994
Views
7
CrossRef citations to date
0
Altmetric
Commentary

Melanoblasts on the move

Rac1 sets the pace

&
Pages 115-119 | Published online: 01 Apr 2012

References

  • Mayer TC. The migratory pathway of neural crest cells into the skin of mouse embryos. Dev Biol 1973; 34:39 - 46; http://dx.doi.org/10.1016/0012-1606(73)90337-0; PMID: 4595498
  • Kelsh RN, Harris ML, Colanesi S, Erickson CA. Stripes and belly-spots -- a review of pigment cell morphogenesis in vertebrates. Semin Cell Dev Biol 2009; 20:90 - 104; http://dx.doi.org/10.1016/j.semcdb.2008.10.001; PMID: 18977309
  • Baxter LL, Hou L, Loftus SK, Pavan WJ. Spotlight on spotted mice: a review of white spotting mouse mutants and associated human pigmentation disorders. Pigment Cell Res 2004; 17:215 - 24; http://dx.doi.org/10.1111/j.1600-0749.2004.00147.x; PMID: 15140066
  • Bennett DC, Lamoreux ML. The color loci of mice--a genetic century. Pigment Cell Res 2003; 16:333 - 44; http://dx.doi.org/10.1034/j.1600-0749.2003.00067.x; PMID: 12859616
  • Mort RL, Hay L, Jackson IJ. Ex vivo live imaging of melanoblast migration in embryonic mouse skin. Pigment Cell Melanoma Res 2010; 23:299 - 301; http://dx.doi.org/10.1111/j.1755-148X.2010.00669.x; PMID: 20067551
  • Jordan SA, Jackson IJ. MGF (KIT ligand) is a chemokinetic factor for melanoblast migration into hair follicles. Dev Biol 2000; 225:424 - 36; http://dx.doi.org/10.1006/dbio.2000.9856; PMID: 10985860
  • Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 2008; 9:690 - 701; http://dx.doi.org/10.1038/nrm2476; PMID: 18719708
  • Vidali L, Chen F, Cicchetti G, Ohta Y, Kwiatkowski DJ. Rac1-null mouse embryonic fibroblasts are motile and respond to platelet-derived growth factor. Mol Biol Cell 2006; 17:2377 - 90; http://dx.doi.org/10.1091/mbc.E05-10-0955; PMID: 16525021
  • Guo F, Debidda M, Yang L, Williams DA, Zheng Y. Genetic deletion of Rac1 GTPase reveals its critical role in actin stress fiber formation and focal adhesion complex assembly. J Biol Chem 2006; 281:18652 - 9; http://dx.doi.org/10.1074/jbc.M603508200; PMID: 16698790
  • Li A, Ma Y, Yu X, Mort RL, Lindsay CR, Stevenson D, et al. Rac1 drives melanoblast organization during mouse development by orchestrating pseudopod- driven motility and cell-cycle progression. Dev Cell 2011; 21:722 - 34; http://dx.doi.org/10.1016/j.devcel.2011.07.008; PMID: 21924960
  • Murphy AM, Montell DJ. Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis. J Cell Biol 1996; 133:617 - 30; http://dx.doi.org/10.1083/jcb.133.3.617; PMID: 8636236
  • Duchek P, Rørth P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 2001; 291:131 - 3; http://dx.doi.org/10.1126/science.291.5501.131; PMID: 11141565
  • Migeotte I, Omelchenko T, Hall A, Anderson KV. Rac1-dependent collective cell migration is required for specification of the anterior-posterior body axis of the mouse. PLoS Biol 2010; 8:e1000442; http://dx.doi.org/10.1371/journal.pbio.1000442; PMID: 20689803
  • Chen Z, Borek D, Padrick SB, Gomez TS, Metlagel Z, Ismail AM, et al. Structure and control of the actin regulatory WAVE complex. Nature 2010; 468:533 - 8; http://dx.doi.org/10.1038/nature09623; PMID: 21107423
  • Rakeman AS, Anderson KV. Axis specification and morphogenesis in the mouse embryo require Nap1, a regulator of WAVE-mediated actin branching. Development 2006; 133:3075 - 83; http://dx.doi.org/10.1242/dev.02473; PMID: 16831833
  • Wells CM, Walmsley M, Ooi S, Tybulewicz V, Ridley AJ. Rac1-deficient macrophages exhibit defects in cell spreading and membrane ruffling but not migration. J Cell Sci 2004; 117:1259 - 68; http://dx.doi.org/10.1242/jcs.00997; PMID: 14996945
  • Wheeler AP, Wells CM, Smith SD, Vega FM, Henderson RB, Tybulewicz VL, et al. Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. J Cell Sci 2006; 119:2749 - 57; http://dx.doi.org/10.1242/jcs.03024; PMID: 16772332
  • Wang X, He L, Wu YI, Hahn KM, Montell DJ. Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat Cell Biol 2010; 12:591 - 597 http://www.nature.com/ncb/journal/v12/n6/suppinfo/ncb2061_S1.html
  • Gaggioli C, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 2007; 9:1392 - 1400 http://www.nature.com/ncb/journal/v9/n12/suppinfo/ncb1658_S1.html
  • Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell 2008; 135:510 - 23; http://dx.doi.org/10.1016/j.cell.2008.09.043; PMID: 18984162
  • Kunwar PS, Siekhaus DE, Lehmann R. In vivo migration: a germ cell perspective. Annu Rev Cell Dev Biol 2006; 22:237 - 65; http://dx.doi.org/10.1146/annurev.cellbio.22.010305.103337; PMID: 16774460
  • Kardash E, Reichman-Fried M, Maitre JL, Boldajipour B, Papusheva E, Messerschmidt EM, et al. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nat Cell Biol 2010; 12:47 - 53 http://www.nature.com/ncb/journal/v12/n1/suppinfo/ncb2003_S1.html
  • Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M, et al. Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 2010; 19:39 - 53; http://dx.doi.org/10.1016/j.devcel.2010.06.012; PMID: 20643349
  • Luciani F, Champeval D, Herbette A, Denat L, Aylaj B, Martinozzi S, et al. Biological and mathematical modeling of melanocyte development. Development 2011; 138:3943 - 54; http://dx.doi.org/10.1242/dev.067447; PMID: 21862558
  • Nishikawa S, Kusakabe M, Yoshinaga K, Ogawa M, Hayashi S, Kunisada T, et al. In utero manipulation of coat color formation by a monoclonal anti-c-kit antibody: two distinct waves of c-kit-dependency during melanocyte development. EMBO J 1991; 10:2111 - 8; PMID: 1712289
  • Sanz-Moreno V, Marshall CJ. The plasticity of cytoskeletal dynamics underlying neoplastic cell migration. Curr Opin Cell Biol 2010; 22:690 - 6; http://dx.doi.org/10.1016/j.ceb.2010.08.020; PMID: 20829016
  • Xia M, Land H. Tumor suppressor p53 restricts Ras stimulation of RhoA and cancer cell motility. Nat Struct Mol Biol 2007; 14:215 - 223
  • Machacek M, et al. Coordination of Rho GTPase activities during cell protrusion. Nature 2009; 461:99 - 103
  • Nalbant P, Hodgson L, Kraynov V, Toutchkine A, Hahn KM. Activation of endogenous Cdc42 visualized in living cells. Science 2004; 305:1615 - 9; http://dx.doi.org/10.1126/science.1100367; PMID: 15361624
  • Pertz O, Hodgson L, Klemke RL, Hahn KM. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 2006; 440:1069 - 1072
  • Olson M. F.. GTPase Signalling: New Functions for Diaphanous-Related Formins. Curr Biol 2003; 13:R360 - R362
  • Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J, Hall A. Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr Biol 2001; 11:1645 - 55; http://dx.doi.org/10.1016/S0960-9822(01)00506-1; PMID: 11696321
  • Urban E, Jacob S, Nemethova M, Resch GP, Small JV. Electron tomography reveals unbranched networks of actin filaments in lamellipodia. Nat Cell Biol 2010; 12:429 - 35; http://dx.doi.org/10.1038/ncb2044; PMID: 20418872
  • Lebensohn AM, Kirschner MW. Activation of the WAVE complex by coincident signals controls actin assembly. Mol Cell 2009; 36:512 - 24; http://dx.doi.org/10.1016/j.molcel.2009.10.024; PMID: 19917258