931
Views
16
CrossRef citations to date
0
Altmetric
Review

Crosstalk of small GTPases at the Golgi apparatus

&
Pages 80-90 | Published online: 01 Apr 2012

References

  • Glick BS, Nakano A. Membrane traffic within the Golgi apparatus. Annu Rev Cell Dev Biol 2009; 25:113 - 32; http://dx.doi.org/10.1146/annurev.cellbio.24.110707.175421; PMID: 19575639
  • Farhan H, Rabouille C. Signalling to and from the secretory pathway. J Cell Sci 2011; 124:171 - 80; http://dx.doi.org/10.1242/jcs.076455; PMID: 21187344
  • Hancock JF, Magee AI, Childs JE, Marshall CJ. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 1989; 57:1167 - 77; http://dx.doi.org/10.1016/0092-8674(89)90054-8; PMID: 2661017
  • Choy E, Chiu VK, Silletti J, Feoktistov M, Morimoto T, Michaelson D, et al. Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 1999; 98:69 - 80; http://dx.doi.org/10.1016/S0092-8674(00)80607-8; PMID: 10412982
  • Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 2005; 307:1746 - 52; http://dx.doi.org/10.1126/science.1105654; PMID: 15705808
  • Rocks O, Gerauer M, Vartak N, Koch S, Huang Z-P, Pechlivanis M, et al. The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 2010; 141:458 - 71; http://dx.doi.org/10.1016/j.cell.2010.04.007; PMID: 20416930
  • Chiu VK, Bivona T, Hach A, Sajous JB, Silletti J, Wiener H, et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 2002; 4:343 - 50; PMID: 11988737
  • Inder K, Harding A, Plowman SJ, Philips MR, Parton RG, Hancock JF. Activation of the MAPK module from different spatial locations generates distinct system outputs. Mol Biol Cell 2008; 19:4776 - 84; http://dx.doi.org/10.1091/mbc.E08-04-0407; PMID: 18784252
  • Di Fiore PP. Signal transduction: life on Mars, cellularly speaking. Nature 2003; 424:624 - 5; http://dx.doi.org/10.1038/424624a; PMID: 12904771
  • Bivona TG, Pérez De Castro I, Ahearn IM, Grana TM, Chiu VK, Lockyer PJ, et al. Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 2003; 424:694 - 8; http://dx.doi.org/10.1038/nature01806; PMID: 12845332
  • Caloca MJ, Zugaza JL, Bustelo XR. Exchange factors of the RasGRP family mediate Ras activation in the Golgi. J Biol Chem 2003; 278:33465 - 73; http://dx.doi.org/10.1074/jbc.M302807200; PMID: 12782630
  • Casar B, Arozarena I, Sanz-Moreno V, Pinto A, Agudo-Ibáñez L, Marais R, et al. Ras subcellular localization defines extracellular signal-regulated kinase 1 and 2 substrate specificity through distinct utilization of scaffold proteins. Mol Cell Biol 2009; 29:1338 - 53; http://dx.doi.org/10.1128/MCB.01359-08; PMID: 19114553
  • Lorentzen A, Kinkhabwala A, Rocks O, Vartak N, Bastiaens PIH. Regulation of Ras localization by acylation enables a mode of intracellular signal propagation. Sci Signal 2010; 3:ra68; http://dx.doi.org/10.1126/scisignal.20001370; PMID: 20858867
  • Daniels MA, Teixeiro E, Gill J, Hausmann B, Roubaty D, Holmberg K, et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 2006; 444:724 - 9; http://dx.doi.org/10.1038/nature05269; PMID: 17086201
  • Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420:629 - 35; http://dx.doi.org/10.1038/nature01148; PMID: 12478284
  • Boulter E, Garcia-Mata R. RhoGDI: A rheostat for the Rho switch. Small Gtpases 2010; 1:65 - 8; http://dx.doi.org/10.4161/sgtp.1.1.12990; PMID: 21686121
  • Ren X-D, Kiosses WB, Schwartz MA. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 1999; 18:578 - 85; http://dx.doi.org/10.1093/emboj/18.3.578; PMID: 9927417
  • Pertz O. Spatio-temporal Rho GTPase signaling - where are we now?. J Cell Sci 2010; 123:1841 - 50; http://dx.doi.org/10.1242/jcs.064345; PMID: 20484664
  • Erickson JW, Zhang C, Kahn RA, Evans T, Cerione RA. Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J Biol Chem 1996; 271:26850 - 4; http://dx.doi.org/10.1074/jbc.271.43.26850; PMID: 8900167
  • Wu WJ, Erickson JW, Lin R, Cerione RA. The gamma-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature 2000; 405:800 - 4; http://dx.doi.org/10.1038/35015585; PMID: 10866202
  • Luna A, Matas OB, Martínez-Menárguez JA, Mato E, Durán JM, Ballesta J, et al. Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP. Mol Biol Cell 2002; 13:866 - 79; http://dx.doi.org/10.1091/mbc.01-12-0579; PMID: 11907268
  • Kiyokawa E, Aoki K, Nakamura T, Matsuda M. Spatiotemporal regulation of small GTPases as revealed by probes based on the principle of Förster Resonance Energy Transfer (FRET): Implications for signaling and pharmacology. Annu Rev Pharmacol Toxicol 2011; 51:337 - 58; http://dx.doi.org/10.1146/annurev-pharmtox-010510-100234; PMID: 20936947
  • Welch CM, Elliott H, Danuser G, Hahn KM. Imaging the coordination of multiple signalling activities in living cells. Nat Rev Mol Cell Biol 2011; 12:749 - 56; http://dx.doi.org/10.1038/nrm3212; PMID: 22016058
  • Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, Matsuda M. Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol 2002; 22:6582 - 91; http://dx.doi.org/10.1128/MCB.22.18.6582-6591.2002; PMID: 12192056
  • Nalbant P, Hodgson L, Kraynov V, Toutchkine A, Hahn KM. Activation of endogenous Cdc42 visualized in living cells. Science 2004; 305:1615 - 9; http://dx.doi.org/10.1126/science.1100367; PMID: 15361624
  • Kodani A, Kristensen I, Huang L, Sütterlin C. GM130-dependent control of Cdc42 activity at the Golgi regulates centrosome organization. Mol Biol Cell 2009; 20:1192 - 200; http://dx.doi.org/10.1091/mbc.E08-08-0834; PMID: 19109421
  • Dubois T, Paléotti O, Mironov AA, Fraisier V, Stradal TEB, De Matteis MA, et al. Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Nat Cell Biol 2005; 7:353 - 64; http://dx.doi.org/10.1038/ncb1244; PMID: 15793564
  • Mahankali M, Peng H-J, Henkels KM, Dinauer MC, Gomez-Cambronero J. Phospholipase D2 (PLD2) is a guanine nucleotide exchange factor (GEF) for the GTPase Rac2. Proceedings of the National Academy of Sciences 2011.
  • Miura K, Jacques KM, Stauffer S, Kubosaki A, Zhu K, Hirsch DS, et al. ARAP1: a point of convergence for Arf and Rho signaling. Mol Cell 2002; 9:109 - 19; http://dx.doi.org/10.1016/S1097-2765(02)00428-8; PMID: 11804590
  • Li Y, Kelly WG, Logsdon JM Jr., Schurko AM, Harfe BD, Hill-Harfe KL, et al. Functional genomic analysis of the ADP-ribosylation factor family of GTPases: phylogeny among diverse eukaryotes and function in C. elegans. FASEB J 2004; 18:1834 - 50; http://dx.doi.org/10.1096/fj.04-2273com; PMID: 15576487
  • Fujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y. Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem 1988; 263:18545 - 52; PMID: 3192548
  • Lippincott-Schwartz J, Yuan LC, Bonifacino JS, Klausner RD. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 1989; 56:801 - 13; http://dx.doi.org/10.1016/0092-8674(89)90685-5; PMID: 2647301
  • Popoff V, Langer JD, Reckmann I, Hellwig A, Kahn RA, Brügger B, et al. Several ADP-ribosylation factor (Arf) isoforms support COPI vesicle formation. J Biol Chem 2011; 286:35634 - 42; http://dx.doi.org/10.1074/jbc.M111.261800; PMID: 21844198
  • Ben-Tekaya H, Kahn RA, Hauri H-P. ADP ribosylation factors 1 and 4 and group VIA phospholipase A₂ regulate morphology and intraorganellar traffic in the endoplasmic reticulum-Golgi intermediate compartment. Mol Biol Cell 2010; 21:4130 - 40; http://dx.doi.org/10.1091/mbc.E10-01-0022; PMID: 20881058
  • Volpicelli-Daley LA, Li Y, Zhang C-J, Kahn RA. Isoform-selective effects of the depletion of ADP-ribosylation factors 1-5 on membrane traffic. Mol Biol Cell 2005; 16:4495 - 508; http://dx.doi.org/10.1091/mbc.E04-12-1042; PMID: 16030262
  • Schweitzer JK, Sedgwick AE, D'Souza-Schorey C. ARF6-mediated endocytic recycling impacts cell movement, cell division and lipid homeostasis. Seminars in Cell &amp. Dev Biol 2011; 22:39 - 47
  • Zhou C, Cunningham L, Marcus AI, Li Y, Kahn RA. Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell 2006; 17:2476 - 87; http://dx.doi.org/10.1091/mbc.E05-10-0929; PMID: 16525022
  • Li Y, Wei Q, Zhang Y, Ling K, Hu J. The small GTPases ARL-13 and ARL-3 coordinate intraflagellar transport and ciliogenesis. J Cell Biol 2010; 189:1039 - 51; http://dx.doi.org/10.1083/jcb.200912001; PMID: 20530210
  • Wiens CJ, Tong Y, Esmail MA, Oh E, Gerdes JM, Wang J, et al. Bardet-Biedl syndrome-associated small GTPase ARL6 (BBS3) functions at or near the ciliary gate and modulates Wnt signaling. J Biol Chem 2010; 285:16218 - 30; http://dx.doi.org/10.1074/jbc.M109.070953; PMID: 20207729
  • Pfeffer SR. Transport-vesicle targeting: tethers before SNAREs. Nat Cell Biol 1999; 1:E17 - 22; http://dx.doi.org/10.1038/8967; PMID: 10559876
  • Yu S, Satoh A, Pypaert M, Mullen K, Hay JC, Ferro-Novick S. mBet3p is required for homotypic COPII vesicle tethering in mammalian cells. J Cell Biol 2006; 174:359 - 68; http://dx.doi.org/10.1083/jcb.200603044; PMID: 16880271
  • Haas AK, Yoshimura S-i, Stephens DJ, Preisinger C, Fuchs E, Barr FA. Analysis of GTPase-activating proteins: Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells. J Cell Sci 2007; 120:2997 - 3010; http://dx.doi.org/10.1242/jcs.014225; PMID: 17684057
  • Zenner HL, Yoshimura S-i, Barr FA, Crump CM. Analysis of Rab GTPase-activating proteins indicates that Rab1a/b and Rab43 are important for herpes simplex virus 1 secondary envelopment. J Virol 2011; 85:8012 - 21; http://dx.doi.org/10.1128/JVI.00500-11; PMID: 21680502
  • Girod A, Storrie B, Simpson JC, Johannes L, Goud B, Roberts LM, et al. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat Cell Biol 1999; 1:423 - 30; http://dx.doi.org/10.1038/15658; PMID: 10559986
  • Starr T, Sun Y, Wilkins N, Storrie B. Rab33b and Rab6 are functionally overlapping regulators of Golgi homeostasis and trafficking. Traffic 2010; 11:626 - 36; http://dx.doi.org/10.1111/j.1600-0854.2010.01051.x; PMID: 20163571
  • Young J, Stauber T, del Nery E, Vernos I, Pepperkok R, Nilsson T. Regulation of microtubule-dependent recycling at the trans-Golgi network by Rab6A and Rab6A’. Mol Biol Cell 2005; 16:162 - 77; http://dx.doi.org/10.1091/mbc.E04-03-0260; PMID: 15483056
  • Goldenberg NM, Grinstein S, Silverman M. Golgi-bound Rab34 is a novel member of the secretory pathway. Mol Biol Cell 2007; 18:4762 - 71; http://dx.doi.org/10.1091/mbc.E06-11-0991; PMID: 17881736
  • Nokes RL, Fields IC, Collins RN, Fölsch H. Rab13 regulates membrane trafficking between TGN and recycling endosomes in polarized epithelial cells. J Cell Biol 2008; 182:845 - 53; http://dx.doi.org/10.1083/jcb.200802176; PMID: 18779367
  • del Toro D, Alberch J, Lázaro-Diéguez F, Martín-Ibáñez R, Xifró X, Egea G, et al. Mutant huntingtin impairs post-Golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the Golgi apparatus. Mol Biol Cell 2009; 20:1478 - 92; http://dx.doi.org/10.1091/mbc.E08-07-0726; PMID: 19144827
  • Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 1976; 73:2424 - 8; http://dx.doi.org/10.1073/pnas.73.7.2424; PMID: 1065897
  • Onken B, Wiener H, Philips MR, Chang EC. Compartmentalized signaling of Ras in fission yeast. Proc Natl Acad Sci U S A 2006; 103:9045 - 50; http://dx.doi.org/10.1073/pnas.0603318103; PMID: 16754851
  • Cheng C-M, Li H, Gasman S, Huang J, Schiff R, Chang EC. Compartmentalized Ras proteins transform NIH 3T3 cells with different efficiencies. Mol Cell Biol 2011; 31:983 - 97; http://dx.doi.org/10.1128/MCB.00137-10; PMID: 21189290
  • Callow MG, Clairvoyant F, Zhu S, Schryver B, Whyte DB, Bischoff JR, et al. Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J Biol Chem 2002; 277:550 - 8; http://dx.doi.org/10.1074/jbc.M105732200; PMID: 11668177
  • Calvo F, Sanz-Moreno V, Agudo-Ibáñez L, Wallberg F, Sahai E, Marshall CJ, et al. RasGRF suppresses Cdc42-mediated tumour cell movement, cytoskeletal dynamics and transformation. Nat Cell Biol 2011; 13:819 - 26; http://dx.doi.org/10.1038/ncb2271; PMID: 21685891
  • Calvo F, Sanz-Moreno V, Agudo-Ibáñez L, Wallberg F, Sahai E, Marshall CJ, et al. RasGRF suppresses Cdc42-mediated tumour cell movement, cytoskeletal dynamics and transformation. Nat Cell Biol 2011; 13:819 - 26; http://dx.doi.org/10.1038/ncb2271; PMID: 21685891
  • Bar-Sagi D, Hall A. Ras and Rho GTPases: a family reunion. Cell 2000; 103:227 - 38; http://dx.doi.org/10.1016/S0092-8674(00)00115-X; PMID: 11057896
  • Lambert JM, Lambert QT, Reuther GW, Malliri A, Siderovski DP, Sondek J, et al. Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nat Cell Biol 2002; 4:621 - 5; PMID: 12134164
  • Zugaza JL, Caloca MJ, Bustelo XR. Inverted signaling hierarchy between RAS and RAC in T-lymphocytes. Oncogene 2004; 23:5823 - 33; http://dx.doi.org/10.1038/sj.onc.1207768; PMID: 15184873
  • Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 2003; 4:202 - 12; http://dx.doi.org/10.1038/nrm1050; PMID: 12612639
  • Salvarezza SB, Deborde S, Schreiner R, Campagne F, Kessels MM, Qualmann B, et al. LIM kinase 1 and cofilin regulate actin filament population required for dynamin-dependent apical carrier fission from the trans-Golgi network. Mol Biol Cell 2009; 20:438 - 51; http://dx.doi.org/10.1091/mbc.E08-08-0891; PMID: 18987335
  • Anitei M, Stange C, Parshina I, Baust T, Schenck A, Raposo G, et al. Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin-AP-1-coated carrier biogenesis at the TGN. Nat Cell Biol 2010; 12:330 - 40; http://dx.doi.org/10.1038/ncb2034; PMID: 20228810
  • Cukierman E, Huber I, Rotman M, Cassel D. The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 1995; 270:1999 - 2002; http://dx.doi.org/10.1126/science.270.5244.1999; PMID: 8533093
  • Beck R, Adolf F, Weimer C, Bruegger B, Wieland FT. ArfGAP1 activity and COPI vesicle biogenesis. Traffic 2009; 10:307 - 15; http://dx.doi.org/10.1111/j.1600-0854.2008.00865.x; PMID: 19055691
  • Reiterer V, Maier S, Sitte HH, Kriz A, Rüegg MA, Hauri HP, et al. Sec24- and ARFGAP1-dependent trafficking of GABA transporter-1 is a prerequisite for correct axonal targeting. J Neurosci 2008; 28:12453 - 64; http://dx.doi.org/10.1523/JNEUROSCI.3451-08.2008; PMID: 19020038
  • Siu KY, Yu MK, Wu X, Zong M, Roth MG, Chan HC, et al. The non-catalytic carboxyl-terminal domain of ARFGAP1 regulates actin cytoskeleton reorganization by antagonizing the activation of Rac1. PLoS One 2011; 6:e18458; http://dx.doi.org/10.1371/journal.pone.0018458; PMID: 21483700
  • Miura K, Jacques KM, Stauffer S, Kubosaki A, Zhu K, Hirsch DS, et al. ARAP1: a point of convergence for Arf and Rho signaling. Mol Cell 2002; 9:109 - 19; http://dx.doi.org/10.1016/S1097-2765(02)00428-8; PMID: 11804590
  • Bigarella CLo, Borges L, Costa FF, Saad STO. ARHGAP21 modulates FAK activity and impairs glioblastoma cell migration. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2009; 1793:806.
  • Jenkins GM, Frohman MA. Phospholipase D: a lipid centric review. Cell Mol Life Sci 2005; 62:2305 - 16; http://dx.doi.org/10.1007/s00018-005-5195-z; PMID: 16143829
  • Kim S-W, Hayashi M, Lo J-F, Yang Y, Yoo J-S, Lee J-D. ADP-ribosylation factor 4 small GTPase mediates epidermal growth factor receptor-dependent phospholipase D2 activation. J Biol Chem 2003; 278:2661 - 8; http://dx.doi.org/10.1074/jbc.M205819200; PMID: 12446727
  • Di Fulvio M, Frondorf K, Henkels KM, Lehman N, Gomez-Cambronero J. The Grb2/PLD2 interaction is essential for lipase activity, intracellular localization and signaling in response to EGF. J Mol Biol 2007; 367:814 - 24; http://dx.doi.org/10.1016/j.jmb.2007.01.021; PMID: 17276458
  • Mor A, Campi G, Du G, Zheng Y, Foster DA, Dustin ML, et al. The lymphocyte function-associated antigen-1 receptor costimulates plasma membrane Ras via phospholipase D2. Nat Cell Biol 2007; 9:713 - 9; http://dx.doi.org/10.1038/ncb1592; PMID: 17486117
  • Dong C, Li C, Wu G. Regulation of α(2B)-adrenergic receptor-mediated extracellular signal-regulated kinase 1/2 (ERK1/2) activation by ADP-ribosylation factor 1. J Biol Chem 2011; 286:43361 - 9; http://dx.doi.org/10.1074/jbc.M111.267286; PMID: 22025613
  • Ismail SA, Chen Y-X, Rusinova A, Chandra A, Bierbaum M, Gremer L, et al. Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nat Chem Biol 2011; 7:942 - 9; http://dx.doi.org/10.1038/nchembio.686; PMID: 22002721
  • Hanzal-Bayer M, Linari M, Wittinghofer A. Properties of the interaction of Arf-like protein 2 with PDEdelta. J Mol Biol 2005; 350:1074 - 82; http://dx.doi.org/10.1016/j.jmb.2005.05.036; PMID: 15979089
  • Chandra A, Grecco HE, Pisupati V, Perera D, Cassidy L, Skoulidis F, et al. The GDI-like solubilizing factor PDE[delta] sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol 2011; advance online publication.
  • Alvarez C, Garcia-Mata R, Brandon E, Sztul E. COPI recruitment is modulated by a Rab1b-dependent mechanism. Mol Biol Cell 2003; 14:2116 - 27; http://dx.doi.org/10.1091/mbc.E02-09-0625; PMID: 12802079
  • Monetta P, Slavin I, Romero N, Alvarez C. Rab1b interacts with GBF1 and modulates both ARF1 dynamics and COPI association. Mol Biol Cell 2007; 18:2400 - 10; http://dx.doi.org/10.1091/mbc.E06-11-1005; PMID: 17429068
  • Dumaresq-Doiron K, Savard M-F, Akam S, Costantino S, Lefrancois S. The phosphatidylinositol 4-kinase PI4KIIIalpha is required for the recruitment of GBF1 to Golgi membranes. J Cell Sci 2010; 123:2273 - 80; http://dx.doi.org/10.1242/jcs.055798; PMID: 20530568
  • Burguete AS, Fenn TD, Brunger AT, Pfeffer SR. Rab and Arl GTPase family members cooperate in the localization of the golgin GCC185. Cell 2008; 132:286 - 98; http://dx.doi.org/10.1016/j.cell.2007.11.048; PMID: 18243103
  • Reddy JV, Burguete AS, Sridevi K, Ganley IG, Nottingham RM, Pfeffer SR. A functional role for the GCC185 golgin in mannose 6-phosphate receptor recycling. Mol Biol Cell 2006; 17:4353 - 63; http://dx.doi.org/10.1091/mbc.E06-02-0153; PMID: 16885419
  • Derby MC, Lieu ZZ, Brown D, Stow JL, Goud B, Gleeson PA. The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure. Traffic 2007; 8:758 - 73; http://dx.doi.org/10.1111/j.1600-0854.2007.00563.x; PMID: 17488291
  • Houghton FJ, Chew PL, Lodeho S, Goud B, Gleeson PA. The localization of the Golgin GCC185 is independent of Rab6A/A’ and Arl1. Cell 2009; 138:787 - 94; http://dx.doi.org/10.1016/j.cell.2009.05.048; PMID: 19703403
  • Mazelova J, Astuto-Gribble L, Inoue H, Tam BM, Schonteich E, Prekeris R, et al. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J 2009; 28:183 - 92; http://dx.doi.org/10.1038/emboj.2008.267; PMID: 19153612
  • Knödler A, Feng S, Zhang J, Zhang X, Das A, Per Ã. ¤nen J, et al. Coordination of Rab8 and Rab11 in primary ciliogenesis. Proceedings of the National Academy of Sciences 2010; 107:6346-51.
  • Rogalski AA, Singer SJ. Associations of elements of the Golgi apparatus with microtubules. J Cell Biol 1984; 99:1092 - 100; http://dx.doi.org/10.1083/jcb.99.3.1092; PMID: 6381504
  • Miller PM, Folkmann AW, Maia ARR, Efimova N, Efimov A, Kaverina I. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat Cell Biol 2009; 11:1069 - 80; http://dx.doi.org/10.1038/ncb1920; PMID: 19701196
  • Dippold HC, Ng MM, Farber-Katz SE, Lee S-K, Kerr ML, Peterman MC, et al. GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 2009; 139:337 - 51; http://dx.doi.org/10.1016/j.cell.2009.07.052; PMID: 19837035
  • Zilberman Y, Alieva NO, Miserey-Lenkei S, Lichtenstein A, Kam Z, Sabanay H, et al. Involvement of the Rho-mDia1 pathway in the regulation of Golgi complex architecture and dynamics. Mol Biol Cell 2011; 22:2900 - 11; http://dx.doi.org/10.1091/mbc.E11-01-0007; PMID: 21680709
  • Taylor SJ, Shalloway D. Cell cycle-dependent activation of Ras. Current biology: CB 1996; 6:1621.
  • Boulter E, Garcia-Mata R, Guilluy C, Dubash A, Rossi G, Brennwald PJ, et al. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol 2010; 12:477 - 83; http://dx.doi.org/10.1038/ncb2049; PMID: 20400958
  • Augsten M, Pusch R, Biskup C, Rennert K, Wittig U, Beyer K, et al. Live-cell imaging of endogenous Ras-GTP illustrates predominant Ras activation at the plasma membrane. EMBO Rep 2006; 7:46 - 51; http://dx.doi.org/10.1038/sj.embor.7400560; PMID: 16282985
  • Komatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y, et al. Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 2011; 22:4647 - 56; http://dx.doi.org/10.1091/mbc.E11-01-0072; PMID: 21976697
  • Nyfeler B, Reiterer V, Wendeler MW, Stefan E, Zhang B, Michnick SW, et al. Identification of ERGIC-53 as an intracellular transport receptor of alpha1-antitrypsin. J Cell Biol 2008; 180:705 - 12; http://dx.doi.org/10.1083/jcb.200709100; PMID: 18283111
  • Reiterer V, Nyfeler B, Hauri H-P. Role of the lectin VIP36 in post-ER quality control of human α1-antitrypsin. Traffic 2010; 11:1044 - 55; http://dx.doi.org/10.1111/j.1600-0854.2010.01078.x; PMID: 20477988
  • Michnick SW, Ear PH, Landry C, Malleshaiah MK, Messier V. Protein-Fragment Complementation Assays for Large-Scale Analysis, Functional Dissection and Dynamic Studies of Protein–Protein Interactions in Living Cells. 2011:395-425.
  • Daniele T, Di Tullio G, Santoro M, Turacchio G, De Matteis MA. ARAP1 regulates EGF receptor trafficking and signalling. Traffic 2008; 9:2221 - 35; http://dx.doi.org/10.1111/j.1600-0854.2008.00823.x; PMID: 18764928