771
Views
10
CrossRef citations to date
0
Altmetric
Review

Mechanisms of StpA-mediated RNA remodeling

, , &
Pages 735-743 | Published online: 01 Nov 2010

References

  • Akins RA, Lambowitz AM. A protein required for splicing group I introns in Neurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof. Cell 1987; 50:331 - 345
  • Dujardin G, Jacq C, Slonimski PP. Single base substitution in an intron of oxidase gene compensates splicing defects of the cytochrome b gene. Nature 1982; 298:628 - 632
  • Labouesse M, Netter P, Schroeder R. Molecular basis of the ‘box effect’, A maturase deficiency leading to the absence of splicing of two introns located in two split genes of yeast mitochondrial DNA. European journal of biochemistry/FEBS 1984; 144:85 - 93
  • Lazowska J, Jacq C, Slonimski PP. Sequence of introns and flanking exons in wild-type and box3 mutants of cytochrome b reveals an interlaced splicing protein coded by an intron. Cell 1980; 22:333 - 348
  • Seraphin B, Simon M, Faye G. MSS18, a yeast nuclear gene involved in the splicing of intron aI5 beta of the mitochondrial cox1 transcript. EMBO J 1988; 7:1455 - 1464
  • De la Salle H, Jacq C, Slonimski PP. Critical sequences within mitochontrial introns: pleiotropic mRNA maturase and cis-dominant signals of the box intron controlling reductase and oxidase. Cell 1982; 721 - 732
  • Zhang A, Derbyshire V, Salvo JL, Belfort M. Escherichia coli protein StpA stimulates self-splicing by promoting RNA assembly in vitro. RNA 1995; 1:783 - 793
  • Dorman CJ, Hinton JC, Free A. Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria. Trends Microbiol 1999; 7:124 - 128
  • Zhang A, Belfort M. Nucleotide sequence of a newly-identified Escherichia coli gene, stpA, encoding an H-NS-like protein. Nucleic Acids Res 1992; 20:6735
  • Zhang A, Rimsky S, Reaban ME, Buc H, Belfort M. Escherichia coli protein analogs StpA and H-NS: regulatory loops, similar and disparate effects on nucleic acid dynamics. EMBO J 1996; 15:1340 - 1349
  • Muller CM, Schneider G, Dobrindt U, Emody L, Hacker J, Uhlin BE. Differential effects and interactions of endogenous and horizontally acquired H-NS-like proteins in pathogenic Escherichia coli. Mol Microbiol 75:280 - 293
  • Free A, Dorman CJ. The Escherichia coli stpA gene is transiently expressed during growth in rich medium and is induced in minimal medium and by stress conditions. Journal of bacteriology 1997; 179:909 - 918
  • Waldsich C, Grossberger R, Schroeder R. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo. Genes and Dev 2002; 16:2300 - 2312
  • Herschlag D, Khosla M, Tsuchihashi Z, Karpel RL. An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis. EMBO J 1994; 13:2913 - 2924
  • Coetzee T, Herschlag D, Belfort M. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones. Genes Dev 1994; 8:1575 - 1588
  • Mayer O, Rajkowitsch L, Lorenz C, Konrat R, Schroeder R. RNA chaperone activity and RNA-binding properties of the E. coli protein StpA. Nucleic Acids Res 2007; 35:1257 - 1269
  • Negroni M, Buc H. Copy-choice recombination by reverse transcriptases: reshuffling of genetic markers mediated by RNA chaperones. Proc Natl Acad Sci USA 2000; 97:6385 - 6390
  • Jiang W, Hou Y, Inouye M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 1997; 272:196 - 202
  • Llopis PM, Jackson AF, Sliusarenko O, Surovtsev I, Heinritz J, Emonet T, et al. Spatial organization of the flow of genetic information in bacteria. Nature 2010; 466:77 - 81
  • Cusick ME, Belfort M. Domain structure and RNA annealing activity of the Escherichia coli regulatory protein StpA. Mol Microbiol 1998; 28:847 - 857
  • Leonard PG, Ono S, Gor J, Perkins SJ, Ladbury JE. Investigation of the self-association and hetero-association interactions of H-NS and StpA from Enterobacteria. Mol Microbiol 2009; 73:165 - 179
  • Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 2005; 6:197 - 208
  • Garner E, Romero P, Dunker AK, Brown C, Obradovic Z. Predicting Binding Regions within Disordered Proteins. Genome informatics 1999; 10:41 - 50
  • Tompa P, Csermely P. The role of structural disorder in the function of RNA and protein chaperones. FASEB J 2004; 18:1169 - 1175
  • Konrat R. The protein meta-structure: a novel concept for chemical and molecular biology. Cell Mol Life Sci 2009; 66:3625 - 3639
  • Bloch V, Yang Y, Margeat E, Chavanieu A, Auge MT, Robert B, et al. The H-NS dimerization domain defines a new fold contributing to DNA recognition. Nat Struct Biol 2003; 10:212 - 218
  • Shindo H, Iwaki T, Ieda R, Kurumizaka H, Ueguchi C, Mizuno T, et al. Solution structure of the DNA binding domain of a nucleoid-associated protein, H-NS, from Escherichia coli. FEBS letters 1995; 360:125 - 131
  • Sette M, Spurio R, Trotta E, Brandizi C, Brandi A, Pon CL, et al. Sequence-specific recognition of DNA by the C-terminal domain of nucleoid-associated protein H-NS. J Biol Chem 2009; 284:30453 - 30462
  • Cristofari G, Darlix JL. The ubiquitous nature of RNA chaperone proteins. Prog Nucleic Acid Res Mol Biol 2002; 72:223 - 268
  • Rajkowitsch L, Schroeder R. Dissecting RNA chaperone activity. RNA 2007; 13:2053 - 2060
  • Mayer O, Waldsich C, Grossberger R, Schroeder R. Folding of the td pre-RNA with the help of the RNA chaperone StpA. Biochem Soc Trans 2002; 30:1175 - 1180
  • Salvo JL, Coetzee T, Belfort M. Deletion-tolerance and trans-splicing of the bacteriophage T4 td intron. Analysis of the P6-L6a region. J Mol Biol 1990; 211:537 - 549
  • Clodi E, Semrad K, Schroeder R. Assaying RNA chaperone activity in vivo using a novel RNA folding trap. EMBO J 1999; 18:3776 - 3782
  • Webb AE, Weeks KM. A collapsed state functions to self-chaperone RNA folding into a native ribonucleoprotein complex. Nat Struct Biol 2001; 8:135 - 140
  • Furtig B, Buck J, Manoharan V, Bermel W, Jaschke A, Wenter P, et al. Time-resolved NMR studies of RNA folding. Biopolymers 2007; 86:360 - 383
  • Woodson SA. RNA folding and ribosome assembly. Current opinion in chemical biology 2008; 12:667 - 673
  • Williamson JR. Biophysical studies of bacterial ribosome assembly. Current opinion in structural biology 2008; 18:299 - 304
  • Zarrinkar PP, Williamson JR. Kinetic intermediates in RNA folding. Science 1994; 265:918 - 924
  • Treiber DK, Rook MS, Zarrinkar PP, Williamson JR. Kinetic intermediates trapped by native interactions in RNA folding. Science 1998; 279:1943 - 1946
  • Mayer O, Windbichler N, Wank H, Schroeder R. Silvermann SK. Protein-induced RNA Switches in Nature. Nucleic Acid Switches and Sensors: Landes Bioscience 2005;
  • Schwalbe H, Buck J, Furtig B, Noeske J, Wohnert J. Structures of RNA switches: insight into molecular recognition and tertiary structure. Angewandte Chemie (International ed) 2007; 46:1212 - 1219
  • Wong CH, Hendrix M, Priestley ES, Greenberg WA. Specificity of aminoglycoside antibiotics for the A-site of the decoding region of ribosomal RNA. Chem Biol 1998; 5:397 - 406
  • Semrad K, Schroeder R. A ribosomal function is necessary for efficient splicing of the T4 phage thymidylate synthase intron in vivo. Genes Dev 1998; 12:1327 - 1337
  • Duncan CD, Weeks KM. Nonhierarchical ribonucleoprotein assembly suggests a strain-propagation model for protein-facilitated RNA folding. Biochemistry 49:5418 - 5425
  • Gething MJ, Sambrook J. Protein folding in the cell. Nature 1992; 355:33 - 45
  • Ghisolfi L, Joseph G, Amalric F, Erard M. The glycine-rich domain of nucleolin has an unusual supersecondary structure responsible for its RNA-helix-destabilizing properties. J Biol Chem 1992; 267:2955 - 2959
  • Sapp M, Knippers R, Richter A. DNA binding properties of a 110 kDa nucleolar protein. Nucleic Acids Res 1986; 14:6803 - 6820
  • Portman DS, Dreyfuss G. RNA annealing activities in HeLa nuclei. EMBO J 1994; 13:213 - 221
  • Munroe SH, Dong XF. Heterogeneous nuclear ribonucleoprotein A1 catalyzes RNA.RNA annealing. Proc Natl Acad Sci USA 1992; 89:895 - 899
  • Cobianchi F, Calvio C, Stoppini M, Buvoli M, Riva S. Phosphorylation of human hnRNP protein A1 abrogates in vitro strand annealing activity. Nucleic Acids Res 1993; 21:949 - 955
  • Ammerman ML, Fisk JC, Read LK. gRNA/pre-mRNA annealing and RNA chaperone activities of RBP16. RNA 2008; 14:1069 - 1080
  • Schreiber G, Haran G, Zhou HX. Fundamental aspects of protein-protein association kinetics. Chem Rev 2009; 109:839 - 860
  • Nedbal W, Frey M, Willemann B, Zentgraf H, Sczakiel G. Mechanistic insights into p53-promoted RNA-RNA annealing. J Mol Biol 1997; 266:677 - 687
  • Nedbal W, Homann M, Sczakiel G. The association of complementary ribonucleic acids can be strongly increased without lowering Arrhenius activation energies or significantly altering structures. Biochemistry 1997; 36:13552 - 13557
  • Muller UF, Goringer HU. Mechanism of the gBP21-mediated RNA/RNA annealing reaction: matchmaking and charge reduction. Nucleic Acids Res 2002; 30:447 - 455
  • Hitti E, Neunteufel A, Jantsch MF. The double-stranded RNA-binding protein X1rbpa promotes RNA strand annealing. Nucleic Acids Res 1998; 26:4382 - 4388
  • Lee CG, Zamore PD, Green MR, Hurwitz J. RNA annealing activity is intrinsically associated with U2AF. J Biol Chem 1993; 268:13472 - 13478
  • Muller UF, Lambert L, Goringer HU. Annealing of RNA editing substrates facilitated by guide RNA-binding protein gBP21. EMBO J 2001; 20:1394 - 1404
  • Schumacher MA, Karamooz E, Zikova A, Trantirek L, Lukes J. Crystal structures of T. brucei MRP1/MRP2 guide-RNA binding complex reveal RNA matchmaking mechanism. Cell 2006; 126:701 - 711
  • Furtig B, Wenter P, Reymond L, Richter C, Pitsch S, Schwalbe H. Conformational dynamics of bistable RNAs studied by time-resolved NMR spectroscopy. Journal of the American Chemical Society 2007; 129:16222 - 16229
  • Rajkowitsch L, Chen D, Stampfl S, Semrad K, Waldsich C, Mayer O, et al. RNA chaperones, RNA annealers and RNA helicases. RNA Biol 2007; 4:118 - 130
  • Grossberger R, Mayer O, Waldsich C, Semrad K, Schroeder R. Influence of RNA structural stability on the RNA chaperone activity of the E. coli portein StpA. Nuc Acids Res 2005; 33:2280 - 2289
  • Mohan S, Hsiao C, VanDeusen H, Gallagher R, Krohn E, Kalahar B, et al. Mechanism of RNA double helix-propagation at atomic resolution. The journal of physical chemistry 2009; 113:2614 - 2623
  • Porschke D. A direct measurement of the unzippering rate of a nucleic acid double helix. Biophysical chemistry 1974; 2:97 - 101
  • Porschke D. Model calculations on the kinetics of oligonucleotide double helix coil transitions. Evidence for a fast chain sliding reaction. Biophysical chemistry 1974; 2:83 - 96