. The CRISPRs, they are a-changin’: how prokaryotes generate adaptive immunity. Annu Rev Genet 2012; 46:311 - 39; http://dx.doi.org/10.1146/annurev-genet-110711-155447; PMID: 23145983
  • Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012; 482:331 - 8; http://dx.doi.org/10.1038/nature10886; PMID: 22337052
  • Makarova KS, Aravind L, Wolf YI, Koonin EV. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct 2011; 6:38; http://dx.doi.org/10.1186/1745-6150-6-38; PMID: 21756346
  • Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 2011; 9:467 - 77; http://dx.doi.org/10.1038/nrmicro2577; PMID: 21552286
  • Kecha M, Benallaoua S, Touzel JP, Bonaly R, Duchiron F. Biochemical and phylogenetic characterization of a novel terrestrial hyperthermophilic archaeon pertaining to the genus Pyrococcus from an Algerian hydrothermal hot spring. Extremophiles 2007; 11:65 - 73; http://dx.doi.org/10.1007/s00792-006-0010-9; PMID: 16969710
  • Mardanov AV, Ravin NV, Svetlitchnyi VA, Beletsky AV, Miroshnichenko ML, Bonch-Osmolovskaya EA, et al. Metabolic versatility and indigenous origin of the archaeon Thermococcus sibiricus, isolated from a siberian oil reservoir, as revealed by genome analysis. Appl Environ Microbiol 2009; 75:4580 - 8; http://dx.doi.org/10.1128/AEM.00718-09; PMID: 19447963
  • Miroshnichenko ML, Hippe H, Stackebrandt E, Kostrikina NA, Chernyh NA, Jeanthon C, et al. Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir. Extremophiles 2001; 5:85 - 91; http://dx.doi.org/10.1007/s007920100175; PMID: 11354459
  • Roussel EG, Sauvadet AL, Chaduteau C, Fouquet Y, Charlou JL, Prieur D, et al. Archaeal communities associated with shallow to deep subseafloor sediments of the New Caledonia Basin. Environ Microbiol 2009; 11:2446 - 62; http://dx.doi.org/10.1111/j.1462-2920.2009.01976.x; PMID: 19624712
  • Takai K, Gamo T, Tsunogai U, Nakayama N, Hirayama H, Nealson KH, et al. Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 2004; 8:269 - 82; http://dx.doi.org/10.1007/s00792-004-0386-3; PMID: 15309563
  • Prieur D, Erauso G, Flament D, Gaillard M, Geslin C, Gonnet M, et al. Deep-sea Thermococcales and their genetic elements: plasmids and viruses. Methods in Microbiology 2006; 35:253 - 78; http://dx.doi.org/10.1016/S0580-9517(08)70014-X
  • Cohen GN, Barbe V, Flament D, Galperin M, Heilig R, Lecompte O, et al. An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol Microbiol 2003; 47:1495 - 512; http://dx.doi.org/10.1046/j.1365-2958.2003.03381.x; PMID: 12622808
  • Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, et al. Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 1998; 5:55 - 76; http://dx.doi.org/10.1093/dnares/5.2.55; PMID: 9679194
  • Robb FT, Maeder DL, Brown JR, DiRuggiero J, Stump MD, Yeh RK, et al. Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol 2001; 330:134 - 57; http://dx.doi.org/10.1016/S0076-6879(01)30372-5; PMID: 11210495
  • Jun X, Lupeng L, Minjuan X, Oger P, Fengping W, Jebbar M, et al. Complete genome sequence of the obligate piezophilic hyperthermophilic archaeon Pyrococcus yayanosii CH1. J Bacteriol 2011; 193:4297 - 8; http://dx.doi.org/10.1128/JB.05345-11; PMID: 21705594
  • Lee HS, Bae SS, Kim MS, Kwon KK, Kang SG, Lee JH. Complete genome sequence of hyperthermophilic Pyrococcus sp. strain NA2, isolated from a deep-sea hydrothermal vent area. J Bacteriol 2011; 193:3666 - 7; http://dx.doi.org/10.1128/JB.05150-11; PMID: 21602357
  • Jung JH, Lee JH, Holden JF, Seo DH, Shin H, Kim HY, et al. Complete genome sequence of the hyperthermophilic archaeon Pyrococcus sp. strain ST04, isolated from a deep-sea hydrothermal sulfide chimney on the Juan de Fuca Ridge. J Bacteriol 2012; 194:4434 - 5; http://dx.doi.org/10.1128/JB.00824-12; PMID: 22843576
  • Vannier P, Marteinsson VT, Fridjonsson OH, Oger P, Jebbar M. Complete genome sequence of the hyperthermophilic, piezophilic, heterotrophic, and carboxydotrophic archaeon Thermococcus barophilus MP. J Bacteriol 2011; 193:1481 - 2; http://dx.doi.org/10.1128/JB.01490-10; PMID: 21217005
  • Zivanovic Y, Armengaud J, Lagorce A, Leplat C, Guérin P, Dutertre M, et al. Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea. Genome Biol 2009; 10:R70; http://dx.doi.org/10.1186/gb-2009-10-6-r70; PMID: 19558674
  • Oger P, Sokolova TG, Kozhevnikova DA, Chernyh NA, Bartlett DH, Bonch-Osmolovskaya EA, et al. Complete genome sequence of the hyperthermophilic archaeon Thermococcus sp. strain AM4, capable of organotrophic growth and growth at the expense of hydrogenogenic or sulfidogenic oxidation of carbon monoxide. J Bacteriol 2011; 193:7019 - 20; http://dx.doi.org/10.1128/JB.06259-11; PMID: 22123768
  • Wang X, Gao Z, Xu X, Ruan L. Complete genome sequence of Thermococcus sp. strain 4557, a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area. J Bacteriol 2011; 193:5544 - 5; http://dx.doi.org/10.1128/JB.05851-11; PMID: 21914870
  • Jung JH, Holden JF, Seo DH, Park KH, Shin H, Ryu S, et al. Complete genome sequence of the hyperthermophilic archaeon Thermococcus sp. strain CL1, isolated from a Paralvinella sp. polychaete worm collected from a hydrothermal vent. J Bacteriol 2012; 194:4769 - 70; http://dx.doi.org/10.1128/JB.01016-12; PMID: 22887670
  • Zivanovic Y, Lopez P, Philippe H, Forterre P. Pyrococcus genome comparison evidences chromosome shuffling-driven evolution. Nucleic Acids Res 2002; 30:1902 - 10; http://dx.doi.org/10.1093/nar/30.9.1902; PMID: 11972326
  • Pina M, Bize A, Forterre P, Prangishvili D. The archeoviruses. FEMS Microbiol Rev 2011; 35:1035 - 54; http://dx.doi.org/10.1111/j.1574-6976.2011.00280.x; PMID: 21569059
  • Peng X, Garrett RA, She Q. Archaeal viruses–novel, diverse and enigmatic. Science China. Life Sci 2012; 55:422 - 33; http://dx.doi.org/10.1007/s11427-012-4325-8
  • Pietilä MK, Roine E, Paulin L, Kalkkinen N, Bamford DH. An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope. Mol Microbiol 2009; 72:307 - 19; http://dx.doi.org/10.1111/j.1365-2958.2009.06642.x; PMID: 19298373
  • Mochizuki T, Krupovic M, Pehau-Arnaudet G, Sako Y, Forterre P, Prangishvili D. Archaeal virus with exceptional virion architecture and the largest single-stranded DNA genome. Proc Natl Acad Sci USA 2012; 109:13386 - 91; http://dx.doi.org/10.1073/pnas.1203668109; PMID: 22826255
  • Benbouzid-Rollet N, López-García P, Watrin L, Erauso G, Prieur D, Forterre P. Isolation of new plasmids from hyperthermophilic Archaea of the order Thermococcales. Res Microbiol 1997; 148:767 - 75; http://dx.doi.org/10.1016/S0923-2508(97)82452-7; PMID: 9765860
  • Lepage E, Marguet E, Geslin C, Matte-Tailliez O, Zillig W, Forterre P, et al. Molecular diversity of new Thermococcales isolates from a single area of hydrothermal deep-sea vents as revealed by randomly amplified polymorphic DNA fingerprinting and 16S rRNA gene sequence analysis. Appl Environ Microbiol 2004; 70:1277 - 86; http://dx.doi.org/10.1128/AEM.70.3.1277-1286.2004; PMID: 15006744
  • Erauso G, Marsin S, Benbouzid-Rollet N, Baucher MF, Barbeyron T, Zivanovic Y, et al. Sequence of plasmid pGT5 from the archaeon Pyrococcus abyssi: evidence for rolling-circle replication in a hyperthermophile. J Bacteriol 1996; 178:3232 - 7; PMID: 8655503
  • Gonnet M, Erauso G, Prieur D, Le Romancer M. pAMT11, a novel plasmid isolated from a Thermococcus sp. strain closely related to the virus-like integrated element TKV1 of the Thermococcus kodakaraensis genome. Res Microbiol 2011; 162:132 - 43; http://dx.doi.org/10.1016/j.resmic.2010.11.003; PMID: 21144896
  • Ward DE, Revet IM, Nandakumar R, Tuttle JH, de Vos WM, van der Oost J, et al. Characterization of plasmid pRT1 from Pyrococcus sp. strain JT1. J Bacteriol 2002; 184:2561 - 6; http://dx.doi.org/10.1128/JB.184.9.2561-2566.2002; PMID: 11948174
  • Soler N, Justome A, Quevillon-Cheruel S, Lorieux F, Le Cam E, Marguet E, et al. The rolling-circle plasmid pTN1 from the hyperthermophilic archaeon Thermococcus nautilus. Mol Microbiol 2007; 66:357 - 70; http://dx.doi.org/10.1111/j.1365-2958.2007.05912.x; PMID: 17784911
  • Soler N, Marguet E, Cortez D, Desnoues N, Keller J, van Tilbeurgh H, et al. Two novel families of plasmids from hyperthermophilic archaea encoding new families of replication proteins. Nucleic Acids Res 2010; 38:5088 - 104; http://dx.doi.org/10.1093/nar/gkq236; PMID: 20403814
  • Krupovic M, Gonnet M, Hania WB, Forterre P, Erauso G. Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new thermococcus plasmids. PLoS One 2013; 8:e49044; http://dx.doi.org/10.1371/journal.pone.0049044; PMID: 23326305
  • Geslin C, Le Romancer M, Erauso G, Gaillard M, Perrot G, Prieur D. PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, “Pyrococcus abyssi”. J Bacteriol 2003; 185:3888 - 94; http://dx.doi.org/10.1128/JB.185.13.3888-3894.2003; PMID: 12813083
  • Geslin C, Gaillard M, Flament D, Rouault K, Le Romancer M, Prieur D, et al. Analysis of the first genome of a hyperthermophilic marine virus-like particle, PAV1, isolated from Pyrococcus abyssi. J Bacteriol 2007; 189:4510 - 9; http://dx.doi.org/10.1128/JB.01896-06; PMID: 17449623
  • Gorlas A, Koonin EV, Bienvenu N, Prieur D, Geslin C. TPV1, the first virus isolated from the hyperthermophilic genus Thermococcus. Environ Microbiol 2012; 14:503 - 16; http://dx.doi.org/10.1111/j.1462-2920.2011.02662.x; PMID: 22151304
  • Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T. Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 2005; 15:352 - 63; http://dx.doi.org/10.1101/gr.3003105; PMID: 15710748
  • Clore AJ, Stedman KM. The SSV1 viral integrase is not essential. Virology 2007; 361:103 - 11; http://dx.doi.org/10.1016/j.virol.2006.11.003; PMID: 17175004
  • Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res 2012; 40:Database issue D48 - 53; http://dx.doi.org/10.1093/nar/gkr1202; PMID: 22144687
  • Chan PP, Holmes AD, Smith AM, Tran D, Lowe TM. The UCSC Archaeal Genome Browser: 2012 update. Nucleic Acids Res 2012; 40:Database issue D646 - 52; http://dx.doi.org/10.1093/nar/gkr990; PMID: 22080555
  • Selengut JD, Haft DH, Davidsen T, Ganapathy A, Gwinn-Giglio M, Nelson WC, et al. TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes. Nucleic Acids Res 2007; 35:Database issue D260 - 4; http://dx.doi.org/10.1093/nar/gkl1043; PMID: 17151080
  • Garrett RA, Shah SA, Vestergaard G, Deng L, Gudbergsdottir S, Kenchappa CS, et al. CRISPR-based immune systems of the Sulfolobales: complexity and diversity. Biochem Soc Trans 2011; 39:51 - 7; http://dx.doi.org/10.1042/BST0390051; PMID: 21265746
  • Garrett RA, Vestergaard G, Shah SA. Archaeal CRISPR-based immune systems: exchangeable functional modules. Trends Microbiol 2011; 19:549 - 56; http://dx.doi.org/10.1016/j.tim.2011.08.002; PMID: 21945420
  • Bernick DL, Cox CL, Dennis PP, Lowe TM. Comparative genomic and transcriptional analyses of CRISPR systems across the genus Pyrobaculum. Front Microbiol 2012; 3:251; http://dx.doi.org/10.3389/fmicb.2012.00251; PMID: 22811677
  • Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 2005; 1:e60; http://dx.doi.org/10.1371/journal.pcbi.0010060; PMID: 16292354
  • Carte J, Wang R, Li H, Terns RM, Terns MP. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 2008; 22:3489 - 96; http://dx.doi.org/10.1101/gad.1742908; PMID: 19141480
  • Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 2009; 139:945 - 56; http://dx.doi.org/10.1016/j.cell.2009.07.040; PMID: 19945378
  • Kunin V, Sorek R, Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol 2007; 8:R61; http://dx.doi.org/10.1186/gb-2007-8-4-r61; PMID: 17442114
  • Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010; 327:167 - 70; http://dx.doi.org/10.1126/science.1179555; PMID: 20056882
  • Brodt A, Lurie-Weinberger MN, Gophna U. CRISPR loci reveal networks of gene exchange in archaea. Biol Direct 2011; 6:65; http://dx.doi.org/10.1186/1745-6150-6-65; PMID: 22188759
  • Phok K, Moisan A, Rinaldi D, Brucato N, Carpousis AJ, Gaspin C, et al. Identification of CRISPR and riboswitch related RNAs among novel noncoding RNAs of the euryarchaeon Pyrococcus abyssi. BMC Genomics 2011; 12:312; http://dx.doi.org/10.1186/1471-2164-12-312; PMID: 21668986
  • Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002; 43:1565 - 75; http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x; PMID: 11952905
  • Hale CR, Majumdar S, Elmore J, Pfister N, Compton M, Olson S, et al. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol Cell 2012; 45:292 - 302; http://dx.doi.org/10.1016/j.molcel.2011.10.023; PMID: 22227116
  • Pul U, Wurm R, Arslan Z, Geissen R, Hofmann N, Wagner R. Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol 2010; 75:1495 - 512; http://dx.doi.org/10.1111/j.1365-2958.2010.07073.x; PMID: 20132443
  • Hale C, Kleppe K, Terns RM, Terns MP. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 2008; 14:2572 - 9; http://dx.doi.org/10.1261/rna.1246808; PMID: 18971321
  • Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008; 321:960 - 4; http://dx.doi.org/10.1126/science.1159689; PMID: 18703739
  • Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 2010; 329:1355 - 8; http://dx.doi.org/10.1126/science.1192272; PMID: 20829488
  • Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011; 471:602 - 7; http://dx.doi.org/10.1038/nature09886; PMID: 21455174
  • Carte J, Pfister NT, Compton MM, Terns RM, Terns MP. Binding and cleavage of CRISPR RNA by Cas6. RNA 2010; 16:2181 - 8; http://dx.doi.org/10.1261/rna.2230110; PMID: 20884784
  • Wang R, Preamplume G, Terns MP, Terns RM, Li H. Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure 2011; 19:257 - 64; http://dx.doi.org/10.1016/j.str.2010.11.014; PMID: 21300293
  • Maris C, Dominguez C, Allain FH. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 2005; 272:2118 - 31; http://dx.doi.org/10.1111/j.1742-4658.2005.04653.x; PMID: 15853797
  • Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008; 322:1843 - 5; http://dx.doi.org/10.1126/science.1165771; PMID: 19095942
  • Cocozaki AI, Ramia NF, Shao Y, Hale CR, Terns RM, Terns MP, et al. Structure of the Cmr2 subunit of the CRISPR-Cas RNA silencing complex. Structure 2012; 20:545 - 53; http://dx.doi.org/10.1016/j.str.2012.01.018; PMID: 22405013
  • Zhu X, Ye K. Crystal structure of Cmr2 suggests a nucleotide cyclase-related enzyme in type III CRISPR-Cas systems. FEBS Lett 2012; 586:939 - 45; http://dx.doi.org/10.1016/j.febslet.2012.02.036; PMID: 22449983
  • Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010; 468:67 - 71; http://dx.doi.org/10.1038/nature09523; PMID: 21048762
  • Mojica FJ, Díez-Villaseñor C, García-Martínez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 2009; 155:733 - 40; http://dx.doi.org/10.1099/mic.0.023960-0; PMID: 19246744
  • Shah SA, Garrett RA. CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems. Res Microbiol 2011; 162:27 - 38; http://dx.doi.org/10.1016/j.resmic.2010.09.001; PMID: 20863886
  • Zhang J, Rouillon C, Kerou M, Reeks J, Brugger K, Graham S, et al. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol Cell 2012; 45:303 - 13; http://dx.doi.org/10.1016/j.molcel.2011.12.013; PMID: 22227115
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337:816 - 21; http://dx.doi.org/10.1126/science.1225829; PMID: 22745249
  • Guo P, Cheng Q, Xie P, Fan Y, Jiang W, Qin Z. Characterization of the multiple CRISPR loci on Streptomyces linear plasmid pSHK1. Acta Biochim Biophys Sin (Shanghai) 2011; 43:630 - 9; http://dx.doi.org/10.1093/abbs/gmr052; PMID: 21705768
  • Yang Y, Kurokawa T, Takahama Y, Nindita Y, Mochizuki S, Arakawa K, et al. pSLA2-M of Streptomyces rochei is a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L. Biosci Biotechnol Biochem 2011; 75:1147 - 53; http://dx.doi.org/10.1271/bbb.110054; PMID: 21670526
  • Phung DK, Rinaldi D, Langendijk-Genevaux PS, Quentin Y, Carpousis AJ, Clouet-d’Orval B. Archaeal β-CASP ribonucleases of the aCPSF1 family are orthologs of the eukaryal CPSF-73 factor. Nucleic Acids Res 2013; 41:1091 - 103; http://dx.doi.org/10.1093/nar/gks1237; PMID: 23222134
  • Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res 2004; 14:1188 - 90; http://dx.doi.org/10.1101/gr.849004; PMID: 15173120

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.