420
Views
11
CrossRef citations to date
0
Altmetric
Research Paper

DEAD-box protein facilitated RNA folding in vivo

Pages 803-811 | Published online: 01 Nov 2010

References

  • Pyle AM, Fedorova O, Waldsich C. Folding of group II introns: a model system for large, multidomain RNAs?. Trends Biochem Sci 2007; 32:138 - 145
  • Shcherbakova I, Mitra S, Laederach A, Brenowitz M. Energy barriers, pathways and dynamics during folding of large, multidomain RNAs. Curr Opin Chem Biol 2008; 12:655 - 666
  • Sosnick TR. Kinetic barriers and the role of topology in protein and RNA folding. Protein Sci 2008; 17:1308 - 1318
  • Treiber DK, Williamson JR. Beyond kinetic traps in RNA folding. Curr Opin Struct Biol 2001; 11:309 - 314
  • Woodson SA. Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr Opin Chem Biol 2005; 9:104 - 109
  • Donahue CP, Fedor MJ. Kinetics of hairpin ribozyme cleavage in yeast. RNA 1997; 3:961 - 973
  • Donahue CP, Yadava RS, Nesbitt SM, Fedor MJ. The kinetic mechanism of the hairpin ribozyme in vivo: influence of RNA helix stability on intracellular cleavage kinetics. J Mol Biol 2000; 295:693 - 707
  • Mahen EM, Harger JW, Calderon EM, Fedor MJ. Kinetics and thermodynamics make different contributions to RNA folding in vitro and in yeast. Mol Cell 2005; 19:27 - 37
  • Yadava RS, Choi AJ, Lebruska LL, Fedor MJ. Hairpin ribozymes with four-way helical junctions mediate intracellular RNA ligation. J Mol Biol 2001; 309:893 - 902
  • Adilakshmi T, Lease RA, Woodson SA. Hydroxyl radical footprinting in vivo: mapping macromolecular structures with synchrotron radiation. Nucleic Acids Res 2006; 34:64
  • Waldsich C, Grossberger R, Schroeder R. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo. Genes Dev 2002; 16:2300 - 2312
  • Waldsich C, Masquida B, Westhof E, Schroeder R. Monitoring intermediate folding states of the td group I intron in vivo. EMBO J 2002; 21:5281 - 5291
  • Michel F, Ferat JL. Structure and activities of group II introns. Annu Rev Biochem 1995; 64:435 - 461
  • Qin PZ, Pyle AM. The architectural organization and mechanistic function of group II intron structural elements. Curr Opin Struct Biol 1998; 8:301 - 308
  • Lehmann K, Schmidt U. Group II introns: structure and catalytic versatility of large natural ribozymes. Crit Rev Biochem Mol Biol 2003; 38:249 - 303
  • Toor N, Rajashankar K, Keating KS, Pyle AM. Structural basis for exon recognition by a group II intron. Nat Struct Mol Biol 2008; 15:1221 - 1222
  • Michel F, Costa M, Westhof E. The ribozyme core of group II introns: a structure in want of partners. Trends Biochem Sci 2009; 34:189 - 199
  • Steiner M, Karunatilaka KS, Sigel RK, Rueda D. Single-molecule studies of group II intron ribozymes. Proc Natl Acad Sci USA 2008; 105:13853 - 13858
  • Fedorova O, Waldsich C, Pyle AM. Group II intron folding under near-physiological conditions: collapsing to the near-native state. J Mol Biol 2007; 366:1099 - 1114
  • Swisher J, Su L, Brenowitz M, Anderson V, Pyle A. productive folding to the native state by a group II intron ribozyme. J Mol Biol 2002; 315:297 - 310
  • Su LJ, Waldsich C, Pyle AM. An obligate intermediate along the slow folding pathway of a group II intron ribozyme. Nucleic Acids Res 2005; 33:6674 - 6687
  • Waldsich C, Pyle AM. A kinetic intermediate that regulates proper folding of a group II intron RNA. J Mol Biol 2008; 375:572 - 580
  • Boudvillain M, Pyle AM. Defining functional groups, core structural features and inter-domain tertiary contacts essential for group II intron self-splicing: a NAIM analysis. EMBO J 1998; 17:7091 - 7104
  • Costa M, Michel F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J 1995; 14:1276 - 1285
  • Huang HR, Rowe CE, Mohr S, Jiang Y, Lambowitz AM, Perlman PS. The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Proc Natl Acad Sci USA 2005; 102:163 - 168
  • Seraphin B, Boulet A, Simon M, Faye G. Construction of a yeast strain devoid of mitochondrial introns and its use to screen nuclear genes involved in mitochondrial splicing. Proc Natl Acad Sci USA 1987; 84:6810 - 6814
  • Solem A, Zingler N, Pyle AM. A DEAD protein that activates intron self-splicing without unwinding RNA. Mol Cell 2006; 24:611 - 617
  • Halls C, Mohr S, Del Campo M, Yang Q, Jankowsky E, Lambowitz AM. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms and general RNA chaperone activity. J Mol Biol 2007; 365:835 - 855
  • Seraphin B, Simon M, Boulet A, Faye G. Mitochondrial splicing requires a protein from a novel helicase family. Nature 1989; 337:84 - 87
  • Liu F, Putnam A, Jankowsky E. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc Natl Acad Sci USA 2008; 105:20209 - 20214
  • Yang Q, Del Campo M, Lambowitz AM, Jankowsky E. DEAD-box proteins unwind duplexes by local strand separation. Mol Cell 2007; 28:253 - 263
  • Del Campo M, Tijerina P, Bhaskaran H, Mohr S, Yang Q, Jankowsky E, et al. Do DEAD-box proteins promote group II intron splicing without unwinding RNA?. Mol Cell 2007; 28:159 - 166
  • Fedorova O, Solem A, Pyle AM. Protein-facilitated folding of group II intron ribozymes. J Mol Biol 2010; 397:799 - 813
  • Zingler N, Solem A, Pyle AM. Dual roles for the Mss116 cofactor during splicing of the ai5gamma group II intron. Nucleic Acids Res 2010; http://dx.doi.org/10.1093/nar/gkq530
  • Liebeg A, Waldsich C. Probing RNA structure within living cells. Methods Enzymol 2009; 468:219 - 238
  • Wells SE, Hughes JM, Igel AH, Ares M Jr. Use of dimethyl sulfate to probe RNA structure in vivo. Methods Enzymol 2000; 318:479 - 493
  • Brunel C, Romby P. Probing RNA structure and RNA-ligand complexes with chemical probes. Methods Enzymol 2000; 318:3 - 21
  • Qin PZ, Pyle AM. Stopped-flow fluorescence spectroscopy of a group II intron ribozyme reveals that domain 1 is an independent folding unit with a requirement for specific Mg2+ ions in the tertiary structure. Biochemistry 1997; 36:4718 - 4730
  • Pyle AM, Lambowitz AM. Gesteland RF, Cech TR, Atkins JF. Group II introns: ribozymes that splice RNA and invade DNA. The RNA World 2006; Cold Spring Harbor, New York Cold Spring Harbor Laborartory Press 469 - 534
  • Michel F, Umesono K, Ozeki H. Comparative and functional anatomy of group II catalytic introns—a review. Gene 1989; 82:5 - 30
  • Toor N, Keating KS, Taylor SD, Pyle AM. Crystal structure of a self-spliced group II intron. Science 2008; 320:77 - 82
  • Su LJ, Brenowitz M, Pyle AM. An alternative route for the folding of large RNAs: apparent two-state folding by a group II intron ribozyme. J Mol Biol 2003; 334:639 - 652
  • Swisher J, Duarte C, Su L, Pyle A. Visualizing the solvent-inaccessible core of a group II intron ribozyme. EMBO J 2001; 20:2051 - 2061
  • Gregan J, Kolisek M, Schweyen RJ. Mitochondrial Mg(2+) homeostasis is critical for group II intron splicing in vivo. Genes Dev 2001; 15:2229 - 2237
  • Waldsich C, Pyle AM. A folding control element for tertiary collapse of a group II intron ribozyme. Nat Struct Mol Biol 2007; 14:37 - 44
  • Su L. The folding pathway and core structure assembly of a group II intron ribozyme. Biochemistry and Molecular Biophysics 2002; New York Columbia University 187
  • Fedorova O, Mitros T, Pyle AM. Domains 2 and 3 interact to form critical elements of the group II intron active site. J Mol Biol 2003; 330:197 - 209
  • Costa M, Deme E, Jacquier A, Michel F. Multiple tertiary interactions involving domain II of group II self-splicing introns. J Mol Biol 1997; 267:520 - 536
  • Hamill S, Pyle AM. The receptor for branch-site docking within a group II intron active site. Mol Cell 2006; 23:831 - 840
  • Chanfreau G, Jacquier A. An RNA conformational change between the two chemical steps of group II selfsplicing. EMBO J 1996; 15:3466 - 3476
  • Podar M, Chu VT, Pyle AM, Perlman PS. Group II intron splicing in vivo by first step hydrolysis. Nature 1998; 391:915 - 918
  • Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 1996; 273:1678 - 1685
  • Jacquier A, Michel F. Base-pairing interactions involving the 5′ and 3′-terminal nucleotides of group II selfsplicing introns. J Mol Biol 1990; 213:437 - 447
  • Fedorova O, Pyle AM. A conserved element that stabilizes the group II intron active site. RNA 2008; 14:1048 - 1056
  • Boudvillain M, Delencastre A, Pyle AM. A new RNA tertiary interaction that links active-site domains of a group II intron and anchors them at the site of catalysis. Nature 2000; 406:315 - 318
  • de Lencastre A, Pyle AM. Three essential and conserved regions of the group II intron are proximal to the 5′-splice site. RNA 2008; 14:11 - 24
  • Koch JL, Boulanger SC, Dib-Hajj SD, Hebbar SK, Perlman PS. Group II Introns deleted for multiple substructures retain self-splicing activity. Mol Cell Biol 1992; 12:1950 - 1958
  • Fedorova O, Pyle AM. Linking the group II intron catalytic domains: tertiary contacts and structural features of domain 3. EMBO J 2005; 24:3906 - 3916
  • Solem A, Zingler N, Pyle AM J. L-P-T. Walter NG, Woodson SA, Batey RT. Group II introns and their protein collaborators. Non-protein coding RNAs 2009; Berlin Heidelberg Springer-Verlag 167 - 182
  • Pan J, Woodson SA. Folding intermediates of a self-splicing RNA: mispairing of the catalytic core. J Mol Biol 1998; 280:597 - 609
  • Roitzsch M, Pyle AM. The linear form of a group II intron catalyzes efficient autocatalytic reverse splicing, establishing a potential for mobility. RNA 2009; 15:473 - 482
  • Cordin O, Banroques J, Tanner NK, Linder P. The DEAD-box protein family of RNA helicases. Gene 2006; 367:17 - 37
  • Jackson SA, Koduvayur S, Woodson SA. Self-splicing of a group I intron reveals partitioning of native and misfolded RNA populations in yeast. RNA 2006; 12:2149 - 2159