3,478
Views
79
CrossRef citations to date
0
Altmetric
Review

Small regulatory RNAs in Archaea

, , , , , , , , & show all
Pages 484-493 | Received 18 Feb 2014, Accepted 06 Mar 2014, Published online: 31 Mar 2014

References

  • Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 1977; 74:5088 - 90; http://dx.doi.org/10.1073/pnas.74.11.5088; PMID: 270744
  • Mardanov AV, Ravin NV. The impact of genomics on research in diversity and evolution of archaea. Biochemistry (Mosc) 2012; 77:799 - 812; http://dx.doi.org/10.1134/S0006297912080019; PMID: 22860902
  • Brochier-Armanet C, Forterre P, Gribaldo S. Phylogeny and evolution of the Archaea: one hundred genomes later. Curr Opin Microbiol 2011; 14:274 - 81; http://dx.doi.org/10.1016/j.mib.2011.04.015; PMID: 21632276
  • Klenk HP, Göker M. En route to a genome-based classification of Archaea and Bacteria?. Syst Appl Microbiol 2010; 33:175 - 82; http://dx.doi.org/10.1016/j.syapm.2010.03.003; PMID: 20409658
  • Mizuno T, Chou MY, Inouye M. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci U S A 1984; 81:1966 - 70; http://dx.doi.org/10.1073/pnas.81.7.1966; PMID: 6201848
  • Lalaouna D, Simoneau-Roy M, Lafontaine D, Massé E. Regulatory RNAs and target mRNA decay in prokaryotes. Biochim Biophys Acta 2013; 1829:742 - 7; http://dx.doi.org/10.1016/j.bbagrm.2013.02.013; PMID: 23500183
  • De Lay N, Schu DJ, Gottesman S. Bacterial small RNA-based negative regulation: Hfq and its accomplices. J Biol Chem 2013; 288:7996 - 8003; http://dx.doi.org/10.1074/jbc.R112.441386; PMID: 23362267
  • Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 2011; 43:880 - 91; http://dx.doi.org/10.1016/j.molcel.2011.08.022; PMID: 21925377
  • Vanderpool CK, Balasubramanian D, Lloyd CR. Dual-function RNA regulators in bacteria. Biochimie 2011; 93:1943 - 9; http://dx.doi.org/10.1016/j.biochi.2011.07.016; PMID: 21816203
  • Gottesman S, Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 2011; 3:a003798; http://dx.doi.org/10.1101/cshperspect.a003798; PMID: 20980440
  • Georg J, Hess WR. cis-antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev 2011; 75:286 - 300; http://dx.doi.org/10.1128/MMBR.00032-10; PMID: 21646430
  • Desnoyers G, Bouchard MP, Massé E. New insights into small RNA-dependent translational regulation in prokaryotes. Trends Genet 2013; 29:92 - 8; http://dx.doi.org/10.1016/j.tig.2012.10.004; PMID: 23141721
  • Vogel J, Luisi BF. Hfq and its constellation of RNA. Nat Rev Microbiol 2011; 9:578 - 89; http://dx.doi.org/10.1038/nrmicro2615; PMID: 21760622
  • Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19:92 - 105; http://dx.doi.org/10.1101/gr.082701.108; PMID: 18955434
  • Takahashi RU, Miyazaki H, Ochiya T. The role of microRNAs in the regulation of cancer stem cells. Front Genet 2014; 4:295; http://dx.doi.org/10.3389/fgene.2013.00295; PMID: 24427168
  • Maciotta S, Meregalli M, Torrente Y. The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 2013; 7:265; http://dx.doi.org/10.3389/fncel.2013.00265; PMID: 24391543
  • Mulrane L, McGee SF, Gallagher WM, O’Connor DP. miRNA dysregulation in breast cancer. Cancer Res 2013; 73:6554 - 62; http://dx.doi.org/10.1158/0008-5472.CAN-13-1841; PMID: 24204025
  • Kim WT, Kim WJ. MicroRNAs in prostate cancer. Prostate Int 2013; 1:3 - 9; http://dx.doi.org/10.12954/PI.12011; PMID: 24223395
  • Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature 2004; 431:371 - 8; http://dx.doi.org/10.1038/nature02870; PMID: 15372045
  • Haasnoot J, Westerhout EM, Berkhout B. RNA interference against viruses: strike and counterstrike. Nat Biotechnol 2007; 25:1435 - 43; http://dx.doi.org/10.1038/nbt1369; PMID: 18066040
  • Kumar MS, Chen KC. Evolution of animal Piwi-interacting RNAs and prokaryotic CRISPRs. Brief Funct Genomics 2012; 11:277 - 88; http://dx.doi.org/10.1093/bfgp/els016; PMID: 22539610
  • Gebetsberger J, Polacek N. Slicing tRNAs to boost functional ncRNA diversity. RNA Biol 2013; 10:1798 - 806; http://dx.doi.org/10.4161/rna.27177; PMID: 24351723
  • Watkins NJ, Bohnsack MT. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA 2012; 3:397 - 414; http://dx.doi.org/10.1002/wrna.117; PMID: 22065625
  • Dieci G, Preti M, Montanini B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 2009; 94:83 - 8; http://dx.doi.org/10.1016/j.ygeno.2009.05.002; PMID: 19446021
  • Decatur WA, Liang XH, Piekna-Przybylska D, Fournier MJ. Identifying effects of snoRNA-guided modifications on the synthesis and function of the yeast ribosome. Methods Enzymol 2007; 425:283 - 316; http://dx.doi.org/10.1016/S0076-6879(07)25013-X; PMID: 17673089
  • Dennis PP, Omer A. Small non-coding RNAs in Archaea. Curr Opin Microbiol 2005; 8:685 - 94; http://dx.doi.org/10.1016/j.mib.2005.10.013; PMID: 16256421
  • Reichow SL, Hamma T, Ferré-D’Amaré AR, Varani G. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 2007; 35:1452 - 64; http://dx.doi.org/10.1093/nar/gkl1172; PMID: 17284456
  • Wang H, Boisvert D, Kim KK, Kim R, Kim SH. Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution. EMBO J 2000; 19:317 - 23; http://dx.doi.org/10.1093/emboj/19.3.317; PMID: 10654930
  • Aittaleb M, Rashid R, Chen Q, Palmer JR, Daniels CJ, Li H. Structure and function of archaeal box C/D sRNP core proteins. Nat Struct Biol 2003; 10:256 - 63; http://dx.doi.org/10.1038/nsb905; PMID: 12598892
  • Deng L, Starostina NG, Liu ZJ, Rose JP, Terns RM, Terns MP, Wang BC. Structure determination of fibrillarin from the hyperthermophilic archaeon Pyrococcus furiosus.. Biochem Biophys Res Commun 2004; 315:726 - 32; http://dx.doi.org/10.1016/j.bbrc.2004.01.114; PMID: 14975761
  • Lui L, Lowe T. Small nucleolar RNAs and RNA-guided post-transcriptional modification. Essays Biochem 2013; 54:53 - 77; http://dx.doi.org/10.1042/bse0540053; PMID: 23829527
  • Lafontaine DL, Tollervey D. Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem Sci 1998; 23:383 - 8; http://dx.doi.org/10.1016/S0968-0004(98)01260-2; PMID: 9810226
  • Eddy SR. Computational genomics of noncoding RNA genes. Cell 2002; 109:137 - 40; http://dx.doi.org/10.1016/S0092-8674(02)00727-4; PMID: 12007398
  • Schattner P. Searching for RNA genes using base-composition statistics. Nucleic Acids Res 2002; 30:2076 - 82; http://dx.doi.org/10.1093/nar/30.9.2076; PMID: 11972348
  • Klein RJ, Misulovin Z, Eddy SR. Noncoding RNA genes identified in AT-rich hyperthermophiles. Proc Natl Acad Sci U S A 2002; 99:7542 - 7; http://dx.doi.org/10.1073/pnas.112063799; PMID: 12032319
  • Tang TH, Bachellerie JP, Rozhdestvensky T, Bortolin ML, Huber H, Drungowski M, Elge T, Brosius J, Hüttenhofer A. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus.. Proc Natl Acad Sci U S A 2002; 99:7536 - 41; http://dx.doi.org/10.1073/pnas.112047299; PMID: 12032318
  • Tang TH, Polacek N, Zywicki M, Huber H, Brugger K, Garrett R, Bachellerie JP, Hüttenhofer A. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus.. Mol Microbiol 2005; 55:469 - 81; http://dx.doi.org/10.1111/j.1365-2958.2004.04428.x; PMID: 15659164
  • Straub J, Brenneis M, Jellen-Ritter A, Heyer R, Soppa J, Marchfelder A. Small RNAs in haloarchaea: identification, differential expression and biological function. RNA Biol 2009; 6:281 - 92; http://dx.doi.org/10.4161/rna.6.3.8357; PMID: 19333006
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10:57 - 63; http://dx.doi.org/10.1038/nrg2484; PMID: 19015660
  • Sharma CM, Vogel J. Experimental approaches for the discovery and characterization of regulatory small RNA. Curr Opin Microbiol 2009; 12:536 - 46; http://dx.doi.org/10.1016/j.mib.2009.07.006; PMID: 19758836
  • Jäger D, Sharma CM, Thomsen J, Ehlers C, Vogel J, Schmitz RA. Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability. Proc Natl Acad Sci U S A 2009; 106:21878 - 82; http://dx.doi.org/10.1073/pnas.0909051106; PMID: 19996181
  • Heyer R, Dörr M, Jellen-Ritter A, Späth B, Babski J, Jaschinski K, Soppa J, Marchfelder A. High throughput sequencing reveals a plethora of small RNAs including tRNA derived fragments in Haloferax volcanii.. RNA Biol 2012; 9:1011 - 8; http://dx.doi.org/10.4161/rna.20826; PMID: 22767255
  • Babski J, Tjaden B, Voss B, Jellen-Ritter A, Marchfelder A, Hess WR, Soppa J. Bioinformatic prediction and experimental verification of sRNAs in the haloarchaeon Haloferax volcanii.. RNA Biol 2011; 8:806 - 16; http://dx.doi.org/10.4161/rna.8.5.16039; PMID: 21712649
  • Bernick DL, Cox CL, Dennis PP, Lowe TM. Comparative genomic and transcriptional analyses of CRISPR systems across the genus Pyrobaculum.. Front Microbiol 2012; 3:251; http://dx.doi.org/10.3389/fmicb.2012.00251; PMID: 22811677
  • Phok K, Moisan A, Rinaldi D, Brucato N, Carpousis AJ, Gaspin C, Clouet-d’Orval B. Identification of CRISPR and riboswitch related RNAs among novel noncoding RNAs of the euryarchaeon Pyrococcus abyssi.. BMC Genomics 2011; 12:312; http://dx.doi.org/10.1186/1471-2164-12-312; PMID: 21668986
  • Toffano-Nioche C, Ott A, Crozat E, Nguyen AN, Zytnicki M, Leclerc F, Forterre P, Bouloc P, Gautheret D. RNA at 92 °C: the non-coding transcriptome of the hyperthermophilic archaeon Pyrococcus abyssi. RNA Biol 2013; 10:1211 - 20; http://dx.doi.org/10.4161/rna.25567; PMID: 23884177
  • Su AA, Tripp V, Randau L. RNA-Seq analyses reveal the order of tRNA processing events and the maturation of C/D box and CRISPR RNAs in the hyperthermophile Methanopyrus kandleri.. Nucleic Acids Res 2013; 41:6250 - 8; http://dx.doi.org/10.1093/nar/gkt317; PMID: 23620296
  • Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R. A single-base resolution map of an archaeal transcriptome. Genome Res 2010; 20:133 - 41; http://dx.doi.org/10.1101/gr.100396.109; PMID: 19884261
  • Zago MA, Dennis PP, Omer AD. The expanding world of small RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus.. Mol Microbiol 2005; 55:1812 - 28; http://dx.doi.org/10.1111/j.1365-2958.2005.04505.x; PMID: 15752202
  • Xu N, Li Y, Zhao YT, Guo L, Fang YY, Zhao JH, Wang XJ, Huang L, Guo HS. Identification and characterization of small RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus.. PLoS One 2012; 7:e35306; http://dx.doi.org/10.1371/journal.pone.0035306; PMID: 22514725
  • Podar M, Makarova KS, Graham DE, Wolf YI, Koonin EV, Reysenbach AL. Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. Biol Direct 2013; 8:9; http://dx.doi.org/10.1186/1745-6150-8-9; PMID: 23607440
  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 2002; 417:63 - 7; http://dx.doi.org/10.1038/417063a; PMID: 11986665
  • Randau L. RNA processing in the minimal organism Nanoarchaeum equitans.. Genome Biol 2012; 13:R63; http://dx.doi.org/10.1186/gb-2012-13-7-r63; PMID: 22809431
  • Jaschinski K, Babski J, Lehr M, Burmester A, Benz J, Heyer R, Dörr M, Marchfelder A, Soppa J. Generation and Phenotyping of a collection of sRNA gene deletion mutants of the haloarchaeon Haloferax volcanii.. PLoS ONE 2014; Forthcoming
  • Gómez-Lozano M, Marvig RL, Molin S, Long KS. Genome-wide identification of novel small RNAs in Pseudomonas aeruginosa.. Environ Microbiol 2012; 14:2006 - 16; http://dx.doi.org/10.1111/j.1462-2920.2012.02759.x; PMID: 22533370
  • Vogel J. A rough guide to the non-coding RNA world of Salmonella.. Mol Microbiol 2009; 71:1 - 11; http://dx.doi.org/10.1111/j.1365-2958.2008.06505.x; PMID: 19007416
  • Georg J, Hess WR. Regulatory RNAs in cyanobacteria: developmental decisions, stress responses and a plethora of chromosomally encoded cis-antisense RNAs. Biol Chem 2011; 392:291 - 7; http://dx.doi.org/10.1515/bc.2011.046; PMID: 21294678
  • Weidenbach K, Ehlers C, Kock J, Ehrenreich A, Schmitz RA. Insights into the NrpR regulon in Methanosarcina mazei Gö1. Arch Microbiol 2008; 190:319 - 32; http://dx.doi.org/10.1007/s00203-008-0369-3; PMID: 18415079
  • Veit K, Ehlers C, Ehrenreich A, Salmon K, Hovey R, Gunsalus RP, Deppenmeier U, Schmitz RA. Global transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities. Mol Genet Genomics 2006; 276:41 - 55; http://dx.doi.org/10.1007/s00438-006-0117-9; PMID: 16625354
  • Veit K, Ehlers C, Schmitz RA. Effects of nitrogen and carbon sources on transcription of soluble methyltransferases in Methanosarcina mazei strain Go1. J Bacteriol 2005; 187:6147 - 54; http://dx.doi.org/10.1128/JB.187.17.6147-6154.2005; PMID: 16109956
  • Ehlers C, Weidenbach K, Veit K, Deppenmeier U, Metcalf WW, Schmitz RA. Development of genetic methods and construction of a chromosomal glnK1 mutant in Methanosarcina mazei strain Gö1. Mol Genet Genomics 2005; 273:290 - 8; http://dx.doi.org/10.1007/s00438-005-1128-7; PMID: 15824904
  • Ehlers C, Veit K, Gottschalk G, Schmitz RA. Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1. Archaea 2002; 1:143 - 50; http://dx.doi.org/10.1155/2002/362813; PMID: 15803652
  • Ehlers C, Jäger D, Schmitz RA. Establishing a markerless genetic exchange system for Methanosarcina mazei strain Gö1 for constructing chromosomal mutants of small RNA genes. Archaea 2011; 2011:439608; http://dx.doi.org/10.1155/2011/439608; PMID: 21941461
  • Bitan-Banin G, Ortenberg R, Mevarech M. Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene. J Bacteriol 2003; 185:772 - 8; http://dx.doi.org/10.1128/JB.185.3.772-778.2003; PMID: 12533452
  • Allers T, Ngo HP, Mevarech M, Lloyd RG. Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. Appl Environ Microbiol 2004; 70:943 - 53; http://dx.doi.org/10.1128/AEM.70.2.943-953.2004; PMID: 14766575
  • Hammelmann M, Soppa J. Optimized generation of vectors for the construction of Haloferax volcanii deletion mutants. J Microbiol Methods 2008; 75:201 - 4; http://dx.doi.org/10.1016/j.mimet.2008.05.029; PMID: 18582505
  • Jantzer K, Zerulla K, Soppa J. Phenotyping in the archaea: optimization of growth parameters and analysis of mutants of Haloferax volcanii.. FEMS Microbiol Lett 2011; 322:123 - 30; http://dx.doi.org/10.1111/j.1574-6968.2011.02341.x; PMID: 21692831
  • Boon RA, Dimmeler S. MicroRNAs and aneurysm formation. Trends Cardiovasc Med 2011; 21:172 - 7; http://dx.doi.org/10.1016/j.tcm.2012.05.005; PMID: 22814425
  • Ren XP, Wu J, Wang X, Sartor MA, Qian J, Jones K, Nicolaou P, Pritchard TJ, Fan GC. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 2009; 119:2357 - 66; http://dx.doi.org/10.1161/CIRCULATIONAHA.108.814145; PMID: 19380620
  • Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 2009; 324:1710 - 3; http://dx.doi.org/10.1126/science.1174381; PMID: 19460962
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.. Cell 1993; 75:843 - 54; http://dx.doi.org/10.1016/0092-8674(93)90529-Y; PMID: 8252621
  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.. Nature 2000; 403:901 - 6; http://dx.doi.org/10.1038/35002607; PMID: 10706289
  • Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol 2012; 6:590 - 610; http://dx.doi.org/10.1016/j.molonc.2012.09.006; PMID: 23102669
  • Siegel SR, Mackenzie J, Chaplin G, Jablonski NG, Griffiths L. Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep 2012; 39:6219 - 25; http://dx.doi.org/10.1007/s11033-011-1441-7; PMID: 22231906
  • Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A. A MicroRNA feedback circuit in midbrain dopamine neurons. Science 2007; 317:1220 - 4; http://dx.doi.org/10.1126/science.1140481; PMID: 17761882
  • Hébert SS, Papadopoulou AS, Smith P, Galas MC, Planel E, Silahtaroglu AN, Sergeant N, Buée L, De Strooper B. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet 2010; 19:3959 - 69; http://dx.doi.org/10.1093/hmg/ddq311; PMID: 20660113
  • Shimoni Y, Friedlander G, Hetzroni G, Niv G, Altuvia S, Biham O, Margalit H. Regulation of gene expression by small non-coding RNAs: a quantitative view. Mol Syst Biol 2007; 3:138; http://dx.doi.org/10.1038/msb4100181; PMID: 17893699
  • Majdalani N, Vanderpool CK, Gottesman S. Bacterial small RNA regulators. Crit Rev Biochem Mol Biol 2005; 40:93 - 113; http://dx.doi.org/10.1080/10409230590918702; PMID: 15814430
  • Waters LS, Storz G. Regulatory RNAs in bacteria. Cell 2009; 136:615 - 28; http://dx.doi.org/10.1016/j.cell.2009.01.043; PMID: 19239884
  • Huang Y, Zhang JL, Yu XL, Xu TS, Wang ZB, Cheng XC. Molecular functions of small regulatory noncoding RNA. Biochemistry (Mosc) 2013; 78:221 - 30; http://dx.doi.org/10.1134/S0006297913030024; PMID: 23586714
  • Pichon C, Felden B. Small RNA gene identification and mRNA target predictions in bacteria. Bioinformatics 2008; 24:2807 - 13; http://dx.doi.org/10.1093/bioinformatics/btn560; PMID: 18974076
  • Tjaden B. Prediction of small, noncoding RNAs in bacteria using heterogeneous data. J Math Biol 2008; 56:183 - 200; http://dx.doi.org/10.1007/s00285-007-0079-5; PMID: 17354017
  • Washietl S, Hofacker IL, Stadler PF. Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A 2005; 102:2454 - 9; http://dx.doi.org/10.1073/pnas.0409169102; PMID: 15665081
  • Busch A, Richter AS, Backofen R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 2008; 24:2849 - 56; http://dx.doi.org/10.1093/bioinformatics/btn544; PMID: 18940824
  • Smith C, Heyne S, Richter AS, Will S, Backofen R. Freiburg RNA Tools: a web server integrating INTARNA, EXPARNA and LOCARNA. Nucleic Acids Res 2010; 38:W373 - 7; http://dx.doi.org/10.1093/nar/gkq316; PMID: 20444875
  • Jäger D, Pernitzsch SR, Richter AS, Backofen R, Sharma CM, Schmitz RA. An archaeal sRNA targeting cis- and trans-encoded mRNAs via two distinct domains. Nucleic Acids Res 2012; 40:10964 - 79; http://dx.doi.org/10.1093/nar/gks847; PMID: 22965121
  • Prasse D, Ehlers C, Backofen R, Schmitz RA. Regulatory RNAs in archaea: first target identification in Methanoarchaea. Biochem Soc Trans 2013; 41:344 - 9; http://dx.doi.org/10.1042/BST20120280; PMID: 23356309
  • Sayed N, Jousselin A, Felden B. A cis-antisense RNA acts in trans in Staphylococcus aureus to control translation of a human cytolytic peptide. Nat Struct Mol Biol 2012; 19:105 - 12; http://dx.doi.org/10.1038/nsmb.2193; PMID: 22198463
  • Slupska MM, King AG, Fitz-Gibbon S, Besemer J, Borodovsky M, Miller JH. Leaderless transcripts of the crenarchaeal hyperthermophile Pyrobaculum aerophilum.. J Mol Biol 2001; 309:347 - 60; http://dx.doi.org/10.1006/jmbi.2001.4669; PMID: 11371158
  • Brenneis M, Hering O, Lange C, Soppa J. Experimental characterization of Cis-acting elements important for translation and transcription in halophilic archaea. PLoS Genet 2007; 3:e229; http://dx.doi.org/10.1371/journal.pgen.0030229; PMID: 18159946
  • Lange C, Zaigler A, Hammelmann M, Twellmeyer J, Raddatz G, Schuster SC, Oesterhelt D, Soppa J. Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea. BMC Genomics 2007; 8:415; http://dx.doi.org/10.1186/1471-2164-8-415; PMID: 17997854
  • Brenneis M, Soppa J. Regulation of translation in haloarchaea: 5′- and 3′-UTRs are essential and have to functionally interact in vivo. PLoS One 2009; 4:e4484; http://dx.doi.org/10.1371/journal.pone.0004484; PMID: 19214227
  • Bernick DL, Dennis PP, Höchsmann M, Lowe TM. Discovery of Pyrobaculum small RNA families with atypical pseudouridine guide RNA features. RNA 2012; 18:402 - 11; http://dx.doi.org/10.1261/rna.031385.111; PMID: 22282340
  • Märtens B, Manoharadas S, Hasenöhrl D, Manica A, Bläsi U. Antisense regulation by transposon-derived RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus.. EMBO Rep 2013; 14:527 - 33; http://dx.doi.org/10.1038/embor.2013.47; PMID: 23579342
  • Lee YS, Shibata Y, Malhotra A, Dutta A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009; 23:2639 - 49; http://dx.doi.org/10.1101/gad.1837609; PMID: 19933153
  • Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 2010; 16:673 - 95; http://dx.doi.org/10.1261/rna.2000810; PMID: 20181738
  • Fu H, Feng J, Liu Q, Sun F, Tie Y, Zhu J, Xing R, Sun Z, Zheng X. Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 2009; 583:437 - 42; http://dx.doi.org/10.1016/j.febslet.2008.12.043; PMID: 19114040
  • Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 2008; 14:2095 - 103; http://dx.doi.org/10.1261/rna.1232808; PMID: 18719243
  • Bernick DL, Dennis PP, Lui LM, Lowe TM. Diversity of Antisense and Other Non-Coding RNAs in Archaea Revealed by Comparative Small RNA Sequencing in Four Pyrobaculum Species. Front Microbiol 2012; 3:231; http://dx.doi.org/10.3389/fmicb.2012.00231; PMID: 22783241
  • Gebetsberger J, Zywicki M, Künzi A, Polacek N. tRNA-derived fragments target the ribosome and function as regulatory non-coding RNA in Haloferax volcanii. Archaea 2012; 2012:260909; http://dx.doi.org/10.1155/2012/260909; PMID: 23326205
  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987; 169:5429 - 33; PMID: 3316184
  • Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002; 43:1565 - 75; http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x; PMID: 11952905
  • Koonin EV, Wolf YI. Is evolution Darwinian or/and Lamarckian?. Biol Direct 2009; 4:42; http://dx.doi.org/10.1186/1745-6150-4-42; PMID: 19906303
  • Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 2013; 493:429 - 32; http://dx.doi.org/10.1038/nature11723; PMID: 23242138
  • Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 2011; 9:467 - 77; http://dx.doi.org/10.1038/nrmicro2577; PMID: 21552286
  • Plagens A, Tripp V, Daume M, Sharma K, Klingl A, Hrle A, Conti E, Urlaub H, Randau L. In vitro assembly and activity of an archaeal CRISPR-Cas type I-A Cascade interference complex. Nucleic Acids Res 2014; In press http://dx.doi.org/10.1093/nar/gku120; PMID: 24500198
  • Brendel J, Stoll B, Lange SJ, Sharma K, Lenz C, Stachler A-E, Maier L-K, Richter H, Nickel L, Schmitz RA, et al. A complex of Cas proteins 5, 6, and 7 is required for the biogenesis and stability of crRNAs in Haloferax volcanii.. J Biol Chem 2014; In press http://dx.doi.org/10.1074/jbc.M113.508184; PMID: 24459147
  • Fineran PC, Charpentier E. Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology 2012; 434:202 - 9; http://dx.doi.org/10.1016/j.virol.2012.10.003; PMID: 23123013
  • Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012; 482:331 - 8; http://dx.doi.org/10.1038/nature10886; PMID: 22337052
  • Marchfelder A, Fischer S, Brendel J, Stoll B, Maier LK, Jäger D, Prasse D, Plagens A, Schmitz RA, Randau L. Small RNAs for defence and regulation in archaea. Extremophiles 2012; 16:685 - 96; http://dx.doi.org/10.1007/s00792-012-0469-5; PMID: 22763819
  • Urban JH, Vogel J. Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res 2007; 35:1018 - 37; http://dx.doi.org/10.1093/nar/gkl1040; PMID: 17264113
  • Urban JH, Vogel J. Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol 2008; 6:e64; http://dx.doi.org/10.1371/journal.pbio.0060064; PMID: 18351803
  • Papenfort K, Pfeiffer V, Lucchini S, Sonawane A, Hinton JC, Vogel J. Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis. Mol Microbiol 2008; 68:890 - 906; http://dx.doi.org/10.1111/j.1365-2958.2008.06189.x; PMID: 18399940
  • Bouvier M, Sharma CM, Mika F, Nierhaus KH, Vogel J. Small RNA binding to 5′ mRNA coding region inhibits translational initiation. Mol Cell 2008; 32:827 - 37; http://dx.doi.org/10.1016/j.molcel.2008.10.027; PMID: 19111662