1,902
Views
23
CrossRef citations to date
0
Altmetric
Research Paper

Genome-wide identification of translationally inhibited and degraded miR-155 targets using RNA-interacting protein-IP

, , , , &
Pages 1017-1029 | Received 04 Jan 2013, Accepted 04 Apr 2013, Published online: 15 Apr 2013

References

  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116:281 - 97; http://dx.doi.org/10.1016/S0092-8674(04)00045-5; PMID: 14744438
  • Izaurralde E. Elucidating the temporal order of silencing. EMBO Rep 2012; 13:662 - 3; http://dx.doi.org/10.1038/embor.2012.91; PMID: 22722480
  • Béthune J, Artus-Revel CG, Filipowicz W. Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells. EMBO Rep 2012; 13:716 - 23; http://dx.doi.org/10.1038/embor.2012.82; PMID: 22677978
  • Braun JE, Huntzinger E, Fauser M, Izaurralde E. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol Cell 2011; 44:120 - 33; http://dx.doi.org/10.1016/j.molcel.2011.09.007; PMID: 21981923
  • Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, et al. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat Struct Mol Biol 2011; 18:1218 - 26; http://dx.doi.org/10.1038/nsmb.2166; PMID: 21984184
  • Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet 2008; 9:102 - 14; http://dx.doi.org/10.1038/nrg2290; PMID: 18197166
  • Fabian MR, Cieplak MK, Frank F, Morita M, Green J, Srikumar T, et al. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat Struct Mol Biol 2012; 19:364; http://dx.doi.org/10.1038/nsmb0312-364c; PMID: 21984185
  • Costinean S, Sandhu SK, Pedersen IM, Tili E, Trotta R, Perrotti D, et al. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood 2009; 114:1374 - 82; http://dx.doi.org/10.1182/blood-2009-05-220814; PMID: 19520806
  • Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 2007; 27:847 - 59; http://dx.doi.org/10.1016/j.immuni.2007.10.009; PMID: 18055230
  • Wang WX, Wilfred BR, Hu Y, Stromberg AJ, Nelson PT. Anti-Argonaute RIP-Chip shows that miRNA transfections alter global patterns of mRNA recruitment to microribonucleoprotein complexes. RNA 2010; 16:394 - 404; http://dx.doi.org/10.1261/rna.1905910; PMID: 20042474
  • Easow G, Teleman AA, Cohen SM. Isolation of microRNA targets by miRNP immunopurification. RNA 2007; 13:1198 - 204; http://dx.doi.org/10.1261/rna.563707; PMID: 17592038
  • Goff LA, Davila J, Swerdel MR, Moore JC, Cohen RI, Wu H, et al. Ago2 immunoprecipitation identifies predicted microRNAs in human embryonic stem cells and neural precursors. PLoS One 2009; 4:e7192; http://dx.doi.org/10.1371/journal.pone.0007192; PMID: 19784364
  • Tan LP, Seinen E, Duns G, de Jong D, Sibon OC, Poppema S, et al. A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res 2009; 37:e137; http://dx.doi.org/10.1093/nar/gkp715; PMID: 19734348
  • Hoffman AE, Liu R, Fu A, Zheng T, Slack FJ, Zhu Y. Targetome profiling, pathway analysis and genetic association study implicate miR-202 in lymphomagenesis. Cancer Epidemiol Biomarkers Prev 2013; 22:327 - 36; http://dx.doi.org/10.1158/1055-9965.EPI-12-1131-T; PMID: 23334589
  • Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25:1105 - 11; http://dx.doi.org/10.1093/bioinformatics/btp120; PMID: 19289445
  • Deshpande A, Pastore A, Deshpande AJ, Zimmermann Y, Hutter G, Weinkauf M, et al. 3’UTR mediated regulation of the cyclin D1 proto-oncogene. Cell Cycle 2009; 8:3584 - 92; http://dx.doi.org/10.4161/cc.8.21.9993; PMID: 19823025
  • Qin X, Wang X, Wang Y, Tang Z, Cui Q, Xi J, et al. MicroRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci USA 2010; 107:3240 - 4; http://dx.doi.org/10.1073/pnas.0914882107; PMID: 20133739
  • Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455:58 - 63; http://dx.doi.org/10.1038/nature07228; PMID: 18668040
  • Gutsch R, Kandemir JD, Pietsch D, Cappello C, Meyer J, Simanowski K, et al. CCAAT/enhancer-binding protein beta inhibits proliferation in monocytic cells by affecting the retinoblastoma protein/E2F/cyclin E pathway but is not directly required for macrophage morphology. J Biol Chem 2011; 286:22716 - 29; http://dx.doi.org/10.1074/jbc.M110.152538; PMID: 21558273
  • Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet 2007; 39:1278 - 84; http://dx.doi.org/10.1038/ng2135; PMID: 17893677
  • Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 2010; 11:R90; http://dx.doi.org/10.1186/gb-2010-11-8-r90; PMID: 20799968
  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27:91 - 105; http://dx.doi.org/10.1016/j.molcel.2007.06.017; PMID: 17612493
  • Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, et al. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 2009; 37:Web Server issue W273-6; http://dx.doi.org/10.1093/nar/gkp292; PMID: 19406924
  • Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, et al. Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 2009; 10:295; http://dx.doi.org/10.1186/1471-2105-10-295; PMID: 19765283
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120:15 - 20; http://dx.doi.org/10.1016/j.cell.2004.12.035; PMID: 15652477
  • Xiang X, Zhuang X, Ju S, Zhang S, Jiang H, Mu J, et al. miR-155 promotes macroscopic tumor formation yet inhibits tumor dissemination from mammary fat pads to the lung by preventing EMT. Oncogene 2011; 30:3440 - 53; http://dx.doi.org/10.1038/onc.2011.54; PMID: 21460854
  • Yin Q, McBride J, Fewell C, Lacey M, Wang X, Lin Z, et al. MicroRNA-155 is an Epstein-Barr virus-induced gene that modulates Epstein-Barr virus-regulated gene expression pathways. J Virol 2008; 82:5295 - 306; http://dx.doi.org/10.1128/JVI.02380-07; PMID: 18367535
  • Bazzini AA, Lee MT, Giraldez AJ. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 2012; 336:233 - 7; http://dx.doi.org/10.1126/science.1215704; PMID: 22422859
  • Djuranovic S, Nahvi A, Green R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 2012; 336:237 - 40; http://dx.doi.org/10.1126/science.1215691; PMID: 22499947
  • Willimott S, Wagner SD. miR-125b and miR-155 contribute to BCL2 repression and proliferation in response to CD40 ligand (CD154) in human leukemic B-cells. J Biol Chem 2012; 287:2608 - 17; http://dx.doi.org/10.1074/jbc.M111.285718; PMID: 22139839
  • Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H, et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res 2010; 70:3119 - 27; http://dx.doi.org/10.1158/0008-5472.CAN-09-4250; PMID: 20354188
  • Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 2011; 147:370 - 81; http://dx.doi.org/10.1016/j.cell.2011.09.041; PMID: 22000015
  • Poliseno L, Salmena L, Zhang JW, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465:1033 - 8; http://dx.doi.org/10.1038/nature09144; PMID: 20577206
  • Ebert MS, Sharp PA. Emerging roles for natural microRNA sponges. Curr Biol 2010; 20:R858 - 61; http://dx.doi.org/10.1016/j.cub.2010.08.052; PMID: 20937476
  • Arvey A, Larsson E, Sander C, Leslie CS, Marks DS. Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 2010; 6:363; http://dx.doi.org/10.1038/msb.2010.24; PMID: 20404830
  • Lössner C, Meier J, Warnken U, Rogers MA, Lichter P, Pscherer A, et al. Quantitative proteomics identify novel miR-155 target proteins. PLoS One 2011; 6:e22146; http://dx.doi.org/10.1371/journal.pone.0022146; PMID: 21799781
  • Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010; 141:129 - 41; http://dx.doi.org/10.1016/j.cell.2010.03.009; PMID: 20371350
  • Loeb GB, Khan AA, Canner D, Hiatt JB, Shendure J, Darnell RB, et al. Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol Cell 2012; 48:760 - 70; http://dx.doi.org/10.1016/j.molcel.2012.10.002; PMID: 23142080
  • Hendrickson DG, Hogan DJ, Herschlag D, Ferrell JE, Brown PO. Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS One 2008; 3:e2126; http://dx.doi.org/10.1371/journal.pone.0002126; PMID: 18461144
  • Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Suzuki H, Hayashizaki Y, et al. Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol 2011; 8:158 - 77; http://dx.doi.org/10.4161/rna.8.1.14300; PMID: 21282978
  • Dueck A, Ziegler C, Eichner A, Berezikov E, Meister G. microRNAs associated with the different human Argonaute proteins. Nucleic Acids Res 2012; 40:9850 - 62; http://dx.doi.org/10.1093/nar/gks705; PMID: 22844086
  • Mullokandov G, Baccarini A, Ruzo A, Jayaprakash AD, Tung N, Israelow B, et al. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nat Methods 2012; 9:840 - 6; http://dx.doi.org/10.1038/nmeth.2078; PMID: 22751203
  • Schulz A, Toedt G, Zenz T, Stilgenbauer S, Lichter P, Seiffert M. Inflammatory cytokines and signaling pathways are associated with survival of primary chronic lymphocytic leukemia cells in vitro: a dominant role of CCL2. Haematologica 2011; 96:408 - 16; http://dx.doi.org/10.3324/haematol.2010.031377; PMID: 21134984
  • Dyer BW, Ferrer FA, Klinedinst DK, Rodriguez R. A noncommercial dual luciferase enzyme assay system for reporter gene analysis. Anal Biochem 2000; 282:158 - 61; http://dx.doi.org/10.1006/abio.2000.4605; PMID: 10860516
  • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010; 11:R106; http://dx.doi.org/10.1186/gb-2010-11-10-r106; PMID: 20979621
  • Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT, et al. A viral microRNA functions as an orthologue of cellular miR-155. Nature 2007; 450:1096 - 9; http://dx.doi.org/10.1038/nature05992; PMID: 18075594
  • Gibcus JH, Tan LP, Harms G, Schakel RN, de Jong D, Blokzijl T, et al. Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile. Neoplasia 2009; 11:167 - 76; PMID: 19177201