1,754
Views
36
CrossRef citations to date
0
Altmetric
Point of View

Splicing fidelity

DEAD/H-box ATPases as molecular clocks

&
Pages 1073-1079 | Received 26 Mar 2013, Accepted 01 Jun 2013, Published online: 03 Jun 2013

References

  • Wahl MC, Will CL, Lührmann R. The spliceosome: design principles of a dynamic RNP machine. Cell 2009; 136:701 - 18; http://dx.doi.org/10.1016/j.cell.2009.02.009; PMID: 19239890
  • Perales R, Bentley D. “Cotranscriptionality”: the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 2009; 36:178 - 91; http://dx.doi.org/10.1016/j.molcel.2009.09.018; PMID: 19854129
  • Legrain P, Rosbash M. Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Cell 1989; 57:573 - 83; http://dx.doi.org/10.1016/0092-8674(89)90127-X; PMID: 2655924
  • Rain JC, Legrain P. In vivo commitment to splicing in yeast involves the nucleotide upstream from the branch site conserved sequence and the Mud2 protein. EMBO J 1997; 16:1759 - 71; http://dx.doi.org/10.1093/emboj/16.7.1759; PMID: 9130720
  • Rutz B, Séraphin B. A dual role for BBP/ScSF1 in nuclear pre-mRNA retention and splicing. EMBO J 2000; 19:1873 - 86; http://dx.doi.org/10.1093/emboj/19.8.1873; PMID: 10775271
  • Jaillon O, Bouhouche K, Gout JF, Aury JM, Noel B, Saudemont B, et al. Translational control of intron splicing in eukaryotes. Nature 2008; 451:359 - 62; http://dx.doi.org/10.1038/nature06495; PMID: 18202663
  • Hilleren PJ, Parker R. Cytoplasmic degradation of splice-defective pre-mRNAs and intermediates. Mol Cell 2003; 12:1453 - 65; http://dx.doi.org/10.1016/S1097-2765(03)00488-X; PMID: 14690599
  • Mayas RM, Maita H, Semlow DR, Staley JP. Spliceosome discards intermediates via the DEAH box ATPase Prp43p. Proc Natl Acad Sci USA 2010; 107:10020 - 5; http://dx.doi.org/10.1073/pnas.0906022107; PMID: 20463285
  • Bousquet-Antonelli C, Presutti C, Tollervey D. Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 2000; 102:765 - 75; http://dx.doi.org/10.1016/S0092-8674(00)00065-9; PMID: 11030620
  • Lemieux C, Marguerat S, Lafontaine J, Barbezier N, Bähler J, Bachand F. A Pre-mRNA degradation pathway that selectively targets intron-containing genes requires the nuclear poly(A)-binding protein. Mol Cell 2011; 44:108 - 19; http://dx.doi.org/10.1016/j.molcel.2011.06.035; PMID: 21981922
  • Davidson L, Kerr A, West S. Co-transcriptional degradation of aberrant pre-mRNA by Xrn2. EMBO J 2012; 31:2566 - 78; http://dx.doi.org/10.1038/emboj.2012.101; PMID: 22522706
  • Egecioglu DE, Kawashima TR, Chanfreau GF. Quality control of MATa1 splicing and exon skipping by nuclear RNA degradation. Nucleic Acids Res 2012; 40:1787 - 96; http://dx.doi.org/10.1093/nar/gkr864; PMID: 22021379
  • Smith DJ, Query CC, Konarska MM. “Nought may endure but mutability”: spliceosome dynamics and the regulation of splicing. Mol Cell 2008; 30:657 - 66; http://dx.doi.org/10.1016/j.molcel.2008.04.013; PMID: 18570869
  • Semlow DR, Staley JP. Staying on message: ensuring fidelity in pre-mRNA splicing. Trends Biochem Sci 2012; 37:263 - 73; http://dx.doi.org/10.1016/j.tibs.2012.04.001; PMID: 22564363
  • Jankowsky E. RNA helicases at work: binding and rearranging. Trends Biochem Sci 2011; 36:19 - 29; http://dx.doi.org/10.1016/j.tibs.2010.07.008; PMID: 20813532
  • Xu YZ, Query CC. Competition between the ATPase Prp5 and branch region-U2 snRNA pairing modulates the fidelity of spliceosome assembly. Mol Cell 2007; 28:838 - 49; http://dx.doi.org/10.1016/j.molcel.2007.09.022; PMID: 18082608
  • Burgess SM, Guthrie C. A mechanism to enhance mRNA splicing fidelity: the RNA-dependent ATPase Prp16 governs usage of a discard pathway for aberrant lariat intermediates. Cell 1993; 73:1377 - 91; http://dx.doi.org/10.1016/0092-8674(93)90363-U; PMID: 8324826
  • Mayas RM, Maita H, Staley JP. Exon ligation is proofread by the DExD/H-box ATPase Prp22p. Nat Struct Mol Biol 2006; 13:482 - 90; http://dx.doi.org/10.1038/nsmb1093; PMID: 16680161
  • Yang F, Wang XY, Zhang ZM, Pu J, Fan YJ, Zhou J, et al. Splicing proofreading at 5′ splice sites by ATPase Prp28p. Nucleic Acids Res 2013; 41:4660 - 70; http://dx.doi.org/10.1093/nar/gkt149; PMID: 23462954
  • Wang Y, Wagner JD, Guthrie C. The DEAH-box splicing factor Prp16 unwinds RNA duplexes in vitro. Curr Biol 1998; 8:441 - 51; http://dx.doi.org/10.1016/S0960-9822(98)70178-2; PMID: 9550699
  • Schwer B, Guthrie C. PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome. Nature 1991; 349:494 - 9; http://dx.doi.org/10.1038/349494a0; PMID: 1825134
  • Schwer B, Guthrie C. A conformational rearrangement in the spliceosome is dependent on PRP16 and ATP hydrolysis. EMBO J 1992; 11:5033 - 9; PMID: 1464325
  • Query CC, Konarska MM. Suppression of multiple substrate mutations by spliceosomal prp8 alleles suggests functional correlations with ribosomal ambiguity mutants. Mol Cell 2004; 14:343 - 54; http://dx.doi.org/10.1016/S1097-2765(04)00217-5; PMID: 15125837
  • Villa T, Guthrie C. The Isy1p component of the NineTeen complex interacts with the ATPase Prp16p to regulate the fidelity of pre-mRNA splicing. Genes Dev 2005; 19:1894 - 904; http://dx.doi.org/10.1101/gad.1336305; PMID: 16103217
  • Bhaskaran H, Russell R. Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Nature 2007; 449:1014 - 8; http://dx.doi.org/10.1038/nature06235; PMID: 17960235
  • Rogers GW Jr., Richter NJ, Merrick WC. Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J Biol Chem 1999; 274:12236 - 44; http://dx.doi.org/10.1074/jbc.274.18.12236; PMID: 10212190
  • Tanaka N, Schwer B. Characterization of the NTPase, RNA-binding, and RNA helicase activities of the DEAH-box splicing factor Prp22. Biochemistry 2005; 44:9795 - 803; http://dx.doi.org/10.1021/bi050407m; PMID: 16008364
  • Pisareva VP, Pisarev AV, Komar AA, Hellen CU, Pestova TV. Translation initiation on mammalian mRNAs with structured 5’UTRs requires DExH-box protein DHX29. Cell 2008; 135:1237 - 50; http://dx.doi.org/10.1016/j.cell.2008.10.037; PMID: 19109895
  • Koodathingal P, Novak T, Piccirilli JA, Staley JP. The DEAH box ATPases Prp16 and Prp43 cooperate to proofread 5′ splice site cleavage during pre-mRNA splicing. Mol Cell 2010; 39:385 - 95; http://dx.doi.org/10.1016/j.molcel.2010.07.014; PMID: 20705241
  • Schwer B, Gross CH. Prp22, a DExH-box RNA helicase, plays two distinct roles in yeast pre-mRNA splicing. EMBO J 1998; 17:2086 - 94; http://dx.doi.org/10.1093/emboj/17.7.2086; PMID: 9524130
  • Wagner JD, Jankowsky E, Company M, Pyle AM, Abelson JN. The DEAH-box protein PRP22 is an ATPase that mediates ATP-dependent mRNA release from the spliceosome and unwinds RNA duplexes. EMBO J 1998; 17:2926 - 37; http://dx.doi.org/10.1093/emboj/17.10.2926; PMID: 9582286
  • Vijayraghavan U, Parker R, Tamm J, Iimura Y, Rossi J, Abelson J, et al. Mutations in conserved intron sequences affect multiple steps in the yeast splicing pathway, particularly assembly of the spliceosome. EMBO J 1986; 5:1683 - 95; PMID: 3017708
  • Tseng CK, Liu HL, Cheng SC. DEAH-box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps. RNA 2011; 17:145 - 54; http://dx.doi.org/10.1261/rna.2459611; PMID: 21098140
  • Yean SL, Wuenschell G, Termini J, Lin RJ. Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 2000; 408:881 - 4; http://dx.doi.org/10.1038/35048617; PMID: 11130730
  • Toor N, Keating KS, Taylor SD, Pyle AM. Crystal structure of a self-spliced group II intron. Science 2008; 320:77 - 82; http://dx.doi.org/10.1126/science.1153803; PMID: 18388288
  • Marcia M, Pyle AM. Visualizing group II intron catalysis through the stages of splicing. Cell 2012; 151:497 - 507; http://dx.doi.org/10.1016/j.cell.2012.09.033; PMID: 23101623
  • Fica SM, Tuttle N, Novak T, Li N-S, Lu J, Koodathingal P, et al. Direct evidence that RNA catalyzes nuclear pre-mRNA splicing; submitted.
  • Warkocki Z, Odenwälder P, Schmitzová J, Platzmann F, Stark H, Urlaub H, et al. Reconstitution of both steps of Saccharomyces cerevisiae splicing with purified spliceosomal components. Nat Struct Mol Biol 2009; 16:1237 - 43; http://dx.doi.org/10.1038/nsmb.1729; PMID: 19935684
  • Perriman R, Ares M Jr.. Invariant U2 snRNA nucleotides form a stem loop to recognize the intron early in splicing. Mol Cell 2010; 38:416 - 27; http://dx.doi.org/10.1016/j.molcel.2010.02.036; PMID: 20471947
  • Hahn D, Kudla G, Tollervey D, Beggs JD. Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. Genes Dev 2012; 26:2408 - 21; http://dx.doi.org/10.1101/gad.199307.112; PMID: 23124065
  • Mozaffari-Jovin S, Santos KF, Hsiao HH, Will CL, Urlaub H, Wahl MC, et al. The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev 2012; 26:2422 - 34; http://dx.doi.org/10.1101/gad.200949.112; PMID: 23124066
  • Lardelli RM, Thompson JX, Yates JR 3rd, Stevens SW. Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing. RNA 2010; 16:516 - 28; http://dx.doi.org/10.1261/rna.2030510; PMID: 20089683
  • Schwer B. A conformational rearrangement in the spliceosome sets the stage for Prp22-dependent mRNA release. Mol Cell 2008; 30:743 - 54; http://dx.doi.org/10.1016/j.molcel.2008.05.003; PMID: 18570877
  • Chen JY, Stands L, Staley JP, Jackups RR Jr., Latus LJ, Chang TH. Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor. Mol Cell 2001; 7:227 - 32; http://dx.doi.org/10.1016/S1097-2765(01)00170-8; PMID: 11172727
  • Shen H, Zheng X, Shen J, Zhang L, Zhao R, Green MR. Distinct activities of the DExD/H-box splicing factor hUAP56 facilitate stepwise assembly of the spliceosome. Genes Dev 2008; 22:1796 - 803; http://dx.doi.org/10.1101/gad.1657308; PMID: 18593880
  • Kistler AL, Guthrie C. Deletion of MUD2, the yeast homolog of U2AF65, can bypass the requirement for sub2, an essential spliceosomal ATPase. Genes Dev 2001; 15:42 - 9; http://dx.doi.org/10.1101/gad.851301; PMID: 11156604
  • Horowitz DS. The splice is right: guarantors of fidelity in pre-mRNA splicing. RNA 2011; 17:551 - 4; http://dx.doi.org/10.1261/rna.2577511; PMID: 21357751
  • Pandit S, Lynn B, Rymond BC. Inhibition of a spliceosome turnover pathway suppresses splicing defects. Proc Natl Acad Sci USA 2006; 103:13700 - 5; http://dx.doi.org/10.1073/pnas.0603188103; PMID: 16945917
  • Chen HC, Tseng CK, Tsai RT, Chung CS, Cheng SC. Link of NTR-mediated spliceosome disassembly with DEAH-box ATPases Prp2, Prp16, and Prp22. Mol Cell Biol 2013; 33:514 - 25; http://dx.doi.org/10.1128/MCB.01093-12; PMID: 23166295
  • Tsai RT, Fu RH, Yeh FL, Tseng CK, Lin YC, Huang YH, et al. Spliceosome disassembly catalyzed by Prp43 and its associated components Ntr1 and Ntr2. Genes Dev 2005; 19:2991 - 3003; http://dx.doi.org/10.1101/gad.1377405; PMID: 16357217
  • Boon KL, Auchynnikava T, Edwalds-Gilbert G, Barrass JD, Droop AP, Dez C, et al. Yeast ntr1/spp382 mediates prp43 function in postspliceosomes. Mol Cell Biol 2006; 26:6016 - 23; http://dx.doi.org/10.1128/MCB.02347-05; PMID: 16880513
  • Tanaka N, Aronova A, Schwer B. Ntr1 activates the Prp43 helicase to trigger release of lariat-intron from the spliceosome. Genes Dev 2007; 21:2312 - 25; http://dx.doi.org/10.1101/gad.1580507; PMID: 17875666
  • Harigaya Y, Parker R. Global analysis of mRNA decay intermediates in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2012; 109:11764 - 9; http://dx.doi.org/10.1073/pnas.1119741109; PMID: 22752303
  • Kannan R, Hartnett S, Voelker RB, Berglund JA, Staley JP, Baumann P. Intronic sequence elements impede exon ligation and trigger a discard pathway that yields functional telomerase RNA in fission yeast. Genes Dev 2013; 27:627 - 38; http://dx.doi.org/10.1101/gad.212738.112; PMID: 23468430
  • Chan SP, Kao DI, Tsai WY, Cheng SC. The Prp19p-associated complex in spliceosome activation. Science 2003; 302:279 - 82; http://dx.doi.org/10.1126/science.1086602; PMID: 12970570

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.