2,239
Views
46
CrossRef citations to date
0
Altmetric
Review

Involvement of Rho-family GTPases in axon branching

&
Article: e27974 | Received 28 Sep 2013, Accepted 23 Jan 2014, Published online: 11 Mar 2014

References

  • Onifer SM, Smith GM, Fouad K. Plasticity after spinal cord injury: relevance to recovery and approaches to facilitate it. Neurotherapeutics 2011; 8:283 - 93; http://dx.doi.org/10.1007/s13311-011-0034-4; PMID: 21384221
  • Harel NY, Strittmatter SM. Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury?. Nat Rev Neurosci 2006; 7:603 - 16; http://dx.doi.org/10.1038/nrn1957; PMID: 16858389
  • Gallo G. The cytoskeletal and signaling mechanisms of axon collateral branching. Dev Neurobiol 2011; 71:201 - 20; http://dx.doi.org/10.1002/dneu.20852; PMID: 21308993
  • Hall A, Lalli G. Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2010; 2:a001818; http://dx.doi.org/10.1101/cshperspect.a001818; PMID: 20182621
  • Thies E, Davenport RW. Independent roles of Rho-GTPases in growth cone and axonal behavior. J Neurobiol 2003; 54:358 - 69; http://dx.doi.org/10.1002/neu.10135; PMID: 12500311
  • Loudon RP, Silver LD, Yee HF Jr., Gallo G. RhoA-kinase and myosin II are required for the maintenance of growth cone polarity and guidance by nerve growth factor. J Neurobiol 2006; 66:847 - 67; http://dx.doi.org/10.1002/neu.20258; PMID: 16673385
  • Billuart P, Winter CG, Maresh A, Zhao X, Luo L. Regulating axon branch stability: the role of p190 RhoGAP in repressing a retraction signaling pathway. Cell 2001; 107:195 - 207; http://dx.doi.org/10.1016/S0092-8674(01)00522-0; PMID: 11672527
  • Rico B, Beggs HE, Schahin-Reed D, Kimes N, Schmidt A, Reichardt LF. Control of axonal branching and synapse formation by focal adhesion kinase. Nat Neurosci 2004; 7:1059 - 69; http://dx.doi.org/10.1038/nn1317; PMID: 15378065
  • Ahnert-Hilger G, Höltje M, Grosse G, Pickert G, Mucke C, Nixdorf-Bergweiler B, Boquet P, Hofmann F, Just I. Differential effects of Rho GTPases on axonal and dendritic development in hippocampal neurones. J Neurochem 2004; 90:9 - 18; http://dx.doi.org/10.1111/j.1471-4159.2004.02475.x; PMID: 15198662
  • Ohnami S, Endo M, Hirai S, Uesaka N, Hatanaka Y, Yamashita T, Yamamoto N. Role of RhoA in activity-dependent cortical axon branching. J Neurosci 2008; 28:9117 - 21; http://dx.doi.org/10.1523/JNEUROSCI.1731-08.2008; PMID: 18784292
  • Letourneau PC. Actin in axons: stable scaffolds and dynamic filaments. Results Probl Cell Differ 2009; 48:65 - 90; http://dx.doi.org/10.1007/400_2009_15; PMID: 19582412
  • Dwivedy A, Gertler FB, Miller J, Holt CE, Lebrand C. Ena/VASP function in retinal axons is required for terminal arborization but not pathway navigation. Development 2007; 134:2137 - 46; http://dx.doi.org/10.1242/dev.002345; PMID: 17507414
  • Mattila PK, Lappalainen P. Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 2008; 9:446 - 54; http://dx.doi.org/10.1038/nrm2406; PMID: 18464790
  • Gallo G. Mechanisms underlying the initiation and dynamics of neuronal filopodia: from neurite formation to synaptogenesis. Int Rev Cell Mol Biol 2013; 301:95 - 156; http://dx.doi.org/10.1016/B978-0-12-407704-1.00003-8; PMID: 23317818
  • Spillane M, Ketschek A, Jones SL, Korobova F, Marsick B, Lanier L, Svitkina T, Gallo G. The actin nucleating Arp2/3 complex contributes to the formation of axonal filopodia and branches through the regulation of actin patch precursors to filopodia. Dev Neurobiol 2011; 71:747 - 58; http://dx.doi.org/10.1002/dneu.20907; PMID: 21557512
  • Andersen EF, Asuri NS, Halloran MC. In vivo imaging of cell behaviors and F-actin reveals LIM-HD transcription factor regulation of peripheral versus central sensory axon development. Neural Dev 2011; 6:27; http://dx.doi.org/10.1186/1749-8104-6-27; PMID: 21619654
  • Watanabe K, Al-Bassam S, Miyazaki Y, Wandless TJ, Webster P, Arnold DB. Networks of polarized actin filaments in the axon initial segment provide a mechanism for sorting axonal and dendritic proteins. Cell Rep 2012; 2:1546 - 53; http://dx.doi.org/10.1016/j.celrep.2012.11.015; PMID: 23246006
  • Mingorance-Le Meur A, O’Connor TP. Neurite consolidation is an active process requiring constant repression of protrusive activity. EMBO J 2009; 28:248 - 60; http://dx.doi.org/10.1038/emboj.2008.265; PMID: 19096364
  • Strasser GA, Rahim NA, VanderWaal KE, Gertler FB, Lanier LM. Arp2/3 is a negative regulator of growth cone translocation. Neuron 2004; 43:81 - 94; http://dx.doi.org/10.1016/j.neuron.2004.05.015; PMID: 15233919
  • Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S, Vasiliev JM, Borisy GG. Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 2003; 160:409 - 21; http://dx.doi.org/10.1083/jcb.200210174; PMID: 12566431
  • Ketschek A, Gallo G. Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia. J Neurosci 2010; 30:12185 - 97; http://dx.doi.org/10.1523/JNEUROSCI.1740-10.2010; PMID: 20826681
  • Kwon C-H, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, Li Y, Baker SJ, Parada LF. Pten regulates neuronal arborization and social interaction in mice. Neuron 2006; 50:377 - 88; http://dx.doi.org/10.1016/j.neuron.2006.03.023; PMID: 16675393
  • Drinjakovic J, Jung H, Campbell DS, Strochlic L, Dwivedy A, Holt CE. E3 ligase Nedd4 promotes axon branching by downregulating PTEN. Neuron 2010; 65:341 - 57; http://dx.doi.org/10.1016/j.neuron.2010.01.017; PMID: 20159448
  • Grider MH, Park D, Spencer DM, Shine HD. Lipid raft-targeted Akt promotes axonal branching and growth cone expansion via mTOR and Rac1, respectively. J Neurosci Res 2009; 87:3033 - 42; http://dx.doi.org/10.1002/jnr.22140; PMID: 19530170
  • Kim WY, Zhou FQ, Zhou J, Yokota Y, Wang YM, Yoshimura T, Kaibuchi K, Woodgett JR, Anton ES, Snider WD. Essential roles for GSK-3s and GSK-3-primed substrates in neurotrophin-induced and hippocampal axon growth. Neuron 2006; 52:981 - 96; http://dx.doi.org/10.1016/j.neuron.2006.10.031; PMID: 17178402
  • Bilimoria PM, de la Torre-Ubieta L, Ikeuchi Y, Becker EB, Reiner O, Bonni A. A JIP3-regulated GSK3β/DCX signaling pathway restricts axon branching. J Neurosci 2010; 30:16766 - 76; http://dx.doi.org/10.1523/JNEUROSCI.1362-10.2010; PMID: 21159948
  • Zhao Z, Wang Z, Gu Y, Feil R, Hofmann F, Ma L. Regulate axon branching by the cyclic GMP pathway via inhibition of glycogen synthase kinase 3 in dorsal root ganglion sensory neurons. J Neurosci 2009; 29:1350 - 60; http://dx.doi.org/10.1523/JNEUROSCI.3770-08.2009; PMID: 19193882
  • Lilley BN, Pan YA, Sanes JR. SAD kinases sculpt axonal arbors of sensory neurons through long- and short-term responses to neurotrophin signals. Neuron 2013; 79:39 - 53; http://dx.doi.org/10.1016/j.neuron.2013.05.017; PMID: 23790753
  • Courchet J, Lewis TL Jr., Lee S, Courchet V, Liou DY, Aizawa S, Polleux F. Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell 2013; 153:1510 - 25; http://dx.doi.org/10.1016/j.cell.2013.05.021; PMID: 23791179
  • Willis DE, van Niekerk EA, Sasaki Y, Mesngon M, Merianda TT, Williams GG, Kendall M, Smith DS, Bassell GJ, Twiss JL. Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J Cell Biol 2007; 178:965 - 80; http://dx.doi.org/10.1083/jcb.200703209; PMID: 17785519
  • Zivraj KH, Tung YCL, Piper M, Gumy L, Fawcett JW, Yeo GSH, Holt CE. Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J Neurosci 2010; 30:15464 - 78; http://dx.doi.org/10.1523/JNEUROSCI.1800-10.2010; PMID: 21084603
  • Spillane M, Ketschek A, Donnelly CJ, Pacheco A, Twiss JL, Gallo G. Nerve growth factor-induced formation of axonal filopodia and collateral branches involves the intra-axonal synthesis of regulators of the actin-nucleating Arp2/3 complex. J Neurosci 2012; 32:17671 - 89; http://dx.doi.org/10.1523/JNEUROSCI.1079-12.2012; PMID: 23223289
  • Andreassi C, Riccio A. To localize or not to localize: mRNA fate is in 3’UTR ends. Trends Cell Biol 2009; 19:465 - 74; http://dx.doi.org/10.1016/j.tcb.2009.06.001; PMID: 19716303
  • Yoo S, van Niekerk EA, Merianda TT, Twiss JL. Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration. Exp Neurol 2010; 223:19 - 27; http://dx.doi.org/10.1016/j.expneurol.2009.08.011; PMID: 19699200
  • Buckmaster PS, Wen X. Rapamycin suppresses axon sprouting by somatostatin interneurons in a mouse model of temporal lobe epilepsy. Epilepsia 2011; 52:2057 - 64; http://dx.doi.org/10.1111/j.1528-1167.2011.03253.x; PMID: 21883182
  • Qiu L-F, Lu T-J, Hu X-L, Yi Y-H, Liao W-P, Xiong Z-Q. Limbic epileptogenesis in a mouse model of fragile X syndrome. Cereb Cortex 2009; 19:1504 - 14; http://dx.doi.org/10.1093/cercor/bhn163; PMID: 18832330
  • Bhogal B, Jongens TA. Fragile X syndrome and model organisms: identifying potential routes of therapeutic intervention. Dis Model Mech 2010; 3:693 - 700; http://dx.doi.org/10.1242/dmm.002006; PMID: 20682752
  • McWhorter ML, Monani UR, Burghes AHM, Beattie CE. Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. J Cell Biol 2003; 162:919 - 31; http://dx.doi.org/10.1083/jcb.200303168; PMID: 12952942
  • Wang W, van Niekerk E, Willis DE, Twiss JL. RNA transport and localized protein synthesis in neurological disorders and neural repair. Dev Neurobiol 2007; 67:1166 - 82; http://dx.doi.org/10.1002/dneu.20511; PMID: 17514714
  • Lee S-K, Hollenbeck PJ. Organization and translation of mRNA in sympathetic axons. J Cell Sci 2003; 116:4467 - 78; http://dx.doi.org/10.1242/jcs.00745; PMID: 13130093
  • Olink-Coux M, Hollenbeck PJ. Localization and active transport of mRNA in axons of sympathetic neurons in culture. J Neurosci 1996; 16:1346 - 58; PMID: 8778286
  • Donnelly CJ, Park M, Spillane M, Yoo S, Pacheco A, Gomes C, Vuppalanchi D, McDonald M, Kim HH, Merianda TT, et al. Axonally synthesized β-actin and GAP-43 proteins support distinct modes of axonal growth. J Neurosci 2013; 33:3311 - 22; http://dx.doi.org/10.1523/JNEUROSCI.1722-12.2013; PMID: 23426659
  • Hörnberg H, Wollerton-van Horck F, Maurus D, Zwart M, Svoboda H, Harris WA, Holt CE. RNA-binding protein Hermes/RBPMS inversely affects synapse density and axon arbor formation in retinal ganglion cells in vivo. J Neurosci 2013; 33:10384 - 95; http://dx.doi.org/10.1523/JNEUROSCI.5858-12.2013; PMID: 23785151
  • Kalous A, Stake JI, Yisraeli JK, Holt CE. RNA-binding protein Vg1RBP regulates terminal arbor formation but not long-range axon navigation in the developing visual system. Dev Neurobiol 2014; 74:303 - 18; http://dx.doi.org/10.1002/dneu.22110; PMID: 23853158
  • Kalil K, Szebenyi G, Dent EW. Common mechanisms underlying growth cone guidance and axon branching. J Neurobiol 2000; 44:145 - 58; http://dx.doi.org/10.1002/1097-4695(200008)44:2<145::AID-NEU5>3.0.CO;2-X; PMID: 10934318
  • Dent EW, Callaway JL, Szebenyi G, Baas PW, Kalil K. Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. J Neurosci 1999; 19:8894 - 908; PMID: 10516309
  • Hu J, Bai X, Bowen JR, Dolat L, Korobova F, Yu W, Baas PW, Svitkina T, Gallo G, Spiliotis ET. Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons. Curr Biol 2012; 22:1109 - 15; http://dx.doi.org/10.1016/j.cub.2012.04.019; PMID: 22608511
  • Gallo G, Letourneau PC. Different contributions of microtubule dynamics and transport to the growth of axons and collateral sprouts. J Neurosci 1999; 19:3860 - 73; PMID: 10234018
  • Yu W, Ahmad FJ, Baas PW. Microtubule fragmentation and partitioning in the axon during collateral branch formation. J Neurosci 1994; 14:5872 - 84; PMID: 7931550
  • Noda Y, Niwa S, Homma N, Fukuda H, Imajo-Ohmi S, Hirokawa N. Phosphatidylinositol 4-phosphate 5-kinase alpha (PIPKα) regulates neuronal microtubule depolymerase kinesin, KIF2A and suppresses elongation of axon branches. Proc Natl Acad Sci U S A 2012; 109:1725 - 30; http://dx.doi.org/10.1073/pnas.1107808109; PMID: 22307638
  • Qiang L, Yu W, Liu M, Solowska JM, Baas PW. Basic fibroblast growth factor elicits formation of interstitial axonal branches via enhanced severing of microtubules. Mol Biol Cell 2010; 21:334 - 44; http://dx.doi.org/10.1091/mbc.E09-09-0834; PMID: 19940015
  • Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 2008; 9:690 - 701; http://dx.doi.org/10.1038/nrm2476; PMID: 18719708
  • Myers JP, Robles E, Ducharme-Smith A, Gomez TM. Focal adhesion kinase modulates Cdc42 activity downstream of positive and negative axon guidance cues. J Cell Sci 2012; 125:2918 - 29; http://dx.doi.org/10.1242/jcs.100107; PMID: 22393238
  • Schwamborn JC, Püschel AW. The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat Neurosci 2004; 7:923 - 9; http://dx.doi.org/10.1038/nn1295; PMID: 15286792
  • Govek E-E, Newey SE, Van Aelst L. The role of the Rho GTPases in neuronal development. Genes Dev 2005; 19:1 - 49; http://dx.doi.org/10.1101/gad.1256405; PMID: 15630019
  • Gallo G. RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction. J Cell Sci 2006; 119:3413 - 23; http://dx.doi.org/10.1242/jcs.03084; PMID: 16899819
  • Sit S-T, Manser E. Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci 2011; 124:679 - 83; http://dx.doi.org/10.1242/jcs.064964; PMID: 21321325
  • Allen MJ, Shan X, Murphey RK. A role for Drosophila Drac1 in neurite outgrowth and synaptogenesis in the giant fiber system. Mol Cell Neurosci 2000; 16:754 - 65; http://dx.doi.org/10.1006/mcne.2000.0903; PMID: 11124895
  • Luo L, Hensch TK, Ackerman L, Barbel S, Jan LY, Jan YN. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 1996; 379:837 - 40; http://dx.doi.org/10.1038/379837a0; PMID: 8587609
  • Ng J, Nardine T, Harms M, Tzu J, Goldstein A, Sun Y, Dietzl G, Dickson BJ, Luo L. Rac GTPases control axon growth, guidance and branching. Nature 2002; 416:442 - 7; http://dx.doi.org/10.1038/416442a; PMID: 11919635
  • Struckhoff EC, Lundquist EA. The actin-binding protein UNC-115 is an effector of Rac signaling during axon pathfinding in C. elegans.. Development 2003; 130:693 - 704; http://dx.doi.org/10.1242/dev.00300; PMID: 12506000
  • Moon MS, Gomez TM. Balanced Vav2 GEF activity regulates neurite outgrowth and branching in vitro and in vivo.. Mol Cell Neurosci 2010; 44:118 - 28; http://dx.doi.org/10.1016/j.mcn.2010.03.001; PMID: 20298788
  • Derivery E, Gautreau A. Generation of branched actin networks: assembly and regulation of the N-WASP and WAVE molecular machines. Bioessays 2010; 32:119 - 31; http://dx.doi.org/10.1002/bies.200900123; PMID: 20091750
  • de Curtis I. Functions of Rac GTPases during neuronal development. Dev Neurosci 2008; 30:47 - 58; http://dx.doi.org/10.1159/000109851; PMID: 18075254
  • Albertinazzi C, Gilardelli D, Paris S, Longhi R, de Curtis I. Overexpression of a neural-specific rho family GTPase, cRac1B, selectively induces enhanced neuritogenesis and neurite branching in primary neurons. J Cell Biol 1998; 142:815 - 25; http://dx.doi.org/10.1083/jcb.142.3.815; PMID: 9700168
  • May V, Schiller MR, Eipper BA, Mains RE. Kalirin Dbl-homology guanine nucleotide exchange factor 1 domain initiates new axon outgrowths via RhoG-mediated mechanisms. J Neurosci 2002; 22:6980 - 90; PMID: 12177196
  • Totaro A, Tavano S, Filosa G, Gärtner A, Pennucci R, Santambrogio P, Bachi A, Dotti CG, de Curtis I. Biochemical and functional characterisation of αPIX, a specific regulator of axonal and dendritic branching in hippocampal neurons. Biol Cell 2012; 104:533 - 52; http://dx.doi.org/10.1111/boc.201100060; PMID: 22554054
  • Iwasawa N, Negishi M, Oinuma I. R-Ras controls axon branching through afadin in cortical neurons. Mol Biol Cell 2012; 23:2793 - 804; http://dx.doi.org/10.1091/mbc.E12-02-0103; PMID: 22593211
  • Yang HW, Shin M-G, Lee S, Kim J-R, Park WS, Cho K-H, Meyer T, Heo WD. Cooperative activation of PI3K by Ras and Rho family small GTPases. Mol Cell 2012; 47:281 - 90; http://dx.doi.org/10.1016/j.molcel.2012.05.007; PMID: 22683270
  • Jurney WM, Gallo G, Letourneau PC, McLoon SC. Rac1-mediated endocytosis during ephrin-A2- and semaphorin 3A-induced growth cone collapse. J Neurosci 2002; 22:6019 - 28; PMID: 12122063
  • Gross SR, Kinzy TG. Improper organization of the actin cytoskeleton affects protein synthesis at initiation. Mol Cell Biol 2007; 27:1974 - 89; http://dx.doi.org/10.1128/MCB.00832-06; PMID: 17178834
  • Ridley AJ. Rho GTPases and cell migration. J Cell Sci 2001; 114:2713 - 22; PMID: 11683406
  • Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420:629 - 35; http://dx.doi.org/10.1038/nature01148; PMID: 12478284
  • Franke K, Otto W, Johannes S, Baumgart J, Nitsch R, Schumacher S. miR-124-regulated RhoG reduces neuronal process complexity via ELMO/Dock180/Rac1 and Cdc42 signalling. EMBO J 2012; 31:2908 - 21; http://dx.doi.org/10.1038/emboj.2012.130; PMID: 22588079
  • Li X, Gao X, Liu G, Xiong W, Wu J, Rao Y. Netrin signal transduction and the guanine nucleotide exchange factor DOCK180 in attractive signaling. Nat Neurosci 2008; 11:28 - 35; http://dx.doi.org/10.1038/nn2022; PMID: 18066058
  • Picard M, Petrie RJ, Antoine-Bertrand J, Saint-Cyr-Proulx E, Villemure JF, Lamarche-Vane N. Spatial and temporal activation of the small GTPases RhoA and Rac1 by the netrin-1 receptor UNC5a during neurite outgrowth. Cell Signal 2009; 21:1961 - 73; http://dx.doi.org/10.1016/j.cellsig.2009.09.004; PMID: 19755150
  • Murray A, Naeem A, Barnes SH, Drescher U, Guthrie S. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II. Neural Dev 2010; 5:16; PMID: 20569485
  • Antoine-Bertrand J, Ghogha A, Luangrath V, Bedford FK, Lamarche-Vane N. The activation of ezrin-radixin-moesin proteins is regulated by netrin-1 through Src kinase and RhoA/Rho kinase activities and mediates netrin-1-induced axon outgrowth. Mol Biol Cell 2011; 22:3734 - 46; http://dx.doi.org/10.1091/mbc.E10-11-0917; PMID: 21849478
  • Demarco RS, Struckhoff EC, Lundquist EA. The Rac GTP exchange factor TIAM-1 acts with CDC-42 and the guidance receptor UNC-40/DCC in neuronal protrusion and axon guidance. PLoS Genet 2012; 8:e1002665; http://dx.doi.org/10.1371/journal.pgen.1002665; PMID: 22570618
  • DeGeer J, Boudeau J, Schmidt S, Bedford F, Lamarche-Vane N, Debant A. Tyrosine phosphorylation of the Rho guanine nucleotide exchange factor Trio regulates netrin-1/DCC-mediated cortical axon outgrowth. Mol Cell Biol 2013; 33:739 - 51; http://dx.doi.org/10.1128/MCB.01264-12; PMID: 23230270
  • Moore SW, Correia JP, Lai Wing Sun K, Pool M, Fournier AE, Kennedy TE. Rho inhibition recruits DCC to the neuronal plasma membrane and enhances axon chemoattraction to netrin 1. Development 2008; 135:2855 - 64; http://dx.doi.org/10.1242/dev.024133; PMID: 18653556
  • Fukunishi A, Maruyama T, Zhao H, Tiwari M, Kang S, Kumanogoh A, Yamamoto N. The action of Semaphorin7A on thalamocortical axon branching. J Neurochem 2011; 118:1008 - 15; http://dx.doi.org/10.1111/j.1471-4159.2011.07390.x; PMID: 21781117
  • Püschel AW. GTPases in semaphorin signaling. Adv Exp Med Biol 2007; 600:12 - 23; http://dx.doi.org/10.1007/978-0-387-70956-7_2; PMID: 17607943
  • Gopalakrishnan SM, Teusch N, Imhof C, Bakker MH, Schurdak M, Burns DJ, Warrior U. Role of Rho kinase pathway in chondroitin sulfate proteoglycan-mediated inhibition of neurite outgrowth in PC12 cells. J Neurosci Res 2008; 86:2214 - 26; http://dx.doi.org/10.1002/jnr.21671; PMID: 18438921
  • Jain A, Brady-Kalnay SM, Bellamkonda RV. Modulation of Rho GTPase activity alleviates chondroitin sulfate proteoglycan-dependent inhibition of neurite extension. J Neurosci Res 2004; 77:299 - 307; http://dx.doi.org/10.1002/jnr.20161; PMID: 15211597
  • Monnier PP, Sierra A, Schwab JM, Henke-Fahle S, Mueller BK. The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol Cell Neurosci 2003; 22:319 - 30; http://dx.doi.org/10.1016/S1044-7431(02)00035-0; PMID: 12691734
  • Fisher D, Xing B, Dill J, Li H, Hoang HH, Zhao Z, Yang XL, Bachoo R, Cannon S, Longo FM, et al. Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci 2011; 31:14051 - 66; http://dx.doi.org/10.1523/JNEUROSCI.1737-11.2011; PMID: 21976490
  • Tolias KF, Duman JG, Um K. Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog Neurobiol 2011; 94:133 - 48; http://dx.doi.org/10.1016/j.pneurobio.2011.04.011; PMID: 21530608
  • Spillane M, Ketschek A, Merianda TT, Twiss JL, Gallo G. Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep 2013; 5:1564 - 75; http://dx.doi.org/10.1016/j.celrep.2013.11.022; PMID: 24332852
  • Lilley BN, Pan YA, Sanes JR. SAD kinases sculpt axonal arbors of sensory neurons through long- and short-term responses to neurotrophin signals. Neuron 2013; 79:39 - 53; http://dx.doi.org/10.1016/j.neuron.2013.05.017; PMID: 23790753
  • Greif KF, Asabere N, Lutz GJ, Gallo G. Synaptotagmin-1 promotes the formation of axonal filopodia and branches along the developing axons of forebrain neurons. Dev Neurobiol 2013; 73:27 - 44; http://dx.doi.org/10.1002/dneu.22033; PMID: 22589224
  • Cioni JM, Telley L, Saywell V, Cadilhac C, Jourdan C, Huber AB, Huang JZ, Jahannault-Talignani C, Ango F. SEMA3A signaling controls layer-specific interneuron branching in the cerebellum. Curr Biol 2013; 23:850 - 61; http://dx.doi.org/10.1016/j.cub.2013.04.007; PMID: 23602477

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.