1,641
Views
17
CrossRef citations to date
0
Altmetric
Research Paper

Translational control of small heat shock genes in mesophilic and thermophilic cyanobacteria by RNA thermometers

, , , , &
Pages 594-608 | Received 04 Nov 2013, Accepted 25 Mar 2014, Published online: 02 Apr 2014

References

  • Schopf JW. Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 1993; 260:640 - 6; http://dx.doi.org/10.1126/science.260.5108.640; PMID: 11539831
  • Falcón LI, Magallón S, Castillo A. Dating the cyanobacterial ancestor of the chloroplast. ISME J 2010; 4:777 - 83; http://dx.doi.org/10.1038/ismej.2010.2; PMID: 20200567
  • Mitschke J, Vioque A, Haas F, Hess WR, Muro-Pastor AM. Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120. Proc Natl Acad Sci U S A 2011; 108:20130 - 5; http://dx.doi.org/10.1073/pnas.1112724108; PMID: 22135468
  • Castenholz RW. Phylum BX. Cyanobacteria. In: Boone DR, Castenholz RW, eds. Bergey’s Manual of Systematic Bacteriology, The Archaea and the Deeply Branching and Phototrophic Bacteria. New York: Springer, 2001:473-599.
  • Suzuki I, Simon WJ, Slabas AR. The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. J Exp Bot 2006; 57:1573 - 8; http://dx.doi.org/10.1093/jxb/erj148; PMID: 16574748
  • Paithoonrangsarid K, Shoumskaya MA, Kanesaki Y, Satoh S, Tabata S, Los DA, Zinchenko VV, Hayashi H, Tanticharoen M, Suzuki I, et al. Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis.. J Biol Chem 2004; 279:53078 - 86; http://dx.doi.org/10.1074/jbc.M410162200; PMID: 15471853
  • Marin K, Kanesaki Y, Los DA, Murata N, Suzuki I, Hagemann M. Gene expression profiling reflects physiological processes in salt acclimation of Synechocystis sp. strain PCC 6803. Plant Physiol 2004; 136:3290 - 300; http://dx.doi.org/10.1104/pp.104.045047; PMID: 15361582
  • Vandenbroucke K, Robbens S, Vandepoele K, Inzé D, Van de Peer Y, Van Breusegem F. Hydrogen peroxide-induced gene expression across kingdoms: a comparative analysis. Mol Biol Evol 2008; 25:507 - 16; http://dx.doi.org/10.1093/molbev/msm276; PMID: 18187560
  • Mary I, Tu CJ, Grossman A, Vaulot D. Effects of high light on transcripts of stress-associated genes for the cyanobacteria Synechocystis sp. PCC 6803 and Prochlorococcus MED4 and MIT9313. Microbiology 2004; 150:1271 - 81; http://dx.doi.org/10.1099/mic.0.27014-0; PMID: 15133090
  • Summerfield TC, Sherman LA. Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. strain PCC 6803 to a pH 10 environment. Appl Environ Microbiol 2008; 74:5276 - 84; http://dx.doi.org/10.1128/AEM.00883-08; PMID: 18606800
  • Narberhaus F. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 2002; 66:64 - 93; http://dx.doi.org/10.1128/MMBR.66.1.64-93.2002; PMID: 11875128
  • Nakamoto H, Suzuki M, Kojima K. Targeted inactivation of the hrcA repressor gene in cyanobacteria. FEBS Lett 2003; 549:57 - 62; http://dx.doi.org/10.1016/S0014-5793(03)00768-3; PMID: 12914925
  • Lee S, Prochaska DJ, Fang F, Barnum SR Sr.. A 16.6-kilodalton protein in the cyanobacterium Synechocystis sp. PCC 6803 plays a role in the heat shock response. Curr Microbiol 1998; 37:403 - 7; http://dx.doi.org/10.1007/s002849900400; PMID: 9806978
  • Kortmann J, Sczodrok S, Rinnenthal J, Schwalbe H, Narberhaus F. Translation on demand by a simple RNA-based thermosensor. Nucleic Acids Res 2011; 39:2855 - 68; http://dx.doi.org/10.1093/nar/gkq1252; PMID: 21131278
  • Havaux M. Stress tolerance of photosystem II in vivo: antagonistic effects of water, heat, and photoinhibition stresses. Plant Physiol 1992; 100:424 - 32; http://dx.doi.org/10.1104/pp.100.1.424; PMID: 16652979
  • Heckathorn SA, Downs CA, Sharkey TD, Coleman JS. The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol 1998; 116:439 - 44; http://dx.doi.org/10.1104/pp.116.1.439; PMID: 9449851
  • Nakamoto H, Suzuki N, Roy SK. Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria. FEBS Lett 2000; 483:169 - 74; http://dx.doi.org/10.1016/S0014-5793(00)02097-4; PMID: 11042275
  • Nitta K, Suzuki N, Honma D, Kaneko Y, Nakamoto H. Ultrastructural stability under high temperature or intensive light stress conferred by a small heat shock protein in cyanobacteria. FEBS Lett 2005; 579:1235 - 42; http://dx.doi.org/10.1016/j.febslet.2004.12.095; PMID: 15710419
  • Horváth I, Glatz A, Varvasovszki V, Török Z, Páli T, Balogh G, Kovács E, Nádasdi L, Benkö S, Joó F, et al. Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”. Proc Natl Acad Sci U S A 1998; 95:3513 - 8; http://dx.doi.org/10.1073/pnas.95.7.3513; PMID: 9520397
  • Nakamoto H, Honma D. Interaction of a small heat shock protein with light-harvesting cyanobacterial phycocyanins under stress conditions. FEBS Lett 2006; 580:3029 - 34; http://dx.doi.org/10.1016/j.febslet.2006.04.047; PMID: 16678174
  • Sakthivel K, Watanabe T, Nakamoto H. A small heat-shock protein confers stress tolerance and stabilizes thylakoid membrane proteins in cyanobacteria under oxidative stress. Arch Microbiol 2009; 191:319 - 28; http://dx.doi.org/10.1007/s00203-009-0457-z; PMID: 19169670
  • Guisbert E, Yura T, Rhodius VA, Gross CA. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 2008; 72:545 - 54; http://dx.doi.org/10.1128/MMBR.00007-08; PMID: 18772288
  • Waldminghaus T, Fippinger A, Alfsmann J, Narberhaus F. RNA thermometers are common in alpha- and gamma-proteobacteria. Biol Chem 2005; 386:1279 - 86; http://dx.doi.org/10.1515/BC.2005.145; PMID: 16336122
  • Kortmann J, Narberhaus F. Bacterial RNA thermometers: molecular zippers and switches. Nat Rev Microbiol 2012; 10:255 - 65; http://dx.doi.org/10.1038/nrmicro2730; PMID: 22421878
  • Tuominen I, Pollari M, Aguirre von Wobeser E, Tyystjärvi E, Ibelings BW, Matthijs HC, Tyystjärvi T. Sigma factor SigC is required for heat acclimation of the cyanobacterium Synechocystis sp. strain PCC 6803. FEBS Lett 2008; 582:346 - 50; http://dx.doi.org/10.1016/j.febslet.2007.12.030; PMID: 18166156
  • Tuominen I, Pollari M, Tyystjärvi E, Tyystjärvi T. The SigB sigma factor mediates high-temperature responses in the cyanobacterium Synechocystis sp. PCC6803. FEBS Lett 2006; 580:319 - 23; http://dx.doi.org/10.1016/j.febslet.2005.11.082; PMID: 16376888
  • Nocker A, Hausherr T, Balsiger S, Krstulovic NP, Hennecke H, Narberhaus F. A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res 2001; 29:4800 - 7; http://dx.doi.org/10.1093/nar/29.23.4800; PMID: 11726689
  • Waldminghaus T, Heidrich N, Brantl S, Narberhaus F. FourU: a novel type of RNA thermometer in Salmonella.. Mol Microbiol 2007; 65:413 - 24; http://dx.doi.org/10.1111/j.1365-2958.2007.05794.x; PMID: 17630972
  • Klinkert B, Cimdins A, Gaubig LC, Roßmanith J, Aschke-Sonnenborn U, Narberhaus F. Thermogenetic tools to monitor temperature-dependent gene expression in bacteria. J Biotechnol 2012; 160:55 - 63; http://dx.doi.org/10.1016/j.jbiotec.2012.01.007; PMID: 22285954
  • Kouse AB, Righetti F, Kortmann J, Narberhaus F, Murphy ER. RNA-mediated thermoregulation of iron-acquisition genes in Shigella dysenteriae and pathogenic Escherichia coli.. PLoS One 2013; 8:e63781; http://dx.doi.org/10.1371/journal.pone.0063781; PMID: 23704938
  • Böhme K, Steinmann R, Kortmann J, Seekircher S, Heroven AK, Berger E, Pisano F, Thiermann T, Wolf-Watz H, Narberhaus F, et al. Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog 2012; 8:e1002518; http://dx.doi.org/10.1371/journal.ppat.1002518; PMID: 22359501
  • Rynearson TA, Palenik B. Learning to read the oceans: genomics of marine phytoplankton. In: Lesser M, ed. Advances in Marine Biology: Academic Press, 2011:1-39.
  • Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, et al. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 2001; 8:205 13 27 53
  • Liu X, Huang W, Li M, Wu Q. Purification and characterization of two small heat shock proteins from Anabaena sp. PCC 7120. IUBMB Life 2005; 57:449 - 54; http://dx.doi.org/10.1080/15216540500138402; PMID: 16012054
  • Copeland A, Lucas S, Lapidus A, Barry K, Detter JC, Glavina T, Hammon N, Israni S, Pitluck S, Saunders EH, et al. Complete sequence of Anabaena variabilis ATCC 29413. US DOE Joint Genome Institute, 2005.
  • Gaubig LC, Waldminghaus T, Narberhaus F. Multiple layers of control govern expression of the Escherichia coli ibpAB heat-shock operon. Microbiology 2011; 157:66 - 76; http://dx.doi.org/10.1099/mic.0.043802-0; PMID: 20864473
  • Waldminghaus T, Gaubig LC, Klinkert B, Narberhaus F. The Escherichia coli ibpA thermometer is comprised of stable and unstable structural elements. RNA Biol 2009; 6:455 - 63; http://dx.doi.org/10.4161/rna.6.4.9014; PMID: 19535917
  • Chowdhury S, Ragaz C, Kreuger E, Narberhaus F. Temperature-controlled structural alterations of an RNA thermometer. J Biol Chem 2003; 278:47915 - 21; http://dx.doi.org/10.1074/jbc.M306874200; PMID: 12963744
  • Roy SK, Hiyama T, Nakamoto H. Purification and characterization of the 16-kDa heat-shock-responsive protein from the thermophilic cyanobacterium Synechococcus vulcanus, which is an alpha-crystallin-related, small heat shock protein. Eur J Biochem 1999; 262:406 - 16; http://dx.doi.org/10.1046/j.1432-1327.1999.00380.x; PMID: 10336625
  • Sato S, Ikeuchi M, Nakamoto H. Expression and function of a groEL paralog in the thermophilic cyanobacterium Thermosynechococcus elongatus under heat and cold stress. FEBS Lett 2008; 582:3389 - 95; http://dx.doi.org/10.1016/j.febslet.2008.08.034; PMID: 18786533
  • Roy SK, Nakamoto H. Cloning, characterization, and transcriptional analysis of a gene encoding an alpha-crystallin-related, small heat shock protein from the thermophilic cyanobacterium Synechococcus vulcanus.. J Bacteriol 1998; 180:3997 - 4001; PMID: 9683501
  • Kojima K, Nakamoto H. Post-transcriptional control of the cyanobacterial hspA heat-shock induction. Biochem Biophys Res Commun 2005; 331:583 - 8; http://dx.doi.org/10.1016/j.bbrc.2005.04.009; PMID: 15850800
  • Kojima K, Nakamoto H. Specific binding of a protein to a novel DNA element in the cyanobacterial small heat-shock protein gene. Biochem Biophys Res Commun 2002; 297:616 - 24; http://dx.doi.org/10.1016/S0006-291X(02)02256-8; PMID: 12270139
  • Nakamoto H. Molecular chaperones and stress tolerance in cyanobacteria. In: Srivastava AK, Rai AN, Neilan BA, eds. Stress Biology of Cyanobacteria Molecular Mechanisms to Cellular Responses: CRC Press, 2013:114-38.
  • Borbély G, Surányi G, Korcz A, Pálfi Z. Effect of heat shock on protein synthesis in the cyanobacterium Synechococcus sp. strain PCC 6301. J Bacteriol 1985; 161:1125 - 30; PMID: 3918983
  • Webb R, Sherman LA. The cyanobacterial heat-shock response and the molecular chaperones. In: Bryant DA, ed. The Molecular Biology of Cyanobacteria Advances in Photosynthesis and Respiration. Dordrecht: Springer, 1994:751-67.
  • Rajaram H, Chaurasia AK, Apte SK. Cyanobacterial Heat Shock Response: Role and Regulation of Molecular Chaperones. Microbiology 2014; Forthcoming http://dx.doi.org/10.1099/mic.0.073478-0; PMID: 24493248
  • Watanabe S, Sato M, Nimura-Matsune K, Chibazakura T, Yoshikawa H. Protection of psbAII transcript from ribonuclease degradation in vitro by DnaK2 and DnaJ2 chaperones of the cyanobacterium Synechococcus elongatus PCC 7942. Biosci Biotechnol Biochem 2007; 71:279 - 82; http://dx.doi.org/10.1271/bbb.60647; PMID: 17213638
  • Nimura K, Yoshikawa H, Takahashi H. DnaK3, one of the three DnaK proteins of cyanobacterium Synechococcus sp. PCC7942, is quantitatively detected in the thylakoid membrane. Biochem Biophys Res Commun 1996; 229:334 - 40; http://dx.doi.org/10.1006/bbrc.1996.1802; PMID: 8954128
  • Lubben TH, Donaldson GK, Viitanen PV, Gatenby AA. Several proteins imported into chloroplasts form stable complexes with the GroEL-related chloroplast molecular chaperone. Plant Cell 1989; 1:1223 - 30; PMID: 2577724
  • Tanaka N, Nakamoto H. HtpG is essential for the thermal stress management in cyanobacteria. FEBS Lett 1999; 458:117 - 23; http://dx.doi.org/10.1016/S0014-5793(99)01134-5; PMID: 10481048
  • Watanabe S, Kobayashi T, Saito M, Sato M, Nimura-Matsune K, Chibazakura T, Taketani S, Nakamoto H, Yoshikawa H. Studies on the role of HtpG in the tetrapyrrole biosynthesis pathway of the cyanobacterium Synechococcus elongatus PCC 7942. Biochem Biophys Res Commun 2007; 352:36 - 41; http://dx.doi.org/10.1016/j.bbrc.2006.10.144; PMID: 17107658
  • Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K, Pakrasi HB. Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 2002; 41:8004 - 12; http://dx.doi.org/10.1021/bi026012+; PMID: 12069591
  • Cheregi O, Sicora C, Kós PB, Barker M, Nixon PJ, Vass I. The role of the FtsH and Deg proteases in the repair of UV-B radiation-damaged Photosystem II in the cyanobacterium Synechocystis PCC 6803. Biochim Biophys Acta 2007; 1767:820 - 8; http://dx.doi.org/10.1016/j.bbabio.2006.11.016; PMID: 17208194
  • Singh AK, Summerfield TC, Li H, Sherman LA. The heat shock response in the cyanobacterium Synechocystis sp. Strain PCC 6803 and regulation of gene expression by HrcA and SigB. Arch Microbiol 2006; 186:273 - 86; http://dx.doi.org/10.1007/s00203-006-0138-0; PMID: 16868740
  • Schulz A, Schumann W. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol 1996; 178:1088 - 93; PMID: 8576042
  • Narberhaus F. Negative regulation of bacterial heat shock genes. Mol Microbiol 1999; 31:1 - 8; http://dx.doi.org/10.1046/j.1365-2958.1999.01166.x; PMID: 9987104
  • Suzuki I, Kanesaki Y, Hayashi H, Hall JJ, Simon WJ, Slabas AR, Murata N. The histidine kinase Hik34 is involved in thermotolerance by regulating the expression of heat shock genes in Synechocystis.. Plant Physiol 2005; 138:1409 - 21; http://dx.doi.org/10.1104/pp.104.059097; PMID: 15965020
  • Asadulghani SY, Suzuki Y, Nakamoto H. Light plays a key role in the modulation of heat shock response in the cyanobacterium Synechocystis sp PCC 6803. Biochem Biophys Res Commun 2003; 306:872 - 9; http://dx.doi.org/10.1016/S0006-291X(03)01085-4; PMID: 12821123
  • Kojima K, Nakamoto H. A novel light- and heat-responsive regulation of the groE transcription in the absence of HrcA or CIRCE in cyanobacteria. FEBS Lett 2007; 581:1871 - 80; http://dx.doi.org/10.1016/j.febslet.2007.03.084; PMID: 17434494
  • Balsiger S, Ragaz C, Baron C, Narberhaus F. Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens.. J Bacteriol 2004; 186:6824 - 9; http://dx.doi.org/10.1128/JB.186.20.6824-6829.2004; PMID: 15466035
  • Klinkert B, Elles I, Nickelsen J. Translation of chloroplast psbD mRNA in Chlamydomonas is controlled by a secondary RNA structure blocking the AUG start codon. Nucleic Acids Res 2006; 34:386 - 94; http://dx.doi.org/10.1093/nar/gkj433; PMID: 16410618
  • Agaisse H, Lereclus D. STAB-SD: a Shine-Dalgarno sequence in the 5′ untranslated region is a determinant of mRNA stability. Mol Microbiol 1996; 20:633 - 43; http://dx.doi.org/10.1046/j.1365-2958.1996.5401046.x; PMID: 8736542
  • Gierga G, Voss B, Hess WR. The Yfr2 ncRNA family, a group of abundant RNA molecules widely conserved in cyanobacteria. RNA Biol 2009; 6:222 - 7; http://dx.doi.org/10.4161/rna.6.3.8921; PMID: 19502815
  • Ehira S, Hamano T, Hayashida T, Kojima K, Nakamoto H, Hiyama T, Ohmori M, Shivaji S, Sato N. Conserved temperature-dependent expression of RNA-binding proteins in cyanobacteria with different temperature optima. FEMS Microbiol Lett 2003; 225:137 - 42; http://dx.doi.org/10.1016/S0378-1097(03)00503-2; PMID: 12900032
  • Ehira S, Ohmori M, Sato N. Role of the 5′-UTR in accumulation of the rbpA1 transcript at low temperature in the cyanobacterium Anabaena variabilis M3. FEMS Microbiol Lett 2005; 251:91 - 8; http://dx.doi.org/10.1016/j.femsle.2005.07.034; PMID: 16112820
  • Krishna PS, Rani BR, Mohan MK, Suzuki I, Shivaji S, Prakash JS. A novel transcriptional regulator, Sll1130, negatively regulates heat-responsive genes in Synechocystis sp. PCC6803. Biochem J 2013; 449:751 - 60; http://dx.doi.org/10.1042/BJ20120928; PMID: 23088579
  • Georg J, Voss B, Scholz I, Mitschke J, Wilde A, Hess WR. Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. Mol Syst Biol 2009; 5:305; http://dx.doi.org/10.1038/msb.2009.63; PMID: 19756044
  • Axmann IM, Kensche P, Vogel J, Kohl S, Herzel H, Hess WR. Identification of cyanobacterial non-coding RNAs by comparative genome analysis. Genome Biol 2005; 6:R73; http://dx.doi.org/10.1186/gb-2005-6-9-r73; PMID: 16168080
  • Ames TD, Breaker RR. Bacterial aptamers that selectively bind glutamine. RNA Biol 2011; 8:82 - 9; http://dx.doi.org/10.4161/rna.8.1.13864; PMID: 21282981
  • Sakurai I, Stazic D, Eisenhut M, Vuorio E, Steglich C, Hess WR, Aro EM. Positive regulation of psbA gene expression by cis-encoded antisense RNAs in Synechocystis sp. PCC 6803. Plant Physiol 2012; 160:1000 - 10; http://dx.doi.org/10.1104/pp.112.202127; PMID: 22858634
  • Agrawal GK, Kato H, Asayama M, Shirai M. An AU-box motif upstream of the SD sequence of light-dependent psbA transcripts confers mRNA instability in darkness in cyanobacteria. Nucleic Acids Res 2001; 29:1835 - 43; http://dx.doi.org/10.1093/nar/29.9.1835; PMID: 11328866
  • Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Voss B, Steglich C, Wilde A, Vogel J, et al. An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 2011; 108:2124 - 9; http://dx.doi.org/10.1073/pnas.1015154108; PMID: 21245330
  • Mank NN, Berghoff BA, Hermanns YN, Klug G. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ. Proc Natl Acad Sci U S A 2012; 109:16306 - 11; http://dx.doi.org/10.1073/pnas.1207067109; PMID: 22988125
  • Berghoff BA, Glaeser J, Sharma CM, Vogel J, Klug G. Photooxidative stress-induced and abundant small RNAs in Rhodobacter sphaeroides.. Mol Microbiol 2009; 74:1497 - 512; http://dx.doi.org/10.1111/j.1365-2958.2009.06949.x; PMID: 19906181
  • Berghoff BA, Glaeser J, Nuss AM, Zobawa M, Lottspeich F, Klug G. Anoxygenic photosynthesis and photooxidative stress: a particular challenge for Roseobacter.. Environ Microbiol 2011; 13:775 - 91; http://dx.doi.org/10.1111/j.1462-2920.2010.02381.x; PMID: 21108722
  • Steglich C, Futschik ME, Lindell D, Voss B, Chisholm SW, Hess WR. The challenge of regulation in a minimal photoautotroph: non-coding RNAs in Prochlorococcus.. PLoS Genet 2008; 4:e1000173; http://dx.doi.org/10.1371/journal.pgen.1000173; PMID: 18769676
  • Kuhl H, Kruip J, Seidler A, Krieger-Liszkay A, Bunker M, Bald D, Scheidig AJ, Rögner M. Towards structural determination of the water-splitting enzyme. Purification, crystallization, and preliminary crystallographic studies of photosystem II from a thermophilic cyanobacterium. J Biol Chem 2000; 275:20652 - 9; http://dx.doi.org/10.1074/jbc.M001321200; PMID: 10748017
  • Sambrook JE, Russel D. Molecular cloning: a laboratory manual, 3ed. New York: Cold Spring Harbor Laboratory Press, 2001.
  • Norrander J, Kempe T, Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 1983; 26:101 - 6; http://dx.doi.org/10.1016/0378-1119(83)90040-9; PMID: 6323249
  • Brantl S, Wagner EG. Antisense RNA-mediated transcriptional attenuation occurs faster than stable antisense/target RNA pairing: an in vitro study of plasmid pIP501. EMBO J 1994; 13:3599 - 607; PMID: 7520390
  • Waldminghaus T, Kortmann J, Gesing S, Narberhaus F. Generation of synthetic RNA-based thermosensors. Biol Chem 2008; 389:1319 - 26; http://dx.doi.org/10.1515/BC.2008.150; PMID: 18713019
  • Willkomm DK, Minnerup J, Hüttenhofer A, Hartmann RK. Experimental RNomics in Aquifex aeolicus: identification of small non-coding RNAs and the putative 6S RNA homolog. Nucleic Acids Res 2005; 33:1949 - 60; http://dx.doi.org/10.1093/nar/gki334; PMID: 15814812
  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947 - 8; http://dx.doi.org/10.1093/bioinformatics/btm404; PMID: 17846036
  • Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 2010; 38:W695 9; http://dx.doi.org/10.1093/nar/gkq313; PMID: 20439314
  • Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31:3406 - 15; http://dx.doi.org/10.1093/nar/gkg595; PMID: 12824337