3,435
Views
15
CrossRef citations to date
0
Altmetric
Review

RNA synthesis and purification for structural studies

&
Pages 427-432 | Received 28 Jan 2014, Accepted 01 Feb 2014, Published online: 10 Feb 2014

References

  • Kim SH, Quigley GJ, Suddath FL, McPherson A, Sneden D, Kim JJ, Weinzierl J, Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain. Science 1973; 179:285 - 8; http://dx.doi.org/10.1126/science.179.4070.285; PMID: 4566654
  • Suddath FL, Quigley GJ, McPherson A, Sneden D, Kim JJ, Kim SH, Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0angstroms resolution. Nature 1974; 248:20 - 4; http://dx.doi.org/10.1038/248020a0; PMID: 4594440
  • Robertus JD, Ladner JE, Finch JT, Rhodes D, Brown RS, Clark BF, Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature 1974; 250:546 - 51; http://dx.doi.org/10.1038/250546a0; PMID: 4602655
  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 1982; 31:147 - 57; http://dx.doi.org/10.1016/0092-8674(82)90414-7; PMID: 6297745
  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 1983; 35:849 - 57; http://dx.doi.org/10.1016/0092-8674(83)90117-4; PMID: 6197186
  • Golden BL, Gooding AR, Podell ER, Cech TR. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science 1998; 282:259 - 64; http://dx.doi.org/10.1126/science.282.5387.259; PMID: 9841391
  • Guo F, Gooding AR, Cech TR. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol Cell 2004; 16:351 - 62; PMID: 15525509
  • Adams PL, Stahley MR, Kosek AB, Wang J, Strobel SA. Crystal structure of a self-splicing group I intron with both exons. Nature 2004; 430:45 - 50; http://dx.doi.org/10.1038/nature02642; PMID: 15175762
  • Golden BL, Kim H, Chase E. Crystal structure of a phage Twort group I ribozyme-product complex. Nat Struct Mol Biol 2005; 12:82 - 9; http://dx.doi.org/10.1038/nsmb868; PMID: 15580277
  • Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990; 346:818 - 22; http://dx.doi.org/10.1038/346818a0; PMID: 1697402
  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990; 249:505 - 10; http://dx.doi.org/10.1126/science.2200121; PMID: 2200121
  • Patel DJ, Suri AK. Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics. J Biotechnol 2000; 74:39 - 60; PMID: 10943571
  • Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR. Genetic control by a metabolite binding mRNA. Chem Biol 2002; 9:1043; http://dx.doi.org/10.1016/S1074-5521(02)00224-7; PMID: 12323379
  • Mironov AS, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA, Perumov DA, Nudler E. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 2002; 111:747 - 56; http://dx.doi.org/10.1016/S0092-8674(02)01134-0; PMID: 12464185
  • Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 2002; 419:952 - 6; http://dx.doi.org/10.1038/nature01145; PMID: 12410317
  • Winkler WC, Cohen-Chalamish S, Breaker RR. An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A 2002; 99:15908 - 13; http://dx.doi.org/10.1073/pnas.212628899; PMID: 12456892
  • Green NJ, Grundy FJ, Henkin TM. The T box mechanism: tRNA as a regulatory molecule. FEBS Lett 2010; 584:318 - 24; http://dx.doi.org/10.1016/j.febslet.2009.11.056; PMID: 19932103
  • Kortmann J, Narberhaus F. Bacterial RNA thermometers: molecular zippers and switches. Nat Rev Microbiol 2012; 10:255 - 65; http://dx.doi.org/10.1038/nrmicro2730; PMID: 22421878
  • Ellinger T, Ehricht R. Single-step purification of T7 RNA polymerase with a 6-histidine tag. Biotechniques 1998; 24:718 - 20; PMID: 9591113
  • Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 1987; 15:8783 - 98; http://dx.doi.org/10.1093/nar/15.21.8783; PMID: 3684574
  • Guillerez J, Lopez PJ, Proux F, Launay H, Dreyfus M. A mutation in T7 RNA polymerase that facilitates promoter clearance. Proc Natl Acad Sci U S A 2005; 102:5958 - 63; http://dx.doi.org/10.1073/pnas.0407141102; PMID: 15831591
  • Pleiss JA, Derrick ML, Uhlenbeck OC. T7 RNA polymerase produces 5′ end heterogeneity during in vitro transcription from certain templates. RNA 1998; 4:1313 - 7; http://dx.doi.org/10.1017/S135583829800106X; PMID: 9769105
  • Coleman TM, Wang G, Huang F. Superior 5′ homogeneity of RNA from ATP-initiated transcription under the T7 phi 2.5 promoter. Nucleic Acids Res 2004; 32:e14; http://dx.doi.org/10.1093/nar/gnh007; PMID: 14744982
  • Wichlacz A, Legiewicz M, Ciesiołka J. Generating in vitro transcripts with homogenous 3′ ends using trans-acting antigenomic delta ribozyme. Nucleic Acids Res 2004; 32:e39; http://dx.doi.org/10.1093/nar/gnh037; PMID: 14973333
  • Ferré-D’Amaré AR, Doudna JA. Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res 1996; 24:977 - 8; http://dx.doi.org/10.1093/nar/24.5.977; PMID: 8600468
  • Ferré-D’Amaré AR, Zhou K, Doudna JA. Crystal structure of a hepatitis delta virus ribozyme. Nature 1998; 395:567 - 74; http://dx.doi.org/10.1038/26912; PMID: 9783582
  • Walker SC, Avis JM, Conn GL. General plasmids for producing RNA in vitro transcripts with homogeneous ends. Nucleic Acids Res 2003; 31:e82; http://dx.doi.org/10.1093/nar/gng082; PMID: 12888534
  • Kieft JS, Batey RT. A general method for rapid and nondenaturing purification of RNAs. RNA 2004; 10:988 - 95; http://dx.doi.org/10.1261/rna.7040604; PMID: 15146082
  • Guo HC, Collins RA. Efficient trans-cleavage of a stem-loop RNA substrate by a ribozyme derived from neurospora VS RNA. EMBO J 1995; 14:368 - 76; PMID: 7835347
  • Kao C, Zheng M, Rüdisser S. A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA 1999; 5:1268 - 72; http://dx.doi.org/10.1017/S1355838299991033; PMID: 10496227
  • Vieira J, Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 1982; 19:259 - 68; http://dx.doi.org/10.1016/0378-1119(82)90015-4; PMID: 6295879
  • Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985; 33:103 - 19; http://dx.doi.org/10.1016/0378-1119(85)90120-9; PMID: 2985470
  • Chandra G, Patel P, Kost TA, Gray JG. Large-scale purification of plasmid DNA by fast protein liquid chromatography using a Hi-Load Q Sepharose column. Anal Biochem 1992; 203:169 - 72; http://dx.doi.org/10.1016/0003-2697(92)90060-K; PMID: 1524212
  • Sambrook J, Fritsch EF, Maniatis T. Molecular cloning : a laboratory manual. 2nd ed. New York: Cold Spring Harbor, N.Y.:  Cold Spring Harbor Laboratory Press, 1989.; 1989.
  • Barfod ET, Cech TR. Deletion of nonconserved helices near the 3′ end of the rRNA intron of Tetrahymena thermophila alters self-splicing but not core catalytic activity. Genes Dev 1988; 2:652 - 63; http://dx.doi.org/10.1101/gad.2.6.652; PMID: 3417146
  • Petrov A, Wu T, Puglisi EV, Puglisi JD. RNA purification by preparative polyacrylamide gel electrophoresis. Methods Enzymol 2013; 530:315 - 30; http://dx.doi.org/10.1016/B978-0-12-420037-1.00017-8; PMID: 24034329
  • Kim I, McKenna SA, Viani Puglisi E, Puglisi JD. Rapid purification of RNAs using fast performance liquid chromatography (FPLC). RNA 2007; 13:289 - 94; http://dx.doi.org/10.1261/rna.342607; PMID: 17179067
  • Cook AG, Fukuhara N, Jinek M, Conti E. Structures of the tRNA export factor in the nuclear and cytosolic states. Nature 2009; 461:60 - 5; http://dx.doi.org/10.1038/nature08394; PMID: 19680239
  • Anderson AC, Scaringe SA, Earp BE, Frederick CA. HPLC purification of RNA for crystallography and NMR. RNA 1996; 2:110 - 7; PMID: 8601278
  • Shields TP, Mollova E, Ste Marie L, Hansen MR, Pardi A. High-performance liquid chromatography purification of homogenous-length RNA produced by trans cleavage with a hammerhead ribozyme. RNA 1999; 5:1259 - 67; http://dx.doi.org/10.1017/S1355838299990945; PMID: 10496226
  • Easton LE, Shibata Y, Lukavsky PJ. Rapid, nondenaturing RNA purification using weak anion-exchange fast performance liquid chromatography. RNA 2010; 16:647 - 53; http://dx.doi.org/10.1261/rna.1862210; PMID: 20100812
  • Batey RT, Kieft JS. Improved native affinity purification of RNA. RNA 2007; 13:1384 - 9; http://dx.doi.org/10.1261/rna.528007; PMID: 17548432
  • Pereira MJB, Behera V, Walter NG. Nondenaturing purification of co-transcriptionally folded RNA avoids common folding heterogeneity. PLoS One 2010; 5:e12953; http://dx.doi.org/10.1371/journal.pone.0012953; PMID: 20886091
  • Doudna JA. Preparation of homogeneous ribozyme RNA for crystallization. Methods Mol Biol 1997; 74:365 - 70; PMID: 9204451
  • Ke A, Doudna JA. Crystallization of RNA and RNA-protein complexes. Methods 2004; 34:408 - 14; http://dx.doi.org/10.1016/j.ymeth.2004.03.027; PMID: 15325657
  • Baird NJ, Westhof E, Qin H, Pan T, Sosnick TR. Structure of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding. J Mol Biol 2005; 352:712 - 22; http://dx.doi.org/10.1016/j.jmb.2005.07.010; PMID: 16115647
  • Lu K, Miyazaki Y, Summers MF. Isotope labeling strategies for NMR studies of RNA. J Biomol NMR 2010; 46:113 - 25; http://dx.doi.org/10.1007/s10858-009-9375-2; PMID: 19789981
  • Duss O, Lukavsky PJ, Allain FH-T. Isotope labeling and segmental labeling of larger RNAs for NMR structural studies. Adv Exp Med Biol 2012; 992:121 - 44; http://dx.doi.org/10.1007/978-94-007-4954-2_7; PMID: 23076582
  • Ferré-D’Amaré AR, Zhou K, Doudna JA. A general module for RNA crystallization. J Mol Biol 1998; 279:621 - 31; http://dx.doi.org/10.1006/jmbi.1998.1789; PMID: 9641982
  • Coonrod LA, Lohman JR, Berglund JA. Utilizing the GAAA tetraloop/receptor to facilitate crystal packing and determination of the structure of a CUG RNA helix. Biochemistry 2012; 51:8330 - 7; http://dx.doi.org/10.1021/bi300829w; PMID: 23025897
  • Ferré-D’Amaré AR, Doudna JA. Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA-binding protein U1A as a crystallization module. J Mol Biol 2000; 295:541 - 56; http://dx.doi.org/10.1006/jmbi.1999.3398; PMID: 10623545
  • Smith KD, Lipchock SV, Ames TD, Wang J, Breaker RR, Strobel SA. Structural basis of ligand binding by a c-di-GMP riboswitch. Nat Struct Mol Biol 2009; 16:1218 - 23; http://dx.doi.org/10.1038/nsmb.1702; PMID: 19898477
  • Koldobskaya Y, Duguid EM, Shechner DM, Suslov NB, Ye J, Sidhu SS, Bartel DP, Koide S, Kossiakoff AA, Piccirilli JA. A portable RNA sequence whose recognition by a synthetic antibody facilitates structural determination. Nat Struct Mol Biol 2011; 18:100 - 6; http://dx.doi.org/10.1038/nsmb.1945; PMID: 21151117
  • Keel AY, Rambo RP, Batey RT, Kieft JS. A general strategy to solve the phase problem in RNA crystallography. Structure 2007; 15:761 - 72; http://dx.doi.org/10.1016/j.str.2007.06.003; PMID: 17637337
  • D’Souza V, Dey A, Habib D, Summers MF. NMR structure of the 101-nucleotide core encapsidation signal of the Moloney murine leukemia virus. J Mol Biol 2004; 337:427 - 42; http://dx.doi.org/10.1016/j.jmb.2004.01.037; PMID: 15003457
  • Toor N, Keating KS, Taylor SD, Pyle AM. Crystal structure of a self-spliced group II intron. Science 2008; 320:77 - 82; http://dx.doi.org/10.1126/science.1153803; PMID: 18388288

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.