2,270
Views
79
CrossRef citations to date
0
Altmetric
Review

Role of the Rho GTPase Rac in the activation of the phagocyte NADPH oxidase

Outsourcing a key task

Article: e27952 | Received 13 Nov 2013, Accepted 22 Jan 2014, Published online: 05 Mar 2014

References

  • Nauseef WM. How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev 2007; 219:88 - 102; http://dx.doi.org/10.1111/j.1600-065X.2007.00550.x; PMID: 17850484
  • Nauseef WM. Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol 2004; 122:277 - 91; http://dx.doi.org/10.1007/s00418-004-0679-8; PMID: 15293055
  • Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 2004; 76:760 - 81; http://dx.doi.org/10.1189/jlb.0404216; PMID: 15240752
  • Groemping Y, Rittinger K. Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 2005; 386:401 - 16; http://dx.doi.org/10.1042/BJ20041835; PMID: 15588255
  • Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 2008; 275:3249 - 77; http://dx.doi.org/10.1111/j.1742-4658.2008.06488.x; PMID: 18513324
  • Kreck ML, Freeman JL, Abo A, Lambeth JD. Membrane association of Rac is required for high activity of the respiratory burst oxidase. Biochemistry 1996; 35:15683 - 92; http://dx.doi.org/10.1021/bi962064l; PMID: 8961931
  • Sarfstein R, Gorzalczany Y, Mizrahi A, Berdichevsky Y, Molshanski-Mor S, Weinbaum C, Hirshberg M, Dagher M-C, Pick E. Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox: a study based on mutagenesis of p67phox-Rac1 chimeras. J Biol Chem 2004; 279:16007 - 16; http://dx.doi.org/10.1074/jbc.M312394200; PMID: 14761978
  • Freeman JL, Lambeth JD. NADPH oxidase activity is independent of p47phox in vitro.. J Biol Chem 1996; 271:22578 - 82; http://dx.doi.org/10.1074/jbc.271.37.22578; PMID: 8798426
  • Koshkin V, Lotan O, Pick E. The cytosolic component p47(phox) is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production. J Biol Chem 1996; 271:30326 - 9; http://dx.doi.org/10.1074/jbc.271.48.30326; PMID: 8939991
  • Gorzalczany Y, Sigal N, Itan M, Lotan O, Pick E. Targeting of Rac1 to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly. J Biol Chem 2000; 275:40073 - 81; http://dx.doi.org/10.1074/jbc.M006013200; PMID: 11007780
  • Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87:245 - 313; http://dx.doi.org/10.1152/physrev.00044.2005; PMID: 17237347
  • Bromberg Y, Pick E. Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages. Cell Immunol 1984; 88:213 - 21; http://dx.doi.org/10.1016/0008-8749(84)90066-2; PMID: 6090027
  • Bromberg Y, Pick E. Activation of NADPH-dependent superoxide production in a cell-free system by sodium dodecyl sulfate. J Biol Chem 1985; 260:13539 - 45; PMID: 2997168
  • Molshanski-Mor S, Mizrahi A, Ugolev Y, Dahan I, Berdichevsky Y, Pick E. Cell-free Assays: The Reductionist Approach to the Study of NADPH Oxidase Assembly, or All You Wanted to Know About Cell-Free Assays but Did Not Dare to Ask. In Quinn MT, DeLeo FR, Bokoch GM, editors. Neutrophil Methods and Protocols.Totowa NJ: Humana Press; 2007. p. 385-428.
  • Abo A, Boyhan A, West I, Thrasher AJ, Segal AW. Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p67-phox, p47-phox, p21rac1, and cytochrome b-245. J Biol Chem 1992; 267:16767 - 70; PMID: 1512217
  • Seifert R, Rosenthal W, Schultz G. Guanine nucleotides stimulate NADPH oxidase in membranes of human neutrophils. FEBS Lett 1986; 205:161 - 5; http://dx.doi.org/10.1016/0014-5793(86)80886-9; PMID: 3017756
  • Seifert R, Schultz G. Fatty-acid-induced activation of NADPH oxidase in plasma membranes of human neutrophils depends on neutrophil cytosol and is potentiated by stable guanine nucleotides. Eur J Biochem 1987; 162:563 - 9; http://dx.doi.org/10.1111/j.1432-1033.1987.tb10676.x; PMID: 3549290
  • Seifert R, Schultz G. Reversible activation of NADPH oxidase in membranes of HL-60 human leukemic cells. Biochem Biophys Res Commun 1987; 146:1296 - 302; http://dx.doi.org/10.1016/0006-291X(87)90790-X; PMID: 3113431
  • Gabig TG, English D, Akard LP, Schell MJ. Regulation of neutrophil NADPH oxidase activation in a cell-free system by guanine nucleotides and fluoride. Evidence for participation of a pertussis and cholera toxin-insensitive G protein. J Biol Chem 1987; 262:1685 - 90; PMID: 3027097
  • Gabig TG, Eklund EA, Potter GB, Dykes JR 2nd. A neutrophil GTP-binding protein that regulates cell free NADPH oxidase activation is located in the cytosolic fraction. J Immunol 1990; 145:945 - 51; PMID: 2115550
  • Ligeti E, Doussiere J, Vignais PV. Activation of the O2(.-)-generating oxidase in plasma membrane from bovine polymorphonuclear neutrophils by arachidonic acid, a cytosolic factor of protein nature, and nonhydrolyzable analogues of GTP. Biochemistry 1988; 27:193 - 200; http://dx.doi.org/10.1021/bi00401a029; PMID: 2831954
  • Ligeti E, Tardif M, Vignais PV. Activation of O2.- generating oxidase of bovine neutrophils in a cell-free system. Interaction of a cytosolic factor with the plasma membrane and control by G nucleotides. Biochemistry 1989; 28:7116 - 23; http://dx.doi.org/10.1021/bi00443a050; PMID: 2554964
  • Doussiere J, Pilloud MC, Vignais PV. Activation of bovine neutrophil oxidase in a cell free system. GTP-dependent formation of a complex between a cytosolic factor and a membrane protein. Biochem Biophys Res Commun 1988; 152:993 - 1001; http://dx.doi.org/10.1016/S0006-291X(88)80382-6; PMID: 3132160
  • Aharoni I, Pick E. Activation of the superoxide-generating NADPH oxidase of macrophages by sodium dodecyl sulfate in a soluble cell-free system: evidence for involvement of a G protein. J Leukoc Biol 1990; 48:107 - 15; PMID: 2164554
  • Orczi E. The Elusive Pimpernel. London: Hutchinson and Co; 1908.
  • Quinn MT, Parkos CA, Walker L, Orkin SH, Dinauer MC, Jesaitis AJ. Association of a Ras-related protein with cytochrome b of human neutrophils. Nature 1989; 342:198 - 200; http://dx.doi.org/10.1038/342198a0; PMID: 2509942
  • Bokoch GM, Quilliam LA, Bohl BP, Jesaitis AJ, Quinn MT. Inhibition of Rap1A binding to cytochrome b558 of NADPH oxidase by phosphorylation of Rap1A. Science 1991; 254:1794 - 6; http://dx.doi.org/10.1126/science.1763330; PMID: 1763330
  • Eklund EA, Marshall M, Gibbs JB, Crean CD, Gabig TG. Resolution of a low molecular weight G protein in neutrophil cytosol required for NADPH oxidase activation and reconstitution by recombinant Krev-1 protein. J Biol Chem 1991; 266:13964 - 70; PMID: 1906890
  • Quinn MT, Curnutte JT, Parkos CA, Mullen ML, Scott PJ, Erickson RW, Jesaitis AJ. Reconstitution of defective respiratory burst activity with partially purified human neutrophil cytochrome B in two genetic forms of chronic granulomatous disease: possible role of Rap1A. Blood 1992; 79:2438 - 45; PMID: 1315174
  • Li Y, Yan J, De P, Chang H-C, Yamauchi A, Christopherson KW 2nd, Paranavitana NC, Peng X, Kim C, Munugalavadla V, et al. Rap1a null mice have altered myeloid cell functions suggesting distinct roles for the closely related Rap1a and 1b proteins. J Immunol 2007; 179:8322 - 31; PMID: 18056377
  • Gabig TG, Crean CD, Mantel PL, Rosli R. Function of wild-type or mutant Rac2 and Rap1a GTPases in differentiated HL60 cell NADPH oxidase activation. Blood 1995; 85:804 - 11; PMID: 7833480
  • Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 1991; 353:668 - 70; http://dx.doi.org/10.1038/353668a0; PMID: 1922386
  • Knoller S, Shpungin S, Pick E. The membrane-associated component of the amphiphile-activated, cytosol-dependent superoxide-forming NADPH oxidase of macrophages is identical to cytochrome b559. J Biol Chem 1991; 266:2795 - 804; PMID: 1847135
  • Didsbury J, Weber RF, Bokoch GM, Evans T, Snyderman R. rac, a novel ras-related family of proteins that are botulinum toxin substrates. J Biol Chem 1989; 264:16378 - 82; PMID: 2674130
  • Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 2005; 21:247 - 69; http://dx.doi.org/10.1146/annurev.cellbio.21.020604.150721; PMID: 16212495
  • Bokoch GM. Rac2. In: Zerial M, Huber LA, editors. Guidebook to the small GTPases. Oxford: Oxford University Press; 1995. p. 225-227.
  • Self AJ, Hall A. Purification of recombinant Rho/Rc/G25K from Escherichia coli. In: Balch WE, Der CJ, Hall A, editors. Methods in Enzymology, San Diego: Academic Press; 1995. vol. 256, p. 3-10.
  • Hirshberg M, Stockley RW, Dodson G, Webb MR. The crystal structure of human rac1, a member of the rho-family complexed with a GTP analogue. Nat Struct Biol 1997; 4:147 - 52; http://dx.doi.org/10.1038/nsb0297-147; PMID: 9033596
  • Dagher MC, Fuchs A, Bourmeyster N, Jouan A, Vignais PV. Small G proteins and the neutrophil NADPH oxidase. Biochimie 1995; 77:651 - 60; http://dx.doi.org/10.1016/0300-9084(96)88180-6; PMID: 8589075
  • Bokoch GM, Diebold BA. Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 2002; 100:2692 - 6; http://dx.doi.org/10.1182/blood-2002-04-1149; PMID: 12351373
  • Diebold BA, Bokoch GM. Rho GTPases and the control of the oxidative burst in polymorphonuclear leukocytes. Curr Top Microbiol Immunol 2005; 291:91 - 111; http://dx.doi.org/10.1007/3-540-27511-8_6; PMID: 15981461
  • Bokoch GM, Zhao T. Regulation of the phagocyte NADPH oxidase by Rac GTPase. Antioxid Redox Signal 2006; 8:1533 - 48; http://dx.doi.org/10.1089/ars.2006.8.1533; PMID: 16987009
  • Hordijk PL. Regulation of NADPH oxidases: the role of Rac proteins. Circ Res 2006; 98:453 - 62; http://dx.doi.org/10.1161/01.RES.0000204727.46710.5e; PMID: 16514078
  • Miyano K, Sumimoto H. Assessment of the role for Rho family GTPases in NADPH oxidase activation. In: Rivero F, editor. Rho GTPases; Methods and protocols. Berlin: Springer Science + Business Media; 2012. p. 195-212.
  • Fujita I, Takeshige K, Minakami S. Characterization of the NADPH-dependent superoxide production activated by sodium dodecyl sulfate in a cell-free system of pig neutrophils. Biochim Biophys Acta 1987; 931:41 - 8; http://dx.doi.org/10.1016/0167-4889(87)90048-6; PMID: 2820510
  • Volpp BD, Nauseef WM, Clark RA. Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science 1988; 242:1295 - 7; http://dx.doi.org/10.1126/science.2848318; PMID: 2848318
  • Nunoi H, Rotrosen D, Gallin JI, Malech HL. Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 1988; 242:1298 - 301; http://dx.doi.org/10.1126/science.2848319; PMID: 2848319
  • Bolscher BGJM, Denis SW, Verhoeven AJ, Roos D. The activity of one soluble component of the cell-free NADPH:O2 oxidoreductase of human neutrophils depends on guanosine 5′-O-(3-thio)triphosphate. J Biol Chem 1990; 265:15782 - 7; PMID: 2203787
  • Pick E, Kroizman T, Abo A. Activation of the superoxide-forming NADPH oxidase of macrophages requires two cytosolic components--one of them is also present in certain nonphagocytic cells. J Immunol 1989; 143:4180 - 7; PMID: 2556480
  • Sha’ag D, Pick E. Nucleotide binding properties of cytosolic components required for expression of activity of the superoxide generating NADPH oxidase. Biochim Biophys Acta 1990; 1037:405 - 12; http://dx.doi.org/10.1016/0167-4838(90)90044-G; PMID: 2155658
  • Abo A, Pick E. Purification and characterization of a third cytosolic component of the superoxide-generating NADPH oxidase of macrophages. J Biol Chem 1991; 266:23577 - 85; PMID: 1660877
  • Pick E, Gorzalczany Y, Engel S. Role of the rac1 p21-GDP-dissociation inhibitor for rho heterodimer in the activation of the superoxide-forming NADPH oxidase of macrophages. Eur J Biochem 1993; 217:441 - 55; http://dx.doi.org/10.1111/j.1432-1033.1993.tb18264.x; PMID: 8223583
  • Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM. Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 1991; 254:1512 - 5; http://dx.doi.org/10.1126/science.1660188; PMID: 1660188
  • Knaus UG, Heyworth PG, Kinsella BT, Curnutte JT, Bokoch GM. Purification and characterization of Rac 2. A cytosolic GTP-binding protein that regulates human neutrophil NADPH oxidase. J Biol Chem 1992; 267:23575 - 82; PMID: 1331090
  • Mizuno T, Kaibuchi K, Ando S, Musha T, Hiraoka K, Takaishi K, Asada M, Nunoi H, Matsuda I, Takai Y. Regulation of the superoxide-generating NADPH oxidase by a small GTP-binding protein and its stimulatory and inhibitory GDP/GTP exchange proteins. J Biol Chem 1992; 267:10215 - 8; PMID: 1316893
  • Kwong CH, Malech HL, Rotrosen D, Leto TL. Regulation of the human neutrophil NADPH oxidase by rho-related G-proteins. Biochemistry 1993; 32:5711 - 7; http://dx.doi.org/10.1021/bi00072a029; PMID: 8504089
  • Ando S, Kaibuchi K, Sasaki T, Hiraoka K, Nishiyama T, Mizuno T, Asada M, Nunoi H, Matsuda I, Matsuura Y, et al. Post-translational processing of rac p21s is important both for their interaction with the GDP/GTP exchange proteins and for their activation of NADPH oxidase. J Biol Chem 1992; 267:25709 - 13; PMID: 1464587
  • Cordle A, Koenigsknecht-Talboo J, Wilkinson B, Limpert A, Landreth G. Mechanisms of statin-mediated inhibition of small G-protein function. J Biol Chem 2005; 280:34202 - 9; http://dx.doi.org/10.1074/jbc.M505268200; PMID: 16085653
  • Zhao X, Carnevale KA, Cathcart MK. Human monocytes use Rac1, not Rac2, in the NADPH oxidase complex. J Biol Chem 2003; 278:40788 - 92; http://dx.doi.org/10.1074/jbc.M302208200; PMID: 12912997
  • Diekmann D, Abo A, Johnston C, Segal AW, Hall A. Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 1994; 265:531 - 3; http://dx.doi.org/10.1126/science.8036496; PMID: 8036496
  • Diekmann D, Nobes CD, Burbelo PD, Abo A, Hall A. Rac GTPase interacts with GAPs and target proteins through multiple effector sites. EMBO J 1995; 14:5297 - 305; PMID: 7489719
  • Prigmore E, Ahmed S, Best A, Kozma R, Manser E, Segal AW, Lim L. A 68-kDa kinase and NADPH oxidase component p67phox are targets for Cdc42Hs and Rac1 in neutrophils. J Biol Chem 1995; 270:10717 - 22; http://dx.doi.org/10.1074/jbc.270.18.10717; PMID: 7738010
  • Dorseuil O, Reibel L, Bokoch GM, Camonis J, Gacon G. The Rac target NADPH oxidase p67phox interacts preferentially with Rac2 rather than Rac1. J Biol Chem 1996; 271:83 - 8; http://dx.doi.org/10.1074/jbc.271.1.83; PMID: 8550629
  • Xu X, Barry DC, Settleman J, Schwartz MA, Bokoch GM. Differing structural requirements for GTPase-activating protein responsiveness and NADPH oxidase activation by Rac. J Biol Chem 1994; 269:23569 - 74; PMID: 8089125
  • Kwong CH, Adams AG, Leto TL. Characterization of the effector-specifying domain of Rac involved in NADPH oxidase activation. J Biol Chem 1995; 270:19868 - 72; http://dx.doi.org/10.1074/jbc.270.34.19868; PMID: 7649999
  • Joseph G, Pick E. “Peptide walking” is a novel method for mapping functional domains in proteins. Its application to the Rac1-dependent activation of NADPH oxidase. J Biol Chem 1995; 270:29079 - 82; http://dx.doi.org/10.1074/jbc.270.49.29079; PMID: 7493930
  • Toporik A, Gorzalczany Y, Hirshberg M, Pick E, Lotan O. Mutational analysis of novel effector domains in Rac1 involved in the activation of nicotinamide adenine dinucleotide phosphate (reduced) oxidase. Biochemistry 1998; 37:7147 - 56; http://dx.doi.org/10.1021/bi9800404; PMID: 9585526
  • Sehr P, Joseph G, Genth H, Just I, Pick E, Aktories K. Glucosylation and ADP ribosylation of rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling. Biochemistry 1998; 37:5296 - 304; http://dx.doi.org/10.1021/bi972592c; PMID: 9548761
  • Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H. Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem 1999; 274:25051 - 60; http://dx.doi.org/10.1074/jbc.274.35.25051; PMID: 10455184
  • Leusen JHW, de Klein A, Hilarius PM, Ahlin A, Palmblad J, Smith CIE, Diekmann D, Hall A, Verhoeven AJ, Roos D. Disturbed interaction of p21-rac with mutated p67-phox causes chronic granulomatous disease. J Exp Med 1996; 184:1243 - 9; http://dx.doi.org/10.1084/jem.184.4.1243; PMID: 8879195
  • Ahmed S, Prigmore E, Govind S, Veryard C, Kozma R, Wientjes FB, Segal AW, Lim L. Cryptic Rac-binding and p21(Cdc42Hs/Rac)-activated kinase phosphorylation sites of NADPH oxidase component p67(phox).. J Biol Chem 1998; 273:15693 - 701; http://dx.doi.org/10.1074/jbc.273.25.15693; PMID: 9624165
  • Diebold BA, Bokoch GM. Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol 2001; 2:211 - 5; http://dx.doi.org/10.1038/85259; PMID: 11224519
  • Lapouge K, Smith SJ, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K. Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol Cell 2000; 6:899 - 907; http://dx.doi.org/10.1016/S1097-2765(05)00091-2; PMID: 11090627
  • Bosco EE, Kumar S, Marchioni F, Biesiada J, Kordos M, Szczur K, Meller J, Seibel W, Mizrahi A, Pick E, et al. Rational design of small molecule inhibitors targeting the Rac GTPase-p67(phox) signaling axis in inflammation. Chem Biol 2012; 19:228 - 42; http://dx.doi.org/10.1016/j.chembiol.2011.12.017; PMID: 22365606
  • Heyworth PG, Bohl BP, Bokoch GM, Curnutte JT. Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phox. Evidence for its interaction with flavocytochrome b558. J Biol Chem 1994; 269:30749 - 52; PMID: 7982999
  • Diebold BA, Fowler B, Lu J, Dinauer MC, Bokoch GM. Antagonistic cross-talk between Rac and Cdc42 GTPases regulates generation of reactive oxygen species. J Biol Chem 2004; 279:28136 - 42; http://dx.doi.org/10.1074/jbc.M313891200; PMID: 15123662
  • Kao Y-Y, Gianni D, Bohl B, Taylor RM, Bokoch GM. Identification of a conserved Rac-binding site on NADPH oxidases supports a direct GTPase regulatory mechanism. J Biol Chem 2008; 283:12736 - 46; http://dx.doi.org/10.1074/jbc.M801010200; PMID: 18347018
  • Miyano K, Ogasawara S, Han C-H, Fukuda H, Tamura M. A fusion protein between rac and p67phox (1-210) reconstitutes NADPH oxidase with higher activity and stability than the individual components. Biochemistry 2001; 40:14089 - 97; http://dx.doi.org/10.1021/bi010882u; PMID: 11705402
  • Alloul N, Gorzalczany Y, Itan M, Sigal N, Pick E. Activation of the superoxide-generating NADPH oxidase by chimeric proteins consisting of segments of the cytosolic component p67(phox) and the small GTPase Rac1. Biochemistry 2001; 40:14557 - 66; http://dx.doi.org/10.1021/bi0117347; PMID: 11724569
  • Gorzalczany Y, Alloul N, Sigal N, Weinbaum C, Pick E. A prenylated p67phox-Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and of p47phox: conversion of a pagan NADPH oxidase to monotheism. J Biol Chem 2002; 277:18605 - 10; http://dx.doi.org/10.1074/jbc.M202114200; PMID: 11896062
  • Berdichevsky Y, Mizrahi A, Ugolev Y, Molshanski-Mor S, Pick E. Tripartite chimeras comprising functional domains derived from the cytosolic NADPH oxidase components p47phox, p67phox, and Rac1 elicit activator-independent superoxide production by phagocyte membranes: an essential role for anionic membrane phospholipids. J Biol Chem 2007; 282:22122 - 39; http://dx.doi.org/10.1074/jbc.M701497200; PMID: 17548354
  • Mizrahi A, Berdichevsky Y, Casey PJ, Pick E. A prenylated p47phox-p67phox-Rac1 chimera is a Quintessential NADPH oxidase activator: membrane association and functional capacity. J Biol Chem 2010; 285:25485 - 99; http://dx.doi.org/10.1074/jbc.M110.113779; PMID: 20529851
  • Mizrahi A, Berdichevsky Y, Ugolev Y, Molshanski-Mor S, Nakash Y, Dahan I, Alloul N, Gorzalczany Y, Sarfstein R, Hirshberg M, et al. Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure-function relationships. J Leukoc Biol 2006; 79:881 - 95; http://dx.doi.org/10.1189/jlb.1005553; PMID: 16641134
  • Han C-H, Freeman JLR, Lee T, Motalebi SA, Lambeth JD. Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67(phox).. J Biol Chem 1998; 273:16663 - 8; http://dx.doi.org/10.1074/jbc.273.27.16663; PMID: 9642219
  • Grizot S, Fieschi F, Dagher M-C, Pebay-Peyroula E. The active N-terminal region of p67phox. Structure at 1.8 A resolution and biochemical characterizations of the A128V mutant implicated in chronic granulomatous disease. J Biol Chem 2001; 276:21627 - 31; http://dx.doi.org/10.1074/jbc.M100893200; PMID: 11262407
  • Freeman JL, Abo A, Lambeth JD. Rac “insert region” is a novel effector region that is implicated in the activation of NADPH oxidase, but not PAK65. J Biol Chem 1996; 271:19794 - 801; http://dx.doi.org/10.1074/jbc.271.33.19794; PMID: 8702687
  • Thapar R, Karnoub AE, Campbell SL. Structural and biophysical insights into the role of the insert region in Rac1 function. Biochemistry 2002; 41:3875 - 83; http://dx.doi.org/10.1021/bi0120087; PMID: 11900529
  • Nisimoto Y, Freeman JLR, Motalebi SA, Hirshberg M, Lambeth JD. Rac binding to p67(phox). Structural basis for interactions of the Rac1 effector region and insert region with components of the respiratory burst oxidase. J Biol Chem 1997; 272:18834 - 41; http://dx.doi.org/10.1074/jbc.272.30.18834; PMID: 9228059
  • Miyano K, Koga H, Minakami R, Sumimoto H. The insert region of the Rac GTPases is dispensable for activation of superoxide-producing NADPH oxidases. Biochem J 2009; 422:373 - 82; http://dx.doi.org/10.1042/BJ20082182; PMID: 19534724
  • Abo A, Webb MR, Grogan A, Segal AW. Activation of NADPH oxidase involves the dissociation of p21rac from its inhibitory GDP/GTP exchange protein (rhoGDI) followed by its translocation to the plasma membrane. Biochem J 1994; 298:585 - 91; PMID: 8141770
  • Bromberg Y, Shani E, Joseph G, Gorzalczany Y, Sperling O, Pick E. The GDP-bound form of the small G protein Rac1 p21 is a potent activator of the superoxide-forming NADPH oxidase of macrophages. J Biol Chem 1994; 269:7055 - 8; PMID: 8125910
  • Di-Poï N, Fauré J, Grizot S, Molnár G, Pick E, Dagher M-C. Mechanism of NADPH oxidase activation by the Rac/Rho-GDI complex. Biochemistry 2001; 40:10014 - 22; http://dx.doi.org/10.1021/bi010289c; PMID: 11513579
  • Sawai T, Asada M, Nunoi H, Matsuda I, Ando S, Sasaki T, Kaibuchi K, Takai Y, Katayama K. Combination of arachidonic acid and guanosine 5′-O-(3-thiotriphosphate) induce translocation of rac p21s to membrane and activation of NADPH oxidase in a cell-free system. Biochem Biophys Res Commun 1993; 195:264 - 9; http://dx.doi.org/10.1006/bbrc.1993.2039; PMID: 8395827
  • Quinn MT, Evans T, Loetterle LR, Jesaitis AJ, Bokoch GM. Translocation of Rac correlates with NADPH oxidase activation. Evidence for equimolar translocation of oxidase components. J Biol Chem 1993; 268:20983 - 7; PMID: 8407934
  • Philips MR, Pillinger MH, Staud R, Volker C, Rosenfeld MG, Weissmann G, Stock JB. Carboxyl methylation of Ras-related proteins during signal transduction in neutrophils. Science 1993; 259:977 - 80; http://dx.doi.org/10.1126/science.8438158; PMID: 8438158
  • Le Cabec V, Möhn H, Gacon G, Maridonneau-Parini I. The small GTP-binding protein rac is not recruited to the plasma membrane upon NADPH oxidase activation in human neutrophils. Biochem Biophys Res Commun 1994; 198:1216 - 24; http://dx.doi.org/10.1006/bbrc.1994.1172; PMID: 8117279
  • Philips MR, Feoktistov A, Pillinger MH, Abramson SB. Translocation of p21rac2 from cytosol to plasma membrane is neither necessary nor sufficient for neutrophil NADPH oxidase activity. J Biol Chem 1995; 270:11514 - 21; http://dx.doi.org/10.1074/jbc.270.19.11514; PMID: 7744791
  • van Bruggen R, Anthony E, Fernandez-Borja M, Roos D. Continuous translocation of Rac2 and the NADPH oxidase component p67(phox) during phagocytosis. J Biol Chem 2004; 279:9097 - 102; http://dx.doi.org/10.1074/jbc.M309284200; PMID: 14623873
  • Yeung T, Grinstein S. Lipid signaling and the modulation of surface charge during phagocytosis. Immunol Rev 2007; 219:17 - 36; http://dx.doi.org/10.1111/j.1600-065X.2007.00546.x; PMID: 17850479
  • Pick E. Editorial: When charge is in charge--“Millikan” for leukocyte biologists. J Leukoc Biol 2010; 87:537 - 40; http://dx.doi.org/10.1189/jlb.1109710; PMID: 20356903
  • Kreck ML, Uhlinger DJ, Tyagi SR, Inge KL, Lambeth JD. Participation of the small molecular weight GTP-binding protein Rac1 in cell-free activation and assembly of the respiratory burst oxidase. Inhibition by a carboxyl-terminal Rac peptide. J Biol Chem 1994; 269:4161 - 8; PMID: 8307977
  • Joseph G, Gorzalczany Y, Koshkin V, Pick E. Inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxyl-terminal domain of small GTP-binding proteins. Lack of amino acid sequence specificity and importance of polybasic motif. J Biol Chem 1994; 269:29024 - 31; PMID: 7961867
  • Sigal N, Gorzalczany Y, Pick E. Two pathways of activation of the superoxide-generating NADPH oxidase of phagocytes in vitro--distinctive effects of inhibitors. Inflammation 2003; 27:147 - 59; http://dx.doi.org/10.1023/A:1023869828688; PMID: 12875368
  • Missy K, Van Poucke V, Raynal P, Viala C, Mauco G, Plantavid M, Chap H, Payrastre B. Lipid products of phosphoinositide 3-kinase interact with Rac1 GTPase and stimulate GDP dissociation. J Biol Chem 1998; 273:30279 - 86; http://dx.doi.org/10.1074/jbc.273.46.30279; PMID: 9804788
  • Finkielstein CV, Overduin M, Capelluto DGS. Cell migration and signaling specificity is determined by the phosphatidylserine recognition motif of Rac1. J Biol Chem 2006; 281:27317 - 26; http://dx.doi.org/10.1074/jbc.M605560200; PMID: 16861229
  • Ueyama T, Eto M, Kami K, Tatsuno T, Kobayashi T, Shirai Y, Lennartz MR, Takeya R, Sumimoto H, Saito N. Isoform-specific membrane targeting mechanism of Rac during Fc gamma R-mediated phagocytosis: positive charge-dependent and independent targeting mechanism of Rac to the phagosome. J Immunol 2005; 175:2381 - 90; PMID: 16081809
  • Magalhaes MAO, Glogauer M. Pivotal Advance: Phospholipids determine net membrane surface charge resulting in differential localization of active Rac1 and Rac2. J Leukoc Biol 2010; 87:545 - 55; http://dx.doi.org/10.1189/jlb.0609390; PMID: 19955208
  • Zhang FL, Casey PJ. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 1996; 65:241 - 69; http://dx.doi.org/10.1146/annurev.bi.65.070196.001325; PMID: 8811180
  • Bokoch GM, Prossnitz V. Isoprenoid metabolism is required for stimulation of the respiratory burst oxidase of HL-60 cells. J Clin Invest 1992; 89:402 - 8; http://dx.doi.org/10.1172/JCI115599; PMID: 1310693
  • Didsbury JR, Uhing RJ, Snyderman R. Isoprenylation of the low molecular mass GTP-binding proteins rac 1 and rac 2: possible role in membrane localization. Biochem Biophys Res Commun 1990; 171:804 - 12; http://dx.doi.org/10.1016/0006-291X(90)91217-G; PMID: 2119580
  • Heyworth PG, Knaus UG, Xu X, Uhlinger DJ, Conroy L, Bokoch GM, Curnutte JT. Requirement for posttranslational processing of Rac GTP-binding proteins for activation of human neutrophil NADPH oxidase. Mol Biol Cell 1993; 4:261 - 9; http://dx.doi.org/10.1091/mbc.4.3.261; PMID: 8387355
  • Fuchs A, Dagher M-C, Jouan A, Vignais PV. Activation of the O2(-)-generating NADPH oxidase in a semi-recombinant cell-free system. Assessment of the function of Rac in the activation process. Eur J Biochem 1994; 226:587 - 95; http://dx.doi.org/10.1111/j.1432-1033.1994.tb20084.x; PMID: 8001573
  • Ugolev Y, Molshanski-Mor S, Weinbaum C, Pick E. Liposomes comprising anionic but not neutral phospholipids cause dissociation of Rac(1 or 2) x RhoGDI complexes and support amphiphile-independent NADPH oxidase activation by such complexes. J Biol Chem 2006; 281:19204 - 19; http://dx.doi.org/10.1074/jbc.M600042200; PMID: 16702219
  • Khan OM, Ibrahim MX, Jonsson I-M, Karlsson C, Liu M, Sjogren A-KM, Olofsson FJ, Brisslert M, Andersson S, Ohlsson C, et al. Geranylgeranyltransferase type I (GGTase-I) deficiency hyperactivates macrophages and induces erosive arthritis in mice. J Clin Invest 2011; 121:628 - 39; http://dx.doi.org/10.1172/JCI43758; PMID: 21266780
  • DerMardirossian C, Bokoch GM. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 2005; 15:356 - 63; http://dx.doi.org/10.1016/j.tcb.2005.05.001; PMID: 15921909
  • Dovas A, Couchman JR. RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J 2005; 390:1 - 9; http://dx.doi.org/10.1042/BJ20050104; PMID: 16083425
  • Garcia-Mata R, Boulter E, Burridge K. The ‘invisible hand’: regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 2011; 12:493 - 504; http://dx.doi.org/10.1038/nrm3153; PMID: 21779026
  • Longenecker K, Read P, Derewenda U, Dauter Z, Liu X, Garrard S, Walker L, Somlyo AV, Nakamoto RK, Somlyo AP, et al. How RhoGDI binds Rho. Acta Crystallogr D Biol Crystallogr 1999; 55:1503 - 15; http://dx.doi.org/10.1107/S090744499900801X; PMID: 10489445
  • Hoffman GR, Nassar N, Cerione RA. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 2000; 100:345 - 56; http://dx.doi.org/10.1016/S0092-8674(00)80670-4; PMID: 10676816
  • Grizot S, Fauré J, Fieschi F, Vignais PV, Dagher M-C, Pebay-Peyroula E. Crystal structure of the Rac1-RhoGDI complex involved in nadph oxidase activation. Biochemistry 2001; 40:10007 - 13; http://dx.doi.org/10.1021/bi010288k; PMID: 11513578
  • Chuang TH, Xu X, Knaus UG, Hart MJ, Bokoch GM. GDP dissociation inhibitor prevents intrinsic and GTPase activating protein-stimulated GTP hydrolysis by the Rac GTP-binding protein. J Biol Chem 1993; 268:775 - 8; PMID: 8419353
  • Chuang T-H, Bohl BP, Bokoch GM. Biologically active lipids are regulators of Rac.GDI complexation. J Biol Chem 1993; 268:26206 - 11; PMID: 8253741
  • DerMardirossian C, Schnelzer A, Bokoch GM. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Mol Cell 2004; 15:117 - 27; http://dx.doi.org/10.1016/j.molcel.2004.05.019; PMID: 15225553
  • Ugolev Y, Berdichevsky Y, Weinbaum C, Pick E. Dissociation of Rac1(GDP).RhoGDI complexes by the cooperative action of anionic liposomes containing phosphatidylinositol 3,4,5-trisphosphate, Rac guanine nucleotide exchange factor, and GTP. J Biol Chem 2008; 283:22257 - 71; http://dx.doi.org/10.1074/jbc.M800734200; PMID: 18505730
  • Ueyama T, Son J, Kobayashi T, Hamada T, Nakamura T, Sakaguchi H, Shirafuji T, Saito N. Negative charges in the flexible N-terminal domain of Rho GDP-dissociation inhibitors (RhoGDIs) regulate the targeting of the RhoGDI-Rac1 complex to membranes. J Immunol 2013; 191:2560 - 9; http://dx.doi.org/10.4049/jimmunol.1300209; PMID: 23918979
  • Zheng Y. Dbl family guanine nucleotide exchange factors. Trends Biochem Sci 2001; 26:724 - 32; http://dx.doi.org/10.1016/S0968-0004(01)01973-9; PMID: 11738596
  • Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 2002; 16:1587 - 609; http://dx.doi.org/10.1101/gad.1003302; PMID: 12101119
  • Gao Y, Xing J, Streuli M, Leto TL, Zheng Y. Trp(56) of rac1 specifies interaction with a subset of guanine nucleotide exchange factors. J Biol Chem 2001; 276:47530 - 41; http://dx.doi.org/10.1074/jbc.M108865200; PMID: 11595749
  • Sigal N, Gorzalczany Y, Sarfstein R, Weinbaum C, Zheng Y, Pick E. The guanine nucleotide exchange factor trio activates the phagocyte NADPH oxidase in the absence of GDP to GTP exchange on Rac. “The emperor’s nw clothes”. J Biol Chem 2003; 278:4854 - 61; http://dx.doi.org/10.1074/jbc.M211011200; PMID: 12475976
  • Mizrahi A, Molshanski-Mor S, Weinbaum C, Zheng Y, Hirshberg M, Pick E. Activation of the phagocyte NADPH oxidase by Rac Guanine nucleotide exchange factors in conjunction with ATP and nucleoside diphosphate kinase. J Biol Chem 2005; 280:3802 - 11; http://dx.doi.org/10.1074/jbc.M410257200; PMID: 15557278
  • Robbe K, Otto-Bruc A, Chardin P, Antonny B. Dissociation of GDP dissociation inhibitor and membrane translocation are required for efficient activation of Rac by the Dbl homology-pleckstrin homology region of Tiam. J Biol Chem 2003; 278:4756 - 62; http://dx.doi.org/10.1074/jbc.M210412200; PMID: 12471028
  • Hill K, Krugmann S, Andrews SR, Coadwell WJ, Finan P, Welch HCE, Hawkins PT, Stephens LR. Regulation of P-Rex1 by phosphatidylinositol (3,4,5)-trisphosphate and Gbetagamma subunits. J Biol Chem 2005; 280:4166 - 73; http://dx.doi.org/10.1074/jbc.M411262200; PMID: 15545267
  • Welch HCE, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H, Tempst P, Hawkins PT, Stephens LR. P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell 2002; 108:809 - 21; http://dx.doi.org/10.1016/S0092-8674(02)00663-3; PMID: 11955434
  • Dong X, Mo Z, Bokoch G, Guo C, Li Z, Wu D. P-Rex1 is a primary Rac2 guanine nucleotide exchange factor in mouse neutrophils. Curr Biol 2005; 15:1874 - 9; http://dx.doi.org/10.1016/j.cub.2005.09.014; PMID: 16243036
  • Lawson CD, Donald S, Anderson KE, Patton DT, Welch HCE. P-Rex1 and Vav1 cooperate in the regulation of formyl-methionyl-leucyl-phenylalanine-dependent neutrophil responses. J Immunol 2011; 186:1467 - 76; http://dx.doi.org/10.4049/jimmunol.1002738; PMID: 21178006
  • Welch HCE, Coadwell WJ, Stephens LR, Hawkins PT. Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett 2003; 546:93 - 7; http://dx.doi.org/10.1016/S0014-5793(03)00454-X; PMID: 12829242
  • Price MO, Atkinson SJ, Knaus UG, Dinauer MC. Rac activation induces NADPH oxidase activity in transgenic COSphox cells, and the level of superoxide production is exchange factor-dependent. J Biol Chem 2002; 277:19220 - 8; http://dx.doi.org/10.1074/jbc.M200061200; PMID: 11896053
  • Kim C, Marchal CC, Penninger J, Dinauer MC. The hemopoietic Rho/Rac guanine nucleotide exchange factor Vav1 regulates N-formyl-methionyl-leucyl-phenylalanine-activated neutrophil functions. J Immunol 2003; 171:4425 - 30; PMID: 14530369
  • Ligeti E, Welti S, Scheffzek K. Inhibition and termination of physiological responses by GTPase activating proteins. Physiol Rev 2012; 92:237 - 72; http://dx.doi.org/10.1152/physrev.00045.2010; PMID: 22298657
  • Moon SY, Zheng Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol 2003; 13:13 - 22; http://dx.doi.org/10.1016/S0962-8924(02)00004-1; PMID: 12480336
  • Voncken JW, van Schaick H, Kaartinen V, Deemer K, Coates T, Landing B, Pattengale P, Dorseuil O, Bokoch GM, Groffen J, et al. Increased neutrophil respiratory burst in bcr-null mutants. Cell 1995; 80:719 - 28; http://dx.doi.org/10.1016/0092-8674(95)90350-X; PMID: 7889565
  • Heyworth PG, Knaus UG, Settleman J, Curnutte JT, Bokoch GM. Regulation of NADPH oxidase activity by Rac GTPase activating protein(s). Mol Biol Cell 1993; 4:1217 - 23; http://dx.doi.org/10.1091/mbc.4.11.1217; PMID: 8305740
  • Geiszt M, Dagher M-C, Molnár G, Havasi A, Faure J, Paclet M-H, Morel F, Ligeti E. Characterization of membrane-localized and cytosolic Rac-GTPase-activating proteins in human neutrophil granulocytes: contribution to the regulation of NADPH oxidase. Biochem J 2001; 355:851 - 8; PMID: 11311150
  • Moskwa P, Dagher M-C, Paclet M-H, Morel F, Ligeti E. Participation of Rac GTPase activating proteins in the deactivation of the phagocytic NADPH oxidase. Biochemistry 2002; 41:10710 - 6; http://dx.doi.org/10.1021/bi0257033; PMID: 12186557
  • Litvak Y, Selinger Z. Bacterial mimics of eukaryotic GTPase-activating proteins (GAPs). Trends Biochem Sci 2003; 28:628 - 31; http://dx.doi.org/10.1016/j.tibs.2003.10.001; PMID: 14659693
  • Seifert R, Rosenthal W, Schultz G, Wieland T, Gierschick P, Jakobs KH. The role of nucleoside-diphosphate kinase reactions in G protein activation of NADPH oxidase by guanine and adenine nucleotides. Eur J Biochem 1988; 175:51 - 5; http://dx.doi.org/10.1111/j.1432-1033.1988.tb14165.x; PMID: 2841126
  • Uhlinger DJ, Burnham DN, Lambeth JD. Nucleoside triphosphate requirements for superoxide generation and phosphorylation in a cell-free system from human neutrophils. Sodium dodecyl sulfate and diacylglycerol activate independently of protein kinase C. J Biol Chem 1991; 266:20990 - 7; PMID: 1657941
  • Peveri P, Heyworth PG, Curnutte JT. Absolute requirement for GTP in activation of human neutrophil NADPH oxidase in a cell-free system: role of ATP in regenerating GTP. Proc Natl Acad Sci U S A 1992; 89:2494 - 8; http://dx.doi.org/10.1073/pnas.89.6.2494; PMID: 1312725
  • Ambruso DR, Knall C, Abell AN, Panepinto J, Kurkchubasche A, Thurman G, Gonzalez-Aller C, Hiester A, deBoer M, Harbeck RJ, et al. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci U S A 2000; 97:4654 - 9; http://dx.doi.org/10.1073/pnas.080074897; PMID: 10758162
  • Williams DA, Tao W, Yang F, Kim C, Gu Y, Mansfield P, Levine JE, Petryniak B, Derrow CW, Harris C, et al. Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood 2000; 96:1646 - 54; PMID: 10961859
  • Gu Y, Jia B, Yang F-C, D’Souza M, Harris CE, Derrow CW, Zheng Y, Williams DA. Biochemical and biological characterization of a human Rac2 GTPase mutant associated with phagocytic immunodeficiency. J Biol Chem 2001; 276:15929 - 38; http://dx.doi.org/10.1074/jbc.M010445200; PMID: 11278678
  • Roberts AW, Kim C, Zhen L, Lowe JB, Kapur R, Petryniak B, Spaetti A, Pollock JD, Borneo JB, Bradford GB, et al. Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 1999; 10:183 - 96; http://dx.doi.org/10.1016/S1074-7613(00)80019-9; PMID: 10072071
  • Kim C, Dinauer MC. Rac2 is an essential regulator of neutrophil nicotinamide adenine dinucleotide phosphate oxidase activation in response to specific signaling pathways. J Immunol 2001; 166:1223 - 32; PMID: 11145705
  • Glogauer M, Marchal CC, Zhu F, Worku A, Clausen BE, Foerster I, Marks P, Downey GP, Dinauer M, Kwiatkowski DJ. Rac1 deletion in mouse neutrophils has selective effects on neutrophil functions. J Immunol 2003; 170:5652 - 7; PMID: 12759446
  • Marchioni F, Zheng Y. Targeting rho GTPases by peptidic structures. Curr Pharm Des 2009; 15:2481 - 7; http://dx.doi.org/10.2174/138161209788682334; PMID: 19601845
  • Dahan I, Pick E. Strategies for identifying synthetic peptides to act as inhibitors of NADPH oxidases, or “all that you did and did not want to know about Nox inhibitory peptides”. Cell Mol Life Sci 2012; 69:2283 - 305; http://dx.doi.org/10.1007/s00018-012-1007-4; PMID: 22562603
  • Kim J-A, Neupane GP, Lee ES, Jeong B-S, Park BC, Thapa P. NADPH oxidase inhibitors: A patent review. Expert Opin Ther Patents 2011; 21:1147-58.
  • Rabiet M-J, Tardif M, Braun L, Boulay F. Inhibitory effects of a dominant-interfering form of the Rho-GTPase Cdc42 in the chemoattractant-elicited signaling pathways leading to NADPH oxidase activation in differentiated HL-60 cells. Blood 2002; 100:1835 - 44; http://dx.doi.org/10.1182/blood-2001-12-0193; PMID: 12176907
  • Dorseuil O, Vazquez A, Lang P, Bertoglio J, Gacon G, Leca G. Inhibition of superoxide production in B lymphocytes by rac antisense oligonucleotides. J Biol Chem 1992; 267:20540 - 2; PMID: 1328203

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.