1,433
Views
35
CrossRef citations to date
0
Altmetric
Review

RNA binding by Hfq and ring-forming (L)Sm proteins

A trade-off between optimal sequence readout and RNA backbone conformation

Pages 537-549 | Received 12 Mar 2014, Accepted 07 May 2014, Published online: 12 May 2014

References

  • Notman DD, Kurata N, Tan EM. Profiles of antinuclear antibodies in systemic rheumatic diseases. Ann Intern Med 1975; 83:464 - 9; http://dx.doi.org/10.7326/0003-4819-83-4-464; PMID: 1080976
  • Lerner MR, Steitz JA. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A 1979; 76:5495 - 9; http://dx.doi.org/10.1073/pnas.76.11.5495; PMID: 316537
  • Lührmann R, Kastner B, Bach M. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochim Biophys Acta 1990; 1087:265 - 92; http://dx.doi.org/10.1016/0167-4781(90)90001-I; PMID: 2147394
  • Liautard JP, Sri-Widada J, Brunel C, Jeanteur P. Structural organization of ribonucleoproteins containing small nuclear RNAs from HeLa cells. Proteins interact closely with a similar structural domain of U1, U2, U4 and U5 small nuclear RNAs. J Mol Biol 1982; 162:623 - 43; http://dx.doi.org/10.1016/0022-2836(82)90392-8; PMID: 6187926
  • Kambach C, Walke S, Young R, Avis JM, de la Fortelle E, Raker VA, Lührmann R, Li J, Nagai K. Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 1999; 96:375 - 87; http://dx.doi.org/10.1016/S0092-8674(00)80550-4; PMID: 10025403
  • Albrecht M, Lengauer T. Novel Sm-like proteins with long C-terminal tails and associated methyltransferases. FEBS Lett 2004; 569:18 - 26; http://dx.doi.org/10.1016/j.febslet.2004.03.126; PMID: 15225602
  • Anantharaman V, Aravind L. Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability. BMC Genomics 2004; 5:45; http://dx.doi.org/10.1186/1471-2164-5-45; PMID: 15257761
  • Wilusz CJ, Wilusz J. Eukaryotic Lsm proteins: lessons from bacteria. Nat Struct Mol Biol 2005; 12:1031 - 6; http://dx.doi.org/10.1038/nsmb1037; PMID: 16327775
  • Törö I, Thore S, Mayer C, Basquin J, Séraphin B, Suck D. RNA binding in an Sm core domain: X-ray structure and functional analysis of an archaeal Sm protein complex. EMBO J 2001; 20:2293 - 303; http://dx.doi.org/10.1093/emboj/20.9.2293; PMID: 11331594
  • Tritschler F, Eulalio A, Truffault V, Hartmann MD, Helms S, Schmidt S, Coles M, Izaurralde E, Weichenrieder O. A divergent Sm fold in EDC3 proteins mediates DCP1 binding and P-body targeting. Mol Cell Biol 2007; 27:8600 - 11; http://dx.doi.org/10.1128/MCB.01506-07; PMID: 17923697
  • Franze de Fernandez MT, Eoyang L, August JT. Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature 1968; 219:588 - 90; http://dx.doi.org/10.1038/219588a0; PMID: 4874917
  • Bandyra KJ, Luisi BF. Licensing and due process in the turnover of bacterial RNA. RNA Biol 2013; 10:627 - 35; http://dx.doi.org/10.4161/rna.24393; PMID: 23580162
  • De Lay N, Schu DJ, Gottesman S. Bacterial small RNA-based negative regulation: Hfq and its accomplices. J Biol Chem 2013; 288:7996 - 8003; http://dx.doi.org/10.1074/jbc.R112.441386; PMID: 23362267
  • Gottesman S, Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 2011; 3:3; http://dx.doi.org/10.1101/cshperspect.a003798; PMID: 20980440
  • Mura C, Randolph PS, Patterson J, Cozen AE. Archaeal and eukaryotic homologs of Hfq: A structural and evolutionary perspective on Sm function. RNA Biol 2013; 10:636 - 51; http://dx.doi.org/10.4161/rna.24538; PMID: 23579284
  • Régnier P, Hajnsdorf E. The interplay of Hfq, poly(A) polymerase I and exoribonucleases at the 3′ ends of RNAs resulting from Rho-independent termination: A tentative model. RNA Biol 2013; 10:602 - 9; http://dx.doi.org/10.4161/rna.23664; PMID: 23392248
  • Sauer E. Special focus Hfq. RNA Biol 2013; 10:590 - 1; http://dx.doi.org/10.4161/rna.24617; PMID: 23774896
  • Sauer E. Structure and RNA-binding properties of the bacterial LSm protein Hfq. RNA Biol 2013; 10:610 - 8; http://dx.doi.org/10.4161/rna.24201; PMID: 23535768
  • Vogel J, Luisi BF. Hfq and its constellation of RNA. Nat Rev Microbiol 2011; 9:578 - 89; http://dx.doi.org/10.1038/nrmicro2615; PMID: 21760622
  • Wagner EG. Cycling of RNAs on Hfq. RNA Biol 2013; 10:619 - 26; http://dx.doi.org/10.4161/rna.24044; PMID: 23466677
  • Wilusz CJ, Wilusz J. Lsm proteins and Hfq: Life at the 3′ end. RNA Biol 2013; 10:592 - 601; http://dx.doi.org/10.4161/rna.23695; PMID: 23392247
  • Møller T, Franch T, Højrup P, Keene DR, Bächinger HP, Brennan RG, Valentin-Hansen P. Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell 2002; 9:23 - 30; http://dx.doi.org/10.1016/S1097-2765(01)00436-1; PMID: 11804583
  • Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G. The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 2002; 9:11 - 22; http://dx.doi.org/10.1016/S1097-2765(01)00437-3; PMID: 11804582
  • Hermann H, Fabrizio P, Raker VA, Foulaki K, Hornig H, Brahms H, Lührmann R. snRNP Sm proteins share two evolutionarily conserved sequence motifs which are involved in Sm protein-protein interactions. EMBO J 1995; 14:2076 - 88; PMID: 7744013
  • Sauter C, Basquin J, Suck D. Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli. Nucleic Acids Res 2003; 31:4091 - 8; http://dx.doi.org/10.1093/nar/gkg480; PMID: 12853626
  • Schumacher MA, Pearson RF, Møller T, Valentin-Hansen P, Brennan RG. Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J 2002; 21:3546 - 56; http://dx.doi.org/10.1093/emboj/cdf322; PMID: 12093755
  • Murina VN, Nikulin AD. RNA-binding Sm-like proteins of bacteria and archaea. similarity and difference in structure and function. Biochemistry (Mosc) 2011; 76:1434 - 49; http://dx.doi.org/10.1134/S0006297911130050; PMID: 22339597
  • Murina V, Lekontseva N, Nikulin A. Hfq binds ribonucleotides in three different RNA-binding sites. Acta Crystallogr D Biol Crystallogr 2013; 69:1504 - 13; http://dx.doi.org/10.1107/S090744491301010X; PMID: 23897473
  • Sauer E, Weichenrieder O. Structural basis for RNA 3′-end recognition by Hfq. Proc Natl Acad Sci U S A 2011; 108:13065 - 70; http://dx.doi.org/10.1073/pnas.1103420108; PMID: 21737752
  • Wang W, Wang L, Zou Y, Zhang J, Gong Q, Wu J, Shi Y. Cooperation of Escherichia coli Hfq hexamers in DsrA binding. Genes Dev 2011; 25:2106 - 17; http://dx.doi.org/10.1101/gad.16746011; PMID: 21979921
  • Otaka H, Ishikawa H, Morita T, Aiba H. PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. Proc Natl Acad Sci U S A 2011; 108:13059 - 64; http://dx.doi.org/10.1073/pnas.1107050108; PMID: 21788484
  • Wilson KS, von Hippel PH. Transcription termination at intrinsic terminators: the role of the RNA hairpin. Proc Natl Acad Sci U S A 1995; 92:8793 - 7; http://dx.doi.org/10.1073/pnas.92.19.8793; PMID: 7568019
  • de Haseth PL, Uhlenbeck OC. Interaction of Escherichia coli host factor protein with oligoriboadenylates. Biochemistry 1980; 19:6138 - 46; http://dx.doi.org/10.1021/bi00567a029; PMID: 6162476
  • Folichon M, Arluison V, Pellegrini O, Huntzinger E, Régnier P, Hajnsdorf E. The poly(A) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation. Nucleic Acids Res 2003; 31:7302 - 10; http://dx.doi.org/10.1093/nar/gkg915; PMID: 14654705
  • Le Derout J, Folichon M, Briani F, Dehò G, Régnier P, Hajnsdorf E. Hfq affects the length and the frequency of short oligo(A) tails at the 3′ end of Escherichia coli rpsO mRNAs. Nucleic Acids Res 2003; 31:4017 - 23; http://dx.doi.org/10.1093/nar/gkg456; PMID: 12853618
  • Mikulecky PJ, Kaw MK, Brescia CC, Takach JC, Sledjeski DD, Feig AL. Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat Struct Mol Biol 2004; 11:1206 - 14; http://dx.doi.org/10.1038/nsmb858; PMID: 15531892
  • Horstmann N, Orans J, Valentin-Hansen P, Shelburne SA 3rd, Brennan RG. Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract. Nucleic Acids Res 2012; 40:11023 - 35; http://dx.doi.org/10.1093/nar/gks809; PMID: 22965117
  • Link TM, Valentin-Hansen P, Brennan RG. Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc Natl Acad Sci U S A 2009; 106:19292 - 7; http://dx.doi.org/10.1073/pnas.0908744106; PMID: 19889981
  • Someya T, Baba S, Fujimoto M, Kawai G, Kumasaka T, Nakamura K. Crystal structure of Hfq from Bacillus subtilis in complex with SELEX-derived RNA aptamer: insight into RNA-binding properties of bacterial Hfq. Nucleic Acids Res 2012; 40:1856 - 67; http://dx.doi.org/10.1093/nar/gkr892; PMID: 22053080
  • Hämmerle H, Beich-Frandsen M, Večerek B, Rajkowitsch L, Carugo O, Djinović-Carugo K, Bläsi U. Structural and biochemical studies on ATP binding and hydrolysis by the Escherichia coli RNA chaperone Hfq. PLoS One 2012; 7:e50892; http://dx.doi.org/10.1371/journal.pone.0050892; PMID: 23226421
  • Robinson KE, Orans J, Kovach AR, Link TM, Brennan RG. Mapping Hfq-RNA interaction surfaces using tryptophan fluorescence quenching. Nucleic Acids Res 2014; 42:2736 - 49; PMID: 24288369
  • Sauer E, Schmidt S, Weichenrieder O. Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition. Proc Natl Acad Sci U S A 2012; 109:9396 - 401; http://dx.doi.org/10.1073/pnas.1202521109; PMID: 22645344
  • Balbontín R, Fiorini F, Figueroa-Bossi N, Casadesús J, Bossi L. Recognition of heptameric seed sequence underlies multi-target regulation by RybB small RNA in Salmonella enterica. Mol Microbiol 2010; 78:380 - 94; http://dx.doi.org/10.1111/j.1365-2958.2010.07342.x; PMID: 20979336
  • Papenfort K, Bouvier M, Mika F, Sharma CM, Vogel J. Evidence for an autonomous 5′ target recognition domain in an Hfq-associated small RNA. Proc Natl Acad Sci U S A 2010; 107:20435 - 40; http://dx.doi.org/10.1073/pnas.1009784107; PMID: 21059903
  • Ishikawa H, Otaka H, Maki K, Morita T, Aiba H. The functional Hfq-binding module of bacterial sRNAs consists of a double or single hairpin preceded by a U-rich sequence and followed by a 3′ poly(U) tail. RNA 2012; 18:1062 - 74; http://dx.doi.org/10.1261/rna.031575.111; PMID: 22454537
  • Olejniczak M. Despite similar binding to the Hfq protein regulatory RNAs widely differ in their competition performance. Biochemistry 2011; 50:4427 - 40; http://dx.doi.org/10.1021/bi102043f; PMID: 21510661
  • Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, Hinton JC, Vogel J. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 2008; 4:e1000163; http://dx.doi.org/10.1371/journal.pgen.1000163; PMID: 18725932
  • Sittka A, Sharma CM, Rolle K, Vogel J. Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes. RNA Biol 2009; 6:266 - 75; http://dx.doi.org/10.4161/rna.6.3.8332; PMID: 19333007
  • Zhang A, Wassarman KM, Rosenow C, Tjaden BC, Storz G, Gottesman S. Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 2003; 50:1111 - 24; http://dx.doi.org/10.1046/j.1365-2958.2003.03734.x; PMID: 14622403
  • Andrade JM, Pobre V, Matos AM, Arraiano CM. The crucial role of PNPase in the degradation of small RNAs that are not associated with Hfq. RNA 2012; 18:844 - 55; http://dx.doi.org/10.1261/rna.029413.111; PMID: 22355164
  • Moll I, Afonyushkin T, Vytvytska O, Kaberdin VR, Bläsi U. Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 2003; 9:1308 - 14; http://dx.doi.org/10.1261/rna.5850703; PMID: 14561880
  • Urban JH, Vogel J. Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res 2007; 35:1018 - 37; http://dx.doi.org/10.1093/nar/gkl1040; PMID: 17264113
  • Thore S, Mayer C, Sauter C, Weeks S, Suck D. Crystal structures of the Pyrococcus abyssi Sm core and its complex with RNA. Common features of RNA binding in archaea and eukarya. J Biol Chem 2003; 278:1239 - 47; http://dx.doi.org/10.1074/jbc.M207685200; PMID: 12409299
  • Panja S, Schu DJ, Woodson SA. Conserved arginines on the rim of Hfq catalyze base pair formation and exchange. Nucleic Acids Res 2013; 41:7536 - 46; http://dx.doi.org/10.1093/nar/gkt521; PMID: 23771143
  • de Haseth PL, Uhlenbeck OC. Interaction of Escherichia coli host factor protein with Q β ribonucleic acid. Biochemistry 1980; 19:6146 - 51; http://dx.doi.org/10.1021/bi00567a030; PMID: 6162477
  • Folichon M, Allemand F, Régnier P, Hajnsdorf E. Stimulation of poly(A) synthesis by Escherichia coli poly(A)polymerase I is correlated with Hfq binding to poly(A) tails. FEBS J 2005; 272:454 - 63; http://dx.doi.org/10.1111/j.1742-4658.2004.04485.x; PMID: 15654883
  • Mohanty BK, Maples VF, Kushner SR. The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol Microbiol 2004; 54:905 - 20; http://dx.doi.org/10.1111/j.1365-2958.2004.04337.x; PMID: 15522076
  • De Lay N, Gottesman S. Role of polynucleotide phosphorylase in sRNA function in Escherichia coli. RNA 2011; 17:1172 - 89; http://dx.doi.org/10.1261/rna.2531211; PMID: 21527671
  • Ikeda Y, Yagi M, Morita T, Aiba H. Hfq binding at RhlB-recognition region of RNase E is crucial for the rapid degradation of target mRNAs mediated by sRNAs in Escherichia coli. Mol Microbiol 2011; 79:419 - 32; http://dx.doi.org/10.1111/j.1365-2958.2010.07454.x; PMID: 21219461
  • Morita T, Maki K, Aiba H. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 2005; 19:2176 - 86; http://dx.doi.org/10.1101/gad.1330405; PMID: 16166379
  • Prévost K, Desnoyers G, Jacques JF, Lavoie F, Massé E. Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage. Genes Dev 2011; 25:385 - 96; http://dx.doi.org/10.1101/gad.2001711; PMID: 21289064
  • Fender A, Elf J, Hampel K, Zimmermann B, Wagner EG. RNAs actively cycle on the Sm-like protein Hfq. Genes Dev 2010; 24:2621 - 6; http://dx.doi.org/10.1101/gad.591310; PMID: 21123649
  • Hussein R, Lim HN. Disruption of small RNA signaling caused by competition for Hfq. Proc Natl Acad Sci U S A 2011; 108:1110 - 5; http://dx.doi.org/10.1073/pnas.1010082108; PMID: 21189298
  • Moon K, Gottesman S. Competition among Hfq-binding small RNAs in Escherichia coli. Mol Microbiol 2011; 82:1545 - 62; http://dx.doi.org/10.1111/j.1365-2958.2011.07907.x; PMID: 22040174
  • Geissmann TA, Touati D. Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J 2004; 23:396 - 405; http://dx.doi.org/10.1038/sj.emboj.7600058; PMID: 14739933
  • Moll I, Leitsch D, Steinhauser T, Bläsi U. RNA chaperone activity of the Sm-like Hfq protein. EMBO Rep 2003; 4:284 - 9; http://dx.doi.org/10.1038/sj.embor.embor772; PMID: 12634847
  • Rajkowitsch L, Chen D, Stampfl S, Semrad K, Waldsich C, Mayer O, Jantsch MF, Konrat R, Bläsi U, Schroeder R. RNA chaperones, RNA annealers and RNA helicases. RNA Biol 2007; 4:118 - 30; http://dx.doi.org/10.4161/rna.4.3.5445; PMID: 18347437
  • Rajkowitsch L, Schroeder R. Dissecting RNA chaperone activity. RNA 2007; 13:2053 - 60; http://dx.doi.org/10.1261/rna.671807; PMID: 17901153
  • Peng Y, Soper TJ, Woodson SA. Positional effects of AAN motifs in rpoS regulation by sRNAs and Hfq. J Mol Biol 2014; 426:275 - 85; http://dx.doi.org/10.1016/j.jmb.2013.08.026; PMID: 24051417
  • Bandyra KJ, Said N, Pfeiffer V, Górna MW, Vogel J, Luisi BF. The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Mol Cell 2012; 47:943 - 53; http://dx.doi.org/10.1016/j.molcel.2012.07.015; PMID: 22902561
  • Lorenz C, Gesell T, Zimmermann B, Schoeberl U, Bilusic I, Rajkowitsch L, Waldsich C, von Haeseler A, Schroeder R. Genomic SELEX for Hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts. Nucleic Acids Res 2010; 38:3794 - 808; http://dx.doi.org/10.1093/nar/gkq032; PMID: 20348540
  • Zhang A, Schu DJ, Tjaden BC, Storz G, Gottesman S. Mutations in interaction surfaces differentially impact E. coli Hfq association with small RNAs and their mRNA targets. J Mol Biol 2013; 425:3678 - 97; http://dx.doi.org/10.1016/j.jmb.2013.01.006; PMID: 23318956
  • Henderson CA, Vincent HA, Casamento A, Stone CM, Phillips JO, Cary PD, Sobott F, Gowers DM, Taylor JE, Callaghan AJ. Hfq binding changes the structure of Escherichia coli small noncoding RNAs OxyS and RprA, which are involved in the riboregulation of rpoS. RNA 2013; 19:1089 - 104; http://dx.doi.org/10.1261/rna.034595.112; PMID: 23804244
  • Vincent HA, Henderson CA, Stone CM, Cary PD, Gowers DM, Sobott F, Taylor JE, Callaghan AJ. The low-resolution solution structure of Vibrio cholerae Hfq in complex with Qrr1 sRNA. Nucleic Acids Res 2012; 40:8698 - 710; http://dx.doi.org/10.1093/nar/gks582; PMID: 22730296
  • Beich-Frandsen M, Večerek B, Konarev PV, Sjöblom B, Kloiber K, Hämmerle H, Rajkowitsch L, Miles AJ, Kontaxis G, Wallace BA, et al. Structural insights into the dynamics and function of the C-terminus of the E. coli RNA chaperone Hfq. Nucleic Acids Res 2011; 39:4900 - 15; http://dx.doi.org/10.1093/nar/gkq1346; PMID: 21330354
  • Olsen AS, Møller-Jensen J, Brennan RG, Valentin-Hansen P. C-terminally truncated derivatives of Escherichia coli Hfq are proficient in riboregulation. J Mol Biol 2010; 404:173 - 82; http://dx.doi.org/10.1016/j.jmb.2010.09.038; PMID: 20888338
  • Jousselin A, Metzinger L, Felden B. On the facultative requirement of the bacterial RNA chaperone, Hfq. Trends Microbiol 2009; 17:399 - 405; http://dx.doi.org/10.1016/j.tim.2009.06.003; PMID: 19733080
  • Tomasini A, François P, Howden BP, Fechter P, Romby P, Caldelari I. The importance of regulatory RNAs in Staphylococcus aureus. Infect Genet Evol 2014; 21:616 - 26; http://dx.doi.org/10.1016/j.meegid.2013.11.016; PMID: 24291227
  • Bøggild A, Overgaard M, Valentin-Hansen P, Brodersen DE. Cyanobacteria contain a structural homologue of the Hfq protein with altered RNA-binding properties. FEBS J 2009; 276:3904 - 15; http://dx.doi.org/10.1111/j.1742-4658.2009.07104.x; PMID: 19777643
  • Chao Y, Vogel J. The role of Hfq in bacterial pathogens. Curr Opin Microbiol 2010; 13:24 - 33; http://dx.doi.org/10.1016/j.mib.2010.01.001; PMID: 20080057
  • Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermüller J, Reinhardt R, et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 2010; 464:250 - 5; http://dx.doi.org/10.1038/nature08756; PMID: 20164839
  • Tsui HC, Leung HC, Winkler ME. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Mol Microbiol 1994; 13:35 - 49; http://dx.doi.org/10.1111/j.1365-2958.1994.tb00400.x; PMID: 7984093
  • Göpel Y, Papenfort K, Reichenbach B, Vogel J, Görke B. Targeted decay of a regulatory small RNA by an adaptor protein for RNase E and counteraction by an anti-adaptor RNA. Genes Dev 2013; 27:552 - 64; http://dx.doi.org/10.1101/gad.210112.112; PMID: 23475961
  • Sharif H, Conti E. Architecture of the Lsm1-7-Pat1 complex: a conserved assembly in eukaryotic mRNA turnover. Cell Rep 2013; 5:283 - 91; http://dx.doi.org/10.1016/j.celrep.2013.10.004; PMID: 24139796
  • Zhou L, Zhou Y, Hang J, Wan R, Lu G, Yan C, Shi Y. Crystal structure and biochemical analysis of the heptameric Lsm1-7 complex. Cell Res 2014; 24:497 - 500; http://dx.doi.org/10.1038/cr.2014.18; PMID: 24513854
  • Zhou L, Hang J, Zhou Y, Wan R, Lu G, Yin P, Yan C, Shi Y. Crystal structures of the Lsm complex bound to the 3′ end sequence of U6 small nuclear RNA. Nature 2014; 506:116 - 20; http://dx.doi.org/10.1038/nature12803; PMID: 24240276
  • Leung AK, Nagai K, Li J. Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature 2011; 473:536 - 9; http://dx.doi.org/10.1038/nature09956; PMID: 21516107
  • Pomeranz Krummel DA, Oubridge C, Leung AK, Li J, Nagai K. Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution. Nature 2009; 458:475 - 80; http://dx.doi.org/10.1038/nature07851; PMID: 19325628
  • Weber G, Trowitzsch S, Kastner B, Lührmann R, Wahl MC. Functional organization of the Sm core in the crystal structure of human U1 snRNP. EMBO J 2010; 29:4172 - 84; http://dx.doi.org/10.1038/emboj.2010.295; PMID: 21113136
  • Meister G, Eggert C, Fischer U. SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol 2002; 12:472 - 8; http://dx.doi.org/10.1016/S0962-8924(02)02371-1; PMID: 12441251
  • Pellizzoni L, Yong J, Dreyfuss G. Essential role for the SMN complex in the specificity of snRNP assembly. Science 2002; 298:1775 - 9; http://dx.doi.org/10.1126/science.1074962; PMID: 12459587
  • Zaric B, Chami M, Rémigy H, Engel A, Ballmer-Hofer K, Winkler FK, Kambach C. Reconstitution of two recombinant LSm protein complexes reveals aspects of their architecture, assembly, and function. J Biol Chem 2005; 280:16066 - 75; http://dx.doi.org/10.1074/jbc.M414481200; PMID: 15711010
  • Licht K, Medenbach J, Lührmann R, Kambach C, Bindereif A. 3′-cyclic phosphorylation of U6 snRNA leads to recruitment of recycling factor p110 through LSm proteins. RNA 2008; 14:1532 - 8; http://dx.doi.org/10.1261/rna.1129608; PMID: 18567812
  • Tharun S, He W, Mayes AE, Lennertz P, Beggs JD, Parker R. Yeast Sm-like proteins function in mRNA decapping and decay. Nature 2000; 404:515 - 8; http://dx.doi.org/10.1038/35006676; PMID: 10761922
  • Tharun S, Parker R. Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol Cell 2001; 8:1075 - 83; http://dx.doi.org/10.1016/S1097-2765(01)00395-1; PMID: 11741542
  • Braun JE, Tritschler F, Haas G, Igreja C, Truffault V, Weichenrieder O, Izaurralde E. The C-terminal α-α superhelix of Pat is required for mRNA decapping in metazoa. EMBO J 2010; 29:2368 - 80; http://dx.doi.org/10.1038/emboj.2010.124; PMID: 20543818
  • He W, Parker R. The yeast cytoplasmic LsmI/Pat1p complex protects mRNA 3′ termini from partial degradation. Genetics 2001; 158:1445 - 55; PMID: 11514438
  • Song MG, Kiledjian M. 3′ Terminal oligo U-tract-mediated stimulation of decapping. RNA 2007; 13:2356 - 65; http://dx.doi.org/10.1261/rna.765807; PMID: 17942740
  • Wilusz CJ, Wilusz J. New ways to meet your (3′) end oligouridylation as a step on the path to destruction. Genes Dev 2008; 22:1 - 7; http://dx.doi.org/10.1101/gad.1634508; PMID: 18172159
  • Mullen TE, Marzluff WF. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev 2008; 22:50 - 65; http://dx.doi.org/10.1101/gad.1622708; PMID: 18172165
  • Rissland OS, Norbury CJ. Decapping is preceded by 3′ uridylation in a novel pathway of bulk mRNA turnover. Nat Struct Mol Biol 2009; 16:616 - 23; http://dx.doi.org/10.1038/nsmb.1601; PMID: 19430462
  • Sement FM, Ferrier E, Zuber H, Merret R, Alioua M, Deragon JM, Bousquet-Antonelli C, Lange H, Gagliardi D. Uridylation prevents 3′ trimming of oligoadenylated mRNAs. Nucleic Acids Res 2013; 41:7115 - 27; http://dx.doi.org/10.1093/nar/gkt465; PMID: 23748567
  • Jonas S, Izaurralde E. The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes Dev 2013; 27:2628 - 41; http://dx.doi.org/10.1101/gad.227843.113; PMID: 24352420
  • Tharun S. Lsm1-7-Pat1 complex: a link between 3′ and 5′-ends in mRNA decay?. RNA Biol 2009; 6:228 - 32; http://dx.doi.org/10.4161/rna.6.3.8282; PMID: 19279404
  • Wahle E, Winkler GS. RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim Biophys Acta 2013; 1829:561 - 70; http://dx.doi.org/10.1016/j.bbagrm.2013.01.003; PMID: 23337855
  • Chowdhury A, Mukhopadhyay J, Tharun S. The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA 2007; 13:998 - 1016; http://dx.doi.org/10.1261/rna.502507; PMID: 17513695
  • Chang H, Lim J, Ha M, Kim VN. TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol Cell 2014; 53:1044 - 52; http://dx.doi.org/10.1016/j.molcel.2014.02.007; PMID: 24582499
  • Tian B, Graber JH. Signals for pre-mRNA cleavage and polyadenylation. Wiley Interdiscip Rev RNA 2012; 3:385 - 96; http://dx.doi.org/10.1002/wrna.116; PMID: 22012871
  • Wu D, Muhlrad D, Bowler MW, Jiang S, Liu Z, Parker R, Song H. Lsm2 and Lsm3 bridge the interaction of the Lsm1-7 complex with Pat1 for decapping activation. Cell Res 2014; 24:233 - 46; http://dx.doi.org/10.1038/cr.2013.152; PMID: 24247251
  • Gouet P, Robert X, Courcelle E. ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 2003; 31:3320 - 3; http://dx.doi.org/10.1093/nar/gkg556; PMID: 12824317
  • Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010; 66:486 - 501; http://dx.doi.org/10.1107/S0907444910007493; PMID: 20383002