1,946
Views
26
CrossRef citations to date
0
Altmetric
Review

Human mitochondrial tRNA quality control in health and disease

A channelling mechanism?

, &
Pages 33-39 | Published online: 01 Jan 2012

References

  • Wallace DC, Lott MT. “MITOMAP: A Human Mitochondrial Genome Database”. http://wwwmitomaporg 2004.
  • Saraste M. Oxidative phosphorylation at the fin de siecle. Science 1999; 283:1488 - 93; http://dx.doi.org/10.1126/science.283.5407.1488; PMID: 10066163
  • de Grey AD. Forces maintaining organellar genomes: is any as strong as genetic code disparity or hydrophobicity?. Bioessays 2005; 27:436 - 46; http://dx.doi.org/10.1002/bies.20209; PMID: 15770678
  • Pütz J, Dupuis B, Sissler M, Florentz C. Mamit-tRNA, a database of mammalian mitochondrial tRNA primary and secondary structures. RNA 2007; 13:1184 - 90; http://dx.doi.org/10.1261/rna.588407; PMID: 17585048
  • Wittenhagen LM, Kelley SO. Impact of disease-related mitochondrial mutations on tRNA structure and function. Trends Biochem Sci 2003; 28:605 - 11; http://dx.doi.org/10.1016/j.tibs.2003.09.006; PMID: 14607091
  • Florentz C, Sohm B, Tryoen-Toth P, Putz J, Sissler M. Human mitochondrial tRNAs in health and disease. Cell Mol Life Sci 2003; 60:1356 - 75; http://dx.doi.org/10.1007/s00018-003-2343-1; PMID: 12943225
  • Negrutskii BS, Deutscher MP. Channeling of aminoacyl-tRNA for protein synthesis in vivo. Proc Natl Acad Sci USA 1991; 88:4991 - 5; http://dx.doi.org/10.1073/pnas.88.11.4991; PMID: 2052582
  • Mirande M. The ins and outs of tRNA transport. EMBO Rep 2007; 8:547 - 9; http://dx.doi.org/10.1038/sj.embor.7400989; PMID: 17545994
  • Lund E, Dahlberg JE. Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 1998; 282:2082 - 5; http://dx.doi.org/10.1126/science.282.5396.2082; PMID: 9851929
  • Azad AK, Stanford DR, Sarkar S, Hopper AK. Role of nuclear pools of aminoacyl-tRNA synthetases in tRNA nuclear export. Mol Biol Cell 2001; 12:1381 - 92; PMID: 11359929
  • Grosshans H, Simos G, Hurt E. Review: transport of tRNA out of the nucleus-direct channeling to the ribosome?. J Struct Biol 2000; 129:288 - 94; http://dx.doi.org/10.1006/jsbi.2000.4226; PMID: 10806079
  • Chafe SC, Mangroo D. Scyl1 facilitates nuclear tRNA export in mammalian cells by acting at the nuclear pore complex. Mol Biol Cell 2010; 21:2483 - 99; http://dx.doi.org/10.1091/mbc.E10-03-0176; PMID: 20505071
  • Montoya J, Christianson T, Levens D, Rabinowitz M, Attardi G. Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc Natl Acad Sci USA 1982; 79:7195 - 9; http://dx.doi.org/10.1073/pnas.79.23.7195; PMID: 6185947
  • Levinger L, Morl M, Florentz C. Mitochondrial tRNA 3′ end metabolism and human disease. Nucleic Acids Res 2004; 32:5430 - 41; http://dx.doi.org/10.1093/nar/gkh884; PMID: 15477393
  • Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981; 290:470 - 4; http://dx.doi.org/10.1038/290470a0; PMID: 7219536
  • Attardi G, Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol 1988; 4:289 - 333; http://dx.doi.org/10.1146/annurev.cb.04.110188.001445; PMID: 2461720
  • King MP, Attardi G. Post-transcriptional regulation of the steady-state levels of mitochondrial tRNAs in HeLa cells. J Biol Chem 1993; 268:10228 - 37; PMID: 7683672
  • Copela LA, Chakshusmathi G, Sherrer RL, Wolin SL. The La protein functions redundantly with tRNA modification enzymes to ensure tRNA structural stability. RNA 2006; 12:644 - 54; http://dx.doi.org/10.1261/rna.2307206; PMID: 16581807
  • Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, Grayhack EJ, et al. Rapid tRNA decay can result from lack of nonessential modifications. Mol Cell 2006; 21:87 - 96; http://dx.doi.org/10.1016/j.molcel.2005.10.036; PMID: 16387656
  • Chernyakov I, Whipple JM, Kotelawala L, Grayhack EJ, Phizicky EM. Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5′-3′ exonucleases Rat1 and Xrn1. Genes Dev 2008; 22:1369 - 80; http://dx.doi.org/10.1101/gad.1654308; PMID: 18443146
  • Motorin Y, Helm M. tRNA stabilization by modified nucleotides. Biochemistry 2010; 49:4934 - 44; http://dx.doi.org/10.1021/bi100408z; PMID: 20459084
  • Helm M, Attardi G. Nuclear control of cloverleaf structure of human mitochondrial tRNA(Lys). J Mol Biol 2004; 337:545 - 60; http://dx.doi.org/10.1016/j.jmb.2004.01.036; PMID: 15019776
  • Kirino Y, Goto Y, Campos Y, Arenas J, Suzuki T. Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc Natl Acad Sci USA 2005; 102:7127 - 32; http://dx.doi.org/10.1073/pnas.0500563102; PMID: 15870203
  • Bykhovskaya Y, Casas K, Mengesha E, Inbal A, Fischel-Ghodsian N. Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 2004; 74:1303 - 8; http://dx.doi.org/10.1086/421530; PMID: 15108122
  • Zeharia A, Shaag A, Pappo O, Mager-Heckel AM, Saada A, Beinat M, et al. Acute Infantile Liver Failure Due to Mutations in the TRMU Gene. Am J Hum Genet 2009; 85:401 - 7; http://dx.doi.org/10.1016/j.ajhg.2009.08.004; PMID: 19732863
  • Wang X, Yan Q, Guan MX. Deletion of the MTO2 gene related to tRNA modification causes a failure in mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae. FEBS Lett 2007; 581:4228 - 34; http://dx.doi.org/10.1016/j.febslet.2007.07.067; PMID: 17706197
  • Chomyn A, Enriquez JA, Micol V, Fernandez-Silva P, Attardi G. The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke- like episode syndrome-associated human mitochondrial tRNALeu(UUR) mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes. J Biol Chem 2000; 275:19198 - 209; http://dx.doi.org/10.1074/jbc.M908734199; PMID: 10858457
  • Yasukawa T, Suzuki T, Ueda T, Ohta S, Watanabe K. Modification defect at anticodon wobble nucleotide of mitochondrial tRNAs(Leu)(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J Biol Chem 2000; 275:4251 - 7; http://dx.doi.org/10.1074/jbc.275.6.4251; PMID: 10660592
  • Enriquez JA, Chomyn A, Attardi G. MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nat Genet 1995; 10:47 - 55; http://dx.doi.org/10.1038/ng0595-47; PMID: 7647790
  • Börner GV, Zeviani M, Tiranti V, Carrara F, Hoffmann S, Gerbitz KD, et al. Decreased aminoacylation of mutant tRNAs in MELAS but not in MERRF patients. Hum Mol Genet 2000; 9:467 - 75; http://dx.doi.org/10.1093/hmg/9.4.467; PMID: 10699170
  • Kolesnikova OA, Entelis NS, Jacquin-Becker C, Goltzene F, Chrzanowska-Lightowlers ZM, Lightowlers RN, et al. Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum Mol Genet 2004; 13:2519 - 34; http://dx.doi.org/10.1093/hmg/ddh267; PMID: 15317755
  • Karicheva OZ, Kolesnikova OA, Schirtz T, Vysokikh MY, Mager-Heckel AM, Lombes A, et al. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria. Nucleic Acids Res 2011.
  • Bacman SR, Atencio DP, Moraes CT. Decreased mitochondrial tRNALys steady-state levels and aminoacylation are associated with the pathogenic G8313A mitochondrial DNA mutation. Biochem J 2003; 374:131 - 6; http://dx.doi.org/10.1042/BJ20030222; PMID: 12737626
  • Toompuu M, Yasukawa T, Suzuki T, Hakkinen T, Spelbrink JN, Watanabe K, et al. The 7472insC mitochondrial DNA mutation impairs the synthesis and extent of aminoacylation of tRNASer(UCN) but not its structure or rate of turnover. J Biol Chem 2002; 277:22240 - 50; http://dx.doi.org/10.1074/jbc.M200338200; PMID: 11919191
  • Rorbach J, Yusoff AA, Tuppen H, Abg-Kamaludin DP, Chrzanowska-Lightowlers ZM, Taylor RW, et al. Overexpression of human mitochondrial valyl tRNA synthetase can partially restore levels of cognate mt-tRNAVal carrying the pathogenic C25U mutation. Nucleic Acids Res 2008; 36:3065 - 74; http://dx.doi.org/10.1093/nar/gkn147; PMID: 18400783
  • Yasukawa T, Hino N, Suzuki T, Watanabe K, Ueda T, Ohta S. A pathogenic point mutation reduces stability of mitochondrial mutant tRNA(Ile). Nucleic Acids Res 2000; 28:3779 - 84; http://dx.doi.org/10.1093/nar/28.19.3779; PMID: 11000270
  • Hao H, Moraes CT. A disease-associated G5703A mutation in human mitochondrial DNA causes a conformational change and a marked decrease in steady-state levels of mitochondrial tRNA(Asn). Mol Cell Biol 1997; 17:6831 - 7; PMID: 9372914
  • Antonellis A, Green ED. The role of aminoacyl-tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet 2008; 9:87 - 107; http://dx.doi.org/10.1146/annurev.genom.9.081307.164204; PMID: 18767960
  • Edvardson S, Shaag A, Kolesnikova O, Gomori JM, Tarassov I, Einbinder T, et al. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet 2007; 81:857 - 62; http://dx.doi.org/10.1086/521227; PMID: 17847012
  • Belostotsky R, Ben-Shalom E, Rinat C, Becker-Cohen R, Feinstein S, Zeligson S, et al. Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am J Hum Genet 2011; 88:193 - 200; http://dx.doi.org/10.1016/j.ajhg.2010.12.010; PMID: 21255763
  • Scheper GC, van der Klok T, van Andel RJ, van Berkel CG, Sissler M, Smet J, et al. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet 2007; 39:534 - 9; http://dx.doi.org/10.1038/ng2013; PMID: 17384640
  • De Luca C, Zhou Y, Montanari A, Morea V, Oliva R, Besagni C, et al. Can yeast be used to study mitochondrial diseases? Biolistic tRNA mutants for the analysis of mechanisms and suppressors. Mitochondrion 2009; 9:408 - 17; http://dx.doi.org/10.1016/j.mito.2009.07.004; PMID: 19631764
  • Feuermann M, Francisci S, Rinaldi T, De Luca C, Rohou H, Frontali L, et al. The yeast counterparts of human 'MELAS' mutations cause mitochondrial dysfunction that can be rescued by overexpression of the mitochondrial translation factor EF-Tu. EMBO Rep 2003; 4:53 - 8; http://dx.doi.org/10.1038/sj.embor.embor713; PMID: 12524521
  • Montanari A, De Luca C, Frontali L, Francisci S. Aminoacyl-tRNA synthetases are multivalent suppressors of defects due to human equivalent mutations in yeast mt tRNA genes. Biochim Biophys Acta 2010; 1803:1050-7.
  • Park H, Davidson E, King MP. Overexpressed mitochondrial leucyl-tRNA synthetase suppresses the A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. RNA 2008; 14:2407 - 16; http://dx.doi.org/10.1261/rna.1208808; PMID: 18796578
  • Li R, Guan MX. Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes. Mol Cell Biol 2010; 30:2147 - 54; http://dx.doi.org/10.1128/MCB.01614-09; PMID: 20194621
  • Rinaldi T, Lande R, Bolotin-Fukuhara M, Frontali L. Additional copies of the mitochondrial Ef-Tu and aspartyl-tRNA synthetase genes can compensate for a mutation affecting the maturation of the mitochondrial tRNAAsp. Curr Genet 1997; 31:494 - 6; http://dx.doi.org/10.1007/s002940050235; PMID: 9211792
  • Sasarman F, Antonicka H, Shoubridge EA. The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. Hum Mol Genet 2008; 17:3697 - 707; http://dx.doi.org/10.1093/hmg/ddn265; PMID: 18753147
  • Mirande M. Processivity of translation in the eukaryote cell: role of aminoacyl-tRNA synthetases. FEBS Lett 2010; 584:443 - 7; http://dx.doi.org/10.1016/j.febslet.2009.11.027; PMID: 19914240
  • Slomovic S, Laufer D, Geiger D, Schuster G. Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark. Mol Cell Biol 2005; 25:6427 - 35; http://dx.doi.org/10.1128/MCB.25.15.6427-6435.2005; PMID: 16024781
  • Borowski LS, Szczesny RJ, Brzezniak LK, Stepien PP. RNA turnover in human mitochondria: more questions than answers? Biochim Biophys Acta 2010; 1797:1066-70.
  • Tomecki R, Dmochowska A, Gewartowski K, Dziembowski A, Stepien PP. Identification of a novel human nuclear-encoded mitochondrial poly(A) polymerase. Nucleic Acids Res 2004; 32:6001 - 14; http://dx.doi.org/10.1093/nar/gkh923; PMID: 15547249
  • Wang G, Chen HW, Oktay Y, Zhang J, Allen EL, Smith GM, et al. PNPASE Regulates RNA Import into Mitochondria. Cell 2010; 142:456 - 67; http://dx.doi.org/10.1016/j.cell.2010.06.035; PMID: 20691904
  • Dziembowski A, Piwowarski J, Hoser R, Minczuk M, Dmochowska A, Siep M, et al. The yeast mitochondrial degradosome. Its composition, interplay between RNA helicase and RNase activities and the role in mitochondrial RNA metabolism. J Biol Chem 2003; 278:1603 - 11; http://dx.doi.org/10.1074/jbc.M208287200; PMID: 12426313
  • Minczuk M, Piwowarski J, Papworth MA, Awiszus K, Schalinski S, Dziembowski A, et al. Localisation of the human hSuv3p helicase in the mitochondrial matrix and its preferential unwinding of dsDNA. Nucleic Acids Res 2002; 30:5074 - 86; http://dx.doi.org/10.1093/nar/gkf647; PMID: 12466530
  • Phizicky EM, Hopper AK. tRNA biology charges to the front. Genes Dev 2010; 24:1832 - 60; http://dx.doi.org/10.1101/gad.1956510; PMID: 20810645
  • Sittka A, Sharma CM, Rolle K, Vogel J. Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes. RNA Biol 2009; 6:266 - 75; http://dx.doi.org/10.4161/rna.6.3.8332; PMID: 19333007
  • Dittmar KA, Sorensen MA, Elf J, Ehrenberg M, Pan T. Selective charging of tRNA isoacceptors induced by amino-acid starvation. EMBO Rep 2005; 6:151 - 7; http://dx.doi.org/10.1038/sj.embor.7400341; PMID: 15678157
  • Dittmar KA, Goodenbour JM, Pan T. Tissue-specific differences in human transfer RNA expression. PLoS Genet 2006; 2:e221; http://dx.doi.org/10.1371/journal.pgen.0020221; PMID: 17194224

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.