2,316
Views
35
CrossRef citations to date
0
Altmetric
Review

Computational modeling of RNA 3D structures, with the aid of experimental restraints

, , , , , , , & show all
Pages 522-536 | Received 10 Feb 2014, Accepted 08 Apr 2014, Published online: 23 Apr 2014

References

  • Gesteland RF, Cech TR, Atkins JF. The RNA World. New York: Cold Spring Harbor Press 2005:768
  • Serganov A, Patel DJ. Molecular recognition and function of riboswitches. Curr Opin Struct Biol 2012; 22:279 - 86; http://dx.doi.org/10.1016/j.sbi.2012.04.005; PMID: 22579413
  • Leontis N, Westhof E. RNA 3D structure analysis and prediction. Berlin Heidelberg: Springer-Verlag, 2012.
  • Doudna JA. Structural genomics of RNA. Nat Struct Biol 2000; 7:Suppl 954 - 6; http://dx.doi.org/10.1038/80729; PMID: 11103998
  • Rother K, Rother M, Boniecki M, Puton T, Bujnicki JM. RNA and protein 3D structure modeling: similarities and differences. J Mol Model 2011; 17:2325 - 36; http://dx.doi.org/10.1007/s00894-010-0951-x; PMID: 21258831
  • Anfinsen CB. Principles that govern the folding of protein chains. Science 1973; 181:223 - 30; http://dx.doi.org/10.1126/science.181.4096.223; PMID: 4124164
  • Hardin C, Pogorelov TV, Luthey-Schulten Z. Ab initio protein structure prediction. Curr Opin Struct Biol 2002; 12:176 - 81; http://dx.doi.org/10.1016/S0959-440X(02)00306-8; PMID: 11959494
  • Scheraga HA. Recent developments in the theory of protein folding: searching for the global energy minimum. Biophys Chem 1996; 59:329 - 39; http://dx.doi.org/10.1016/0301-4622(95)00126-3; PMID: 8672720
  • Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr., Onufriev A, Simmerling C, Wang B, Woods RJ. The Amber biomolecular simulation programs. J Comput Chem 2005; 26:1668 - 88; http://dx.doi.org/10.1002/jcc.20290; PMID: 16200636
  • Brooks BR, Brooks CL 3rd, Mackerell AD Jr., Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, et al. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30:1545 - 614; http://dx.doi.org/10.1002/jcc.21287; PMID: 19444816
  • Christen M, Hünenberger PH, Bakowies D, Baron R, Bürgi R, Geerke DP, Heinz TN, Kastenholz MA, Kräutler V, Oostenbrink C, et al. The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem 2005; 26:1719 - 51; http://dx.doi.org/10.1002/jcc.20303; PMID: 16211540
  • Sanbonmatsu KY, Tung CS. High performance computing in biology: multimillion atom simulations of nanoscale systems. J Struct Biol 2007; 157:470 - 80; http://dx.doi.org/10.1016/j.jsb.2006.10.023; PMID: 17187988
  • Stein EG, Rice LM, Brünger AT. Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J Magn Reson 1997; 124:154 - 64; http://dx.doi.org/10.1006/jmre.1996.1027; PMID: 9424305
  • Tozzini V. Multiscale modeling of proteins. Acc Chem Res 2009; 43:220 - 30; PMID: 19785400
  • Malhotra A, Tan RK, Harvey SC. Prediction of the three-dimensional structure of Escherichia coli 30S ribosomal subunit: a molecular mechanics approach. Proc Natl Acad Sci U S A 1990; 87:1950 - 4; http://dx.doi.org/10.1073/pnas.87.5.1950; PMID: 2408047
  • Jonikas MA, Radmer RJ, Laederach A, Das R, Pearlman S, Herschlag D, Altman RB. Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 2009; 15:189 - 99; http://dx.doi.org/10.1261/rna.1270809; PMID: 19144906
  • Cao S, Chen SJ. A new computational approach for mechanical folding kinetics of RNA hairpins. Biophys J 2009; 96:4024 - 34; http://dx.doi.org/10.1016/j.bpj.2009.02.044; PMID: 19450474
  • Ding F, Sharma S, Chalasani P, Demidov VV, Broude NE, Dokholyan NV. Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms. RNA 2008; 14:1164 - 73; http://dx.doi.org/10.1261/rna.894608; PMID: 18456842
  • Rother K, Rother M, Boniecki M, Puton T, Tomala K, Lukasz P, Bujnicki JM. Template-based and template-free modeling of RNA 3D structure: Inspirations from protein structure modeling. In: Leontis NB, Westhof E, eds. RNA 3D structure analysis and prediction. Berlin: Springer-Verlag, 2012.
  • Tanaka S, Scheraga HA. Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules 1976; 9:945 - 50; http://dx.doi.org/10.1021/ma60054a013; PMID: 1004017
  • Sippl MJ. Boltzmann’s principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J Comput Aided Mol Des 1993; 7:473 - 501; http://dx.doi.org/10.1007/BF02337562; PMID: 8229096
  • Chothia C, Lesk AM. The relation between the divergence of sequence and structure in proteins. EMBO J 1986; 5:823 - 6; PMID: 3709526
  • Dror O, Nussinov R, Wolfson H. ARTS: alignment of RNA tertiary structures. Bioinformatics 2005; 21:Suppl 2 ii47 - 53; http://dx.doi.org/10.1093/bioinformatics/bti1108; PMID: 16204124
  • Rother M, Rother K, Puton T, Bujnicki JM. ModeRNA: a tool for comparative modeling of RNA 3D structure. Nucleic Acids Res 2011; 39:4007 - 22; http://dx.doi.org/10.1093/nar/gkq1320; PMID: 21300639
  • Flores SC, Wan Y, Russell R, Altman RB. Predicting RNA structure by multiple template homology modeling. Pac Symp Biocomput 2010; 216 - 27; PMID: 19908374
  • Jossinet F, Westhof E. Sequence to Structure (S2S): display, manipulate and interconnect RNA data from sequence to structure. Bioinformatics 2005; 21:3320 - 1; http://dx.doi.org/10.1093/bioinformatics/bti504; PMID: 15905274
  • Zwieb C, Müller F. Three-dimensional comparative modeling of RNA. Nucleic Acids Symp Ser 1997; 69 - 71; PMID: 9478210
  • Martinez HM, Maizel JV Jr., Shapiro BA. RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. J Biomol Struct Dyn 2008; 25:669 - 83; http://dx.doi.org/10.1080/07391102.2008.10531240; PMID: 18399701
  • Das R, Baker D. Automated de novo prediction of native-like RNA tertiary structures. Proc Natl Acad Sci U S A 2007; 104:14664 - 9; http://dx.doi.org/10.1073/pnas.0703836104; PMID: 17726102
  • Das R, Karanicolas J, Baker D. Atomic accuracy in predicting and designing noncanonical RNA structure. Nat Methods 2010; 7:291 - 4; http://dx.doi.org/10.1038/nmeth.1433; PMID: 20190761
  • Parisien M, Major F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 2008; 452:51 - 5; http://dx.doi.org/10.1038/nature06684; PMID: 18322526
  • Popenda M, Szachniuk M, Antczak M, Purzycka KJ, Lukasiak P, Bartol N, Blazewicz J, Adamiak RW. Automated 3D structure composition for large RNAs. Nucleic Acids Res 2012; 40:e112; http://dx.doi.org/10.1093/nar/gks339; PMID: 22539264
  • Fresco JR, Alberts BM, Doty P. Some molecular details of the secondary structure of ribonucleic acid. Nature 1960; 188:98 - 101; http://dx.doi.org/10.1038/188098a0; PMID: 13701785
  • Devoe H, Tinoco I Jr.. The stability of helical polynucleotides: base contributions. J Mol Biol 1962; 4:500 - 17; http://dx.doi.org/10.1016/S0022-2836(62)80105-3; PMID: 13885894
  • Rivas E, Eddy SR. The language of RNA: a formal grammar that includes pseudoknots. Bioinformatics 2000; 16:334 - 40; http://dx.doi.org/10.1093/bioinformatics/16.4.334; PMID: 10869031
  • Tinoco I Jr., Uhlenbeck OC, Levine MD. Estimation of secondary structure in ribonucleic acids. Nature 1971; 230:362 - 7; http://dx.doi.org/10.1038/230362a0; PMID: 4927725
  • Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 1981; 9:133 - 48; http://dx.doi.org/10.1093/nar/9.1.133; PMID: 6163133
  • Lorenz R, Bernhart SH, Höner Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL. ViennaRNA Package 2.0. Algorithms Mol Biol 2011; 6:26; http://dx.doi.org/10.1186/1748-7188-6-26; PMID: 22115189
  • Mathews DH. RNA secondary structure analysis using RNAstructure. Curr Protoc Bioinformatics 2006; Chapter 12:Unit 12 6.
  • Ding Y, Lawrence CE. A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res 2003; 31:7280 - 301; http://dx.doi.org/10.1093/nar/gkg938; PMID: 14654704
  • Hamada M, Kiryu H, Sato K, Mituyama T, Asai K. Prediction of RNA secondary structure using generalized centroid estimators. Bioinformatics 2009; 25:465 - 73; http://dx.doi.org/10.1093/bioinformatics/btn601; PMID: 19095700
  • Mathews DH, Turner DH. Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J Mol Biol 2002; 317:191 - 203; http://dx.doi.org/10.1006/jmbi.2001.5351; PMID: 11902836
  • Seemann SE, Gorodkin J, Backofen R. Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments. Nucleic Acids Res 2008; 36:6355 - 62; http://dx.doi.org/10.1093/nar/gkn544; PMID: 18836192
  • Knudsen B, Hein J. RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 1999; 15:446 - 54; http://dx.doi.org/10.1093/bioinformatics/15.6.446; PMID: 10383470
  • Hamada M, Sato K, Asai K. Improving the accuracy of predicting secondary structure for aligned RNA sequences. Nucleic Acids Res 2011; 39:393 - 402; http://dx.doi.org/10.1093/nar/gkq792; PMID: 20843778
  • Tabei Y, Kiryu H, Kin T, Asai K. A fast structural multiple alignment method for long RNA sequences. BMC Bioinformatics 2008; 9:33; http://dx.doi.org/10.1186/1471-2105-9-33; PMID: 18215258
  • Sato K, Kato Y, Hamada M, Akutsu T, Asai K. IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 2011; 27:i85 - 93; http://dx.doi.org/10.1093/bioinformatics/btr215; PMID: 21685106
  • Puton T, Kozlowski LP, Rother KM, Bujnicki JM. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction. Nucleic Acids Res 2013; 41:4307 - 23; http://dx.doi.org/10.1093/nar/gkt101; PMID: 23435231
  • Shapiro BA, Yingling YG, Kasprzak W, Bindewald E. Bridging the gap in RNA structure prediction. Curr Opin Struct Biol 2007; 17:157 - 65; http://dx.doi.org/10.1016/j.sbi.2007.03.001; PMID: 17383172
  • Rocca-Serra P, Bellaousov S, Birmingham A, Chen C, Cordero P, Das R, Davis-Neulander L, Duncan CD, Halvorsen M, Knight R, et al. Sharing and archiving nucleic acid structure mapping data. RNA 2011; 17:1204 - 12; http://dx.doi.org/10.1261/rna.2753211; PMID: 21610212
  • Weeks KM. Advances in RNA structure analysis by chemical probing. Curr Opin Struct Biol 2010; 20:295 - 304; http://dx.doi.org/10.1016/j.sbi.2010.04.001; PMID: 20447823
  • Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 2005; 127:4223 - 31; http://dx.doi.org/10.1021/ja043822v; PMID: 15783204
  • Nahvi A, Green R. Structural analysis of RNA backbone using in-line probing. Methods Enzymol 2013; 530:381 - 97; http://dx.doi.org/10.1016/B978-0-12-420037-1.00022-1; PMID: 24034334
  • Washietl S, Hofacker IL, Stadler PF, Kellis M. RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction. Nucleic Acids Res 2012; 40:4261 - 72; http://dx.doi.org/10.1093/nar/gks009; PMID: 22287623
  • Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 2004; 101:7287 - 92; http://dx.doi.org/10.1073/pnas.0401799101; PMID: 15123812
  • Hajdin CE, Bellaousov S, Huggins W, Leonard CW, Mathews DH, Weeks KM. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Proc Natl Acad Sci U S A 2013; 110:5498 - 503; http://dx.doi.org/10.1073/pnas.1219988110; PMID: 23503844
  • Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, Cech TR, Doudna JA. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 1996; 273:1678 - 85; http://dx.doi.org/10.1126/science.273.5282.1678; PMID: 8781224
  • Ding F, Lavender CA, Weeks KM, Dokholyan NV. Three-dimensional RNA structure refinement by hydroxyl radical probing. Nat Methods 2012; 9:603 - 8; http://dx.doi.org/10.1038/nmeth.1976; PMID: 22504587
  • Kladwang W, VanLang CC, Cordero P, Das R. A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nat Chem 2011; 3:954 - 62; http://dx.doi.org/10.1038/nchem.1176; PMID: 22109276
  • Das R, Kudaravalli M, Jonikas M, Laederach A, Fong R, Schwans JP, Baker D, Piccirilli JA, Altman RB, Herschlag D. Structural inference of native and partially folded RNA by high-throughput contact mapping. Proc Natl Acad Sci U S A 2008; 105:4144 - 9; http://dx.doi.org/10.1073/pnas.0709032105; PMID: 18322008
  • Lavender CA, Ding F, Dokholyan NV, Weeks KM. Robust and generic RNA modeling using inferred constraints: a structure for the hepatitis C virus IRES pseudoknot domain. Biochemistry 2010; 49:4931 - 3; http://dx.doi.org/10.1021/bi100142y; PMID: 20545364
  • Yu ET, Hawkins A, Eaton J, Fabris D. MS3D structural elucidation of the HIV-1 packaging signal. Proc Natl Acad Sci U S A 2008; 105:12248 - 53; http://dx.doi.org/10.1073/pnas.0800509105; PMID: 18713870
  • Zhang Q, Yu ET, Kellersberger KA, Crosland E, Fabris D. Toward building a database of bifunctional probes for the MS3D investigation of nucleic acids structures. J Am Soc Mass Spectrom 2006; 17:1570 - 81; http://dx.doi.org/10.1016/j.jasms.2006.06.002; PMID: 16875836
  • Klostermeier D, Millar DP. Time-resolved fluorescence resonance energy transfer: a versatile tool for the analysis of nucleic acids. Biopolymers 2001-2002; 61:159 - 79; http://dx.doi.org/10.1002/bip.10146; PMID: 11987179
  • Kalinin S, Peulen T, Sindbert S, Rothwell PJ, Berger S, Restle T, Goody RS, Gohlke H, Seidel CA. A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nat Methods 2012; 9:1218 - 25; http://dx.doi.org/10.1038/nmeth.2222; PMID: 23142871
  • Preus S, Kilsa K, Miannay FA, Albinsson B, Wilhelmsson LM. FRETmatrix: a general methodology for the simulation and analysis of FRET in nucleic acids. Nucleic Acids Res 2013; 41:e18; PMID: 22977181
  • Qin PZ, Dieckmann T. Application of NMR and EPR methods to the study of RNA. Curr Opin Struct Biol 2004; 14:350 - 9; http://dx.doi.org/10.1016/j.sbi.2004.04.002; PMID: 15193316
  • Schiemann O, Weber A, Edwards TE, Prisner TF, Sigurdsson ST. Nanometer distance measurements on RNA using PELDOR. J Am Chem Soc 2003; 125:3434 - 5; http://dx.doi.org/10.1021/ja0274610; PMID: 12643697
  • Cai Q, Kusnetzow AK, Hideg K, Price EA, Haworth IS, Qin PZ. Nanometer distance measurements in RNA using site-directed spin labeling. Biophys J 2007; 93:2110 - 7; http://dx.doi.org/10.1529/biophysj.107.109439; PMID: 17526583
  • Svergun DI. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 1999; 76:2879 - 86; http://dx.doi.org/10.1016/S0006-3495(99)77443-6; PMID: 10354416
  • Grigg JC, Chen Y, Grundy FJ, Henkin TM, Pollack L, Ke A. T box RNA decodes both the information content and geometry of tRNA to affect gene expression. Proc Natl Acad Sci U S A 2013; 110:7240 - 5; http://dx.doi.org/10.1073/pnas.1222214110; PMID: 23589841
  • Jacques DA, Guss JM, Svergun DI, Trewhella J. Publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution. Acta Crystallogr D Biol Crystallogr 2012; 68:620 - 6; http://dx.doi.org/10.1107/S0907444912012073; PMID: 22683784
  • Gopal A, Zhou ZH, Knobler CM, Gelbart WM. Visualizing large RNA molecules in solution. RNA 2012; 18:284 - 99; http://dx.doi.org/10.1261/rna.027557.111; PMID: 22190747
  • Ramrath DJ, Yamamoto H, Rother K, Wittek D, Pech M, Mielke T, Loerke J, Scheerer P, Ivanov P, Teraoka Y, et al. The complex of tmRNA-SmpB and EF-G on translocating ribosomes. Nature 2012; 485:526 - 9; PMID: 22622583
  • Levitt M. Detailed molecular model for transfer ribonucleic acid. Nature 1969; 224:759 - 63; http://dx.doi.org/10.1038/224759a0; PMID: 5361649
  • Expert-Bezançon A, Wollenzien PL. Three-dimensional arrangement of the Escherichia coli 16 S ribosomal RNA. J Mol Biol 1985; 184:53 - 66; http://dx.doi.org/10.1016/0022-2836(85)90043-9; PMID: 2411936
  • Westhof E, Romby P, Romaniuk PJ, Ebel JP, Ehresmann C, Ehresmann B. Computer modeling from solution data of spinach chloroplast and of Xenopus laevis somatic and oocyte 5 S rRNAs. J Mol Biol 1989; 207:417 - 31; http://dx.doi.org/10.1016/0022-2836(89)90264-7; PMID: 2754730
  • Brunel C, Romby P, Westhof E, Ehresmann C, Ehresmann B. Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling. J Mol Biol 1991; 221:293 - 308; http://dx.doi.org/10.1016/0022-2836(91)80220-O; PMID: 1717695
  • Mueller F, Sommer I, Baranov P, Matadeen R, Stoldt M, Wöhnert J, Görlach M, van Heel M, Brimacombe R. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution. J Mol Biol 2000; 298:35 - 59; http://dx.doi.org/10.1006/jmbi.2000.3635; PMID: 10756104
  • Leontis NB, Westhof E. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. RNA 1998; 4:1134 - 53; http://dx.doi.org/10.1017/S1355838298980566; PMID: 9740131
  • Malhotra A, Tan RK, Harvey SC. Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques. Biophys J 1994; 66:1777 - 95; http://dx.doi.org/10.1016/S0006-3495(94)80972-5; PMID: 7521223
  • Stephenson JD, Li H, Kenyon JC, Symmons M, Klenerman D, Lever AM. Three-dimensional RNA structure of the major HIV-1 packaging signal region. Structure 2013; 21:951 - 62; http://dx.doi.org/10.1016/j.str.2013.04.008; PMID: 23685210
  • Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr., Swanstrom R, Burch CL, Weeks KM. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 2009; 460:711 - 6; http://dx.doi.org/10.1038/nature08237; PMID: 19661910
  • Brunger AT. Version 1.2 of the Crystallography and NMR system. Nat Protoc 2007; 2:2728 - 33; http://dx.doi.org/10.1038/nprot.2007.406; PMID: 18007608
  • Dzananovic E, Patel TR, Chojnowski G, Boniecki MJ, Deo S, McEleney K, Harding SE, Bujnicki JM, McKenna SA. Solution conformation of adenovirus virus associated RNA-I and its interaction with PKR. J Struct Biol 2014; 185:48 - 57; http://dx.doi.org/10.1016/j.jsb.2013.11.007; PMID: 24291322
  • Volkov VV, Svergun DI. Uniqueness of ab-initio shape determination in small-angle scattering. J Appl Cryst 2003; 36:860 - 4; http://dx.doi.org/10.1107/S0021889803000268
  • Cowtan K, Emsley P, Wilson KS. From crystal to structure with CCP4. Acta Crystallogr D Biol Crystallogr 2011; 67:233 - 4; http://dx.doi.org/10.1107/S0907444911007578; PMID: 21460440
  • Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 2012; 68:352 - 67; http://dx.doi.org/10.1107/S0907444912001308; PMID: 22505256
  • Svergun D, Barberato C, Koch MHJ. CRYSOL – a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Cryst 1995; 28:768 - 73; http://dx.doi.org/10.1107/S0021889895007047
  • Cruz JA, Blanchet MF, Boniecki M, Bujnicki JM, Chen SJ, Cao S, Das R, Ding F, Dokholyan NV, Flores SC, et al. RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. RNA 2012; 18:610 - 25; http://dx.doi.org/10.1261/rna.031054.111; PMID: 22361291
  • Laing C, Schlick T. Computational approaches to 3D modeling of RNA. J Phys Condens Matter 2010; 22:283101; http://dx.doi.org/10.1088/0953-8984/22/28/283101; PMID: 21399271
  • Sripakdeevong P, Beauchamp K, Das R. Why can't we predict RNA structure at atomic resolution? In: Leontis N, Westhof E, eds. RNA 3D Structure Analysis and Prediction, 2012.
  • Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 2010; 11:129; http://dx.doi.org/10.1186/1471-2105-11-129; PMID: 20230624
  • Swenson MS, Anderson J, Ash A, Gaurav P, Sükösd Z, Bader DA, Harvey SC, Heitsch CE. GTfold: enabling parallel RNA secondary structure prediction on multi-core desktops. BMC Res Notes 2012; 5:341; http://dx.doi.org/10.1186/1756-0500-5-341; PMID: 22747589
  • Zarringhalam K, Meyer MM, Dotu I, Chuang JH, Clote P. Integrating chemical footprinting data into RNA secondary structure prediction. PLoS One 2012; 7:e45160; http://dx.doi.org/10.1371/journal.pone.0045160; PMID: 23091593
  • Gajda MJ, Tuszynska I, Kaczor M, Bakulina AY, Bujnicki JM. FILTREST3D: discrimination of structural models using restraints from experimental data. Bioinformatics 2010; 26:2986 - 7; http://dx.doi.org/10.1093/bioinformatics/btq582; PMID: 20956242
  • Yang S, Parisien M, Major F, Roux B. RNA structure determination using SAXS data. J Phys Chem B 2010; 114:10039 - 48; http://dx.doi.org/10.1021/jp1057308; PMID: 20684627
  • Schneidman-Duhovny D, Hammel M, Sali A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res 2010; 38:W540 - 4; http://dx.doi.org/10.1093/nar/gkq461; PMID: 20507903
  • Chojnowski G, Walen T, Bujnicki JM. RNA Bricks--a database of RNA 3D motifs and their interactions. Nucleic Acids Res 2014; 42:D123 - 31; http://dx.doi.org/10.1093/nar/gkt1084; PMID: 24220091
  • Xin Y, Laing C, Leontis NB, Schlick T. Annotation of tertiary interactions in RNA structures reveals variations and correlations. RNA 2008; 14:2465 - 77; http://dx.doi.org/10.1261/rna.1249208; PMID: 18957492