1,216
Views
14
CrossRef citations to date
0
Altmetric
Review

PleiotRHOpic

Rho pathways are essential for all stages of Neural Crest development

&
Article: e27975 | Received 15 Oct 2013, Accepted 23 Jan 2014, Published online: 10 Mar 2014

References

  • Milet C, Monsoro-Burq AH. Neural crest induction at the neural plate border in vertebrates. Dev Biol 2012; 366:22 - 33; http://dx.doi.org/10.1016/j.ydbio.2012.01.013; PMID: 22305800
  • Hall B. The neural crest and neural crest cells in vertebrate development and evolution. New York: Springer, 2009.
  • Le Douarin N, Kalcheim C. The neural crest. Cambridge, UK; New York, NY, USA: Cambridge University Press, 1999.
  • Mayor R, Theveneau E. The neural crest. Development 2013; 140:2247 - 51; http://dx.doi.org/10.1242/dev.091751; PMID: 23674598
  • Kirby ML, Hutson MR. Factors controlling cardiac neural crest cell migration. Cell Adh Migr 2010; 4:609 - 21; http://dx.doi.org/10.4161/cam.4.4.13489; PMID: 20890117
  • Dupin E, Creuzet S, Le Douarin NM. The contribution of the neural crest to the vertebrate body. Adv Exp Med Biol 2006; 589:96 - 119; http://dx.doi.org/10.1007/978-0-387-46954-6_6; PMID: 17076277
  • Liu HX, Komatsu Y, Mishina Y, Mistretta CM. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds. Dev Biol 2012; 368:294 - 303; http://dx.doi.org/10.1016/j.ydbio.2012.05.028; PMID: 22659543
  • Nikitina N, Sauka-Spengler T, Bronner-Fraser M. Chapter 1. Gene regulatory networks in neural crest development and evolution. Curr Top Dev Biol 2009; 86:1 - 14; http://dx.doi.org/10.1016/S0070-2153(09)01001-1; PMID: 19361687
  • Sauka-Spengler T, Bronner-Fraser M. Evolution of the neural crest viewed from a gene regulatory perspective. Genesis 2008; 46:673 - 82; http://dx.doi.org/10.1002/dvg.20436; PMID: 19003930
  • Northcutt RG, Gans C. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol 1983; 58:1 - 28; http://dx.doi.org/10.1086/413055; PMID: 6346380
  • Gans C, Northcutt RG. Neural crest and the origin of vertebrates: a new head. Science 1983; 220:268 - 73; http://dx.doi.org/10.1126/science.220.4594.268; PMID: 17732898
  • Steventon B, Mayor R. Early neural crest induction requires an initial inhibition of Wnt signals. Dev Biol 2012; 365:196 - 207; http://dx.doi.org/10.1016/j.ydbio.2012.02.029; PMID: 22394485
  • Betancur P, Bronner-Fraser M, Sauka-Spengler T. Assembling neural crest regulatory circuits into a gene regulatory network. Annu Rev Cell Dev Biol 2010; 26:581 - 603; http://dx.doi.org/10.1146/annurev.cellbio.042308.113245; PMID: 19575671
  • Sauka-Spengler T, Bronner-Fraser M. A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol 2008; 9:557 - 68; http://dx.doi.org/10.1038/nrm2428; PMID: 18523435
  • Hong CS, Park BY, Saint-Jeannet JP. Fgf8a induces neural crest indirectly through the activation of Wnt8 in the paraxial mesoderm. Development 2008; 135:3903 - 10; http://dx.doi.org/10.1242/dev.026229; PMID: 18997112
  • Glavic A, Silva F, Aybar MJ, Bastidas F, Mayor R. Interplay between Notch signaling and the homeoprotein Xiro1 is required for neural crest induction in Xenopus embryos. Development 2004; 131:347 - 59; http://dx.doi.org/10.1242/dev.00945; PMID: 14681193
  • Endo Y, Osumi N, Wakamatsu Y. Bimodal functions of Notch-mediated signaling are involved in neural crest formation during avian ectoderm development. Development 2002; 129:863 - 73; PMID: 11861470
  • Cornell RA, Eisen JS. Delta signaling mediates segregation of neural crest and spinal sensory neurons from zebrafish lateral neural plate. Development 2000; 127:2873 - 82; PMID: 10851132
  • Stuhlmiller TJ, García-Castro MI. Current perspectives of the signaling pathways directing neural crest induction. Cell Mol Life Sci 2012; 69:3715 - 37; http://dx.doi.org/10.1007/s00018-012-0991-8; PMID: 22547091
  • Plouhinec JL, Roche DD, Pegoraro C, Figueiredo AL, Maczkowiak F, Brunet LJ, Milet C, Vert JP, Pollet N, Harland RM, et al. Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers. Dev Biol 2014; 386:461 - 72; http://dx.doi.org/10.1016/j.ydbio.2013.12.010; PMID: 24360906
  • Theveneau E, Mayor R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 2012; 366:34 - 54; http://dx.doi.org/10.1016/j.ydbio.2011.12.041; PMID: 22261150
  • Strobl-Mazzulla PH, Bronner ME. Epithelial to mesenchymal transition: new and old insights from the classical neural crest model. Semin Cancer Biol 2012; 22:411 - 6; http://dx.doi.org/10.1016/j.semcancer.2012.04.008; PMID: 22575214
  • Lim J, Thiery JP. Epithelial-mesenchymal transitions: insights from development. Development 2012; 139:3471 - 86; http://dx.doi.org/10.1242/dev.071209; PMID: 22949611
  • Kerosuo L, Bronner-Fraser M. What is bad in cancer is good in the embryo: importance of EMT in neural crest development. Semin Cell Dev Biol 2012; 23:320 - 32; http://dx.doi.org/10.1016/j.semcdb.2012.03.010; PMID: 22430756
  • Duband JL. Diversity in the molecular and cellular strategies of epithelium-to-mesenchyme transitions: Insights from the neural crest. Cell Adh Migr 2010; 4:458 - 82; http://dx.doi.org/10.4161/cam.4.3.12501; PMID: 20559020
  • Barriga EH, Maxwell PH, Reyes AE, Mayor R. The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition. J Cell Biol 2013; 201:759 - 76; http://dx.doi.org/10.1083/jcb.201212100; PMID: 23712262
  • Cheung M, Briscoe J. Neural crest development is regulated by the transcription factor Sox9. Development 2003; 130:5681 - 93; http://dx.doi.org/10.1242/dev.00808; PMID: 14522876
  • Cheung M, Chaboissier MC, Mynett A, Hirst E, Schedl A, Briscoe J. The transcriptional control of trunk neural crest induction, survival, and delamination. Dev Cell 2005; 8:179 - 92; http://dx.doi.org/10.1016/j.devcel.2004.12.010; PMID: 15691760
  • Dottori M, Gross MK, Labosky P, Goulding M. The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development 2001; 128:4127 - 38; PMID: 11684651
  • Kos R, Reedy MV, Johnson RL, Erickson CA. The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 2001; 128:1467 - 79; PMID: 11262245
  • Taneyhill LA, Coles EG, Bronner-Fraser M. Snail2 directly represses cadherin6B during epithelial-to-mesenchymal transitions of the neural crest. Development 2007; 134:1481 - 90; http://dx.doi.org/10.1242/dev.02834; PMID: 17344227
  • Nieto MA, Sargent MG, Wilkinson DG, Cooke J. Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 1994; 264:835 - 9; http://dx.doi.org/10.1126/science.7513443; PMID: 7513443
  • Perez-Alcala S, Nieto MA, Barbas JA. LSox5 regulates RhoB expression in the neural tube and promotes generation of the neural crest. Development 2004; 131:4455 - 65; http://dx.doi.org/10.1242/dev.01329; PMID: 15306568
  • Théveneau E, Duband JL, Altabef M. Ets-1 confers cranial features on neural crest delamination. PLoS One 2007; 2:e1142; http://dx.doi.org/10.1371/journal.pone.0001142; PMID: 17987123
  • Simões-Costa MS, McKeown SJ, Tan-Cabugao J, Sauka-Spengler T, Bronner ME. Dynamic and differential regulation of stem cell factor FoxD3 in the neural crest is Encrypted in the genome. PLoS Genet 2012; 8:e1003142; http://dx.doi.org/10.1371/journal.pgen.1003142; PMID: 23284303
  • Betancur P, Sauka-Spengler T, Bronner M. A Sox10 enhancer element common to the otic placode and neural crest is activated by tissue-specific paralogs. Development 2011; 138:3689 - 98; http://dx.doi.org/10.1242/dev.057836; PMID: 21775416
  • Rinon A, Molchadsky A, Nathan E, Yovel G, Rotter V, Sarig R, Tzahor E. p53 coordinates cranial neural crest cell growth and epithelial-mesenchymal transition/delamination processes. Development 2011; 138:1827 - 38; http://dx.doi.org/10.1242/dev.053645; PMID: 21447558
  • McKeown SJ, Wallace AS, Anderson RB. Expression and function of cell adhesion molecules during neural crest migration. Dev Biol 2013; 373:244 - 57; http://dx.doi.org/10.1016/j.ydbio.2012.10.028; PMID: 23123967
  • Dady A, Blavet C, Duband JL. Timing and kinetics of E- to N-cadherin switch during neurulation in the avian embryo. Dev Dyn 2012; 241:1333 - 49; http://dx.doi.org/10.1002/dvdy.23813; PMID: 22684994
  • Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci 2008; 121:727 - 35; http://dx.doi.org/10.1242/jcs.000455; PMID: 18322269
  • Sasselli V, Pachnis V, Burns AJ. The enteric nervous system. Dev Biol 2012; 366:64 - 73; http://dx.doi.org/10.1016/j.ydbio.2012.01.012; PMID: 22290331
  • Pavan WJ, Raible DW. Specification of neural crest into sensory neuron and melanocyte lineages. Dev Biol 2012; 366:55 - 63; http://dx.doi.org/10.1016/j.ydbio.2012.02.038; PMID: 22465373
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144:646 - 74; http://dx.doi.org/10.1016/j.cell.2011.02.013; PMID: 21376230
  • Gray RS, Cheung KJ, Ewald AJ. Cellular mechanisms regulating epithelial morphogenesis and cancer invasion. Curr Opin Cell Biol 2010; 22:640 - 50; http://dx.doi.org/10.1016/j.ceb.2010.08.019; PMID: 20832275
  • Tsuji T, Ibaragi S, Hu GF. Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 2009; 69:7135 - 9; http://dx.doi.org/10.1158/0008-5472.CAN-09-1618; PMID: 19738043
  • Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139:871 - 90; http://dx.doi.org/10.1016/j.cell.2009.11.007; PMID: 19945376
  • Theveneau E, Mayor R. Collective cell migration of epithelial and mesenchymal cells. Cell Mol Life Sci 2013; 70:3481 - 92; http://dx.doi.org/10.1007/s00018-012-1251-7; PMID: 23314710
  • Theveneau E, Mayor R. Cadherins in collective cell migration of mesenchymal cells. Curr Opin Cell Biol 2012; 24:677 - 84; http://dx.doi.org/10.1016/j.ceb.2012.08.002; PMID: 22944726
  • Chin L. The genetics of malignant melanoma: lessons from mouse and man. Nat Rev Cancer 2003; 3:559 - 70; http://dx.doi.org/10.1038/nrc1145; PMID: 12894244
  • Couturier J, Saule S. Genetic determinants of uveal melanoma. Dev Ophthalmol 2012; 49:150 - 65; http://dx.doi.org/10.1159/000328270; PMID: 22042019
  • Cheung NK, Dyer MA. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer 2013; 13:397 - 411; http://dx.doi.org/10.1038/nrc3526; PMID: 23702928
  • Kolačkov K, Tupikowski K, Bednarek-Tupikowska G. Genetic aspects of pheochromocytoma. Adv Clin Exp Med 2012; 21:821 - 9; PMID: 23457139
  • Carroll SL. Molecular mechanisms promoting the pathogenesis of Schwann cell neoplasms. Acta Neuropathol 2012; 123:321 - 48; http://dx.doi.org/10.1007/s00401-011-0928-6; PMID: 22160322
  • Gupta G, Maniker A. Malignant peripheral nerve sheath tumors. Neurosurg Focus 2007; 22:E12; http://dx.doi.org/10.3171/foc.2007.22.6.13; PMID: 17613203
  • Kulesa PM, Bailey CM, Kasemeier-Kulesa JC, McLennan R. Cranial neural crest migration: new rules for an old road. Dev Biol 2010; 344:543 - 54; http://dx.doi.org/10.1016/j.ydbio.2010.04.010; PMID: 20399765
  • Gammill LS, Roffers-Agarwal J. Division of labor during trunk neural crest development. Dev Biol 2010; 344:555 - 65; http://dx.doi.org/10.1016/j.ydbio.2010.04.009; PMID: 20399766
  • Perris R, Perissinotto D. Role of the extracellular matrix during neural crest cell migration. Mech Dev 2000; 95:3 - 21; http://dx.doi.org/10.1016/S0925-4773(00)00365-8; PMID: 10906446
  • Duband JL. Neural crest delamination and migration: integrating regulations of cell interactions, locomotion, survival and fate. Adv Exp Med Biol 2006; 589:45 - 77; http://dx.doi.org/10.1007/978-0-387-46954-6_4; PMID: 17076275
  • Lwigale PY, Bronner-Fraser M. Semaphorin3A/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development. Dev Biol 2009; 336:257 - 65; http://dx.doi.org/10.1016/j.ydbio.2009.10.008; PMID: 19833121
  • Toyofuku T, Yoshida J, Sugimoto T, Yamamoto M, Makino N, Takamatsu H, Takegahara N, Suto F, Hori M, Fujisawa H, et al. Repulsive and attractive semaphorins cooperate to direct the navigation of cardiac neural crest cells. Dev Biol 2008; 321:251 - 62; http://dx.doi.org/10.1016/j.ydbio.2008.06.028; PMID: 18625214
  • Schwarz Q, Vieira JM, Howard B, Eickholt BJ, Ruhrberg C. Neuropilin 1 and 2 control cranial gangliogenesis and axon guidance through neural crest cells. Development 2008; 135:1605 - 13; http://dx.doi.org/10.1242/dev.015412; PMID: 18356247
  • Gammill LS, Gonzalez C, Bronner-Fraser M. Neuropilin 2/semaphorin 3F signaling is essential for cranial neural crest migration and trigeminal ganglion condensation. Dev Neurobiol 2007; 67:47 - 56; http://dx.doi.org/10.1002/dneu.20326; PMID: 17443771
  • Gammill LS, Gonzalez C, Gu C, Bronner-Fraser M. Guidance of trunk neural crest migration requires neuropilin 2/semaphorin 3F signaling. Development 2006; 133:99 - 106; http://dx.doi.org/10.1242/dev.02187; PMID: 16319111
  • Yu HH, Moens CB. Semaphorin signaling guides cranial neural crest cell migration in zebrafish. Dev Biol 2005; 280:373 - 85; http://dx.doi.org/10.1016/j.ydbio.2005.01.029; PMID: 15882579
  • Eickholt BJ, Mackenzie SL, Graham A, Walsh FS, Doherty P. Evidence for collapsin-1 functioning in the control of neural crest migration in both trunk and hindbrain regions. Development 1999; 126:2181 - 9; PMID: 10207143
  • Mellott DO, Burke RD. Divergent roles for Eph and ephrin in avian cranial neural crest. BMC Dev Biol 2008; 8:56; http://dx.doi.org/10.1186/1471-213X-8-56; PMID: 18495033
  • Kasemeier-Kulesa JC, Bradley R, Pasquale EB, Lefcort F, Kulesa PM. Eph/ephrins and N-cadherin coordinate to control the pattern of sympathetic ganglia. Development 2006; 133:4839 - 47; http://dx.doi.org/10.1242/dev.02662; PMID: 17108003
  • Davy A, Aubin J, Soriano P. Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev 2004; 18:572 - 83; http://dx.doi.org/10.1101/gad.1171704; PMID: 15037550
  • Baker RK, Antin PB. Ephs and ephrins during early stages of chick embryogenesis. Dev Dyn 2003; 228:128 - 42; http://dx.doi.org/10.1002/dvdy.10354; PMID: 12950087
  • Santiago A, Erickson CA. Ephrin-B ligands play a dual role in the control of neural crest cell migration. Development 2002; 129:3621 - 32; PMID: 12117812
  • Smith A, Robinson V, Patel K, Wilkinson DG. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr Biol 1997; 7:561 - 70; http://dx.doi.org/10.1016/S0960-9822(06)00255-7; PMID: 9259557
  • Krull CE, Lansford R, Gale NW, Collazo A, Marcelle C, Yancopoulos GD, Fraser SE, Bronner-Fraser M. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr Biol 1997; 7:571 - 80; http://dx.doi.org/10.1016/S0960-9822(06)00256-9; PMID: 9259560
  • Shiau CE, Bronner-Fraser M. N-cadherin acts in concert with Slit1-Robo2 signaling in regulating aggregation of placode-derived cranial sensory neurons. Development 2009; 136:4155 - 64; http://dx.doi.org/10.1242/dev.034355; PMID: 19934013
  • Jia L, Cheng L, Raper J. Slit/Robo signaling is necessary to confine early neural crest cells to the ventral migratory pathway in the trunk. Dev Biol 2005; 282:411 - 21; http://dx.doi.org/10.1016/j.ydbio.2005.03.021; PMID: 15950606
  • De Bellard ME, Rao Y, Bronner-Fraser M. Dual function of Slit2 in repulsion and enhanced migration of trunk, but not vagal, neural crest cells. J Cell Biol 2003; 162:269 - 79; http://dx.doi.org/10.1083/jcb.200301041; PMID: 12876276
  • Harris ML, Hall R, Erickson CA. Directing pathfinding along the dorsolateral path - the role of EDNRB2 and EphB2 in overcoming inhibition. Development 2008; 135:4113 - 22; http://dx.doi.org/10.1242/dev.023119; PMID: 19004859
  • McLennan R, Teddy JM, Kasemeier-Kulesa JC, Romine MH, Kulesa PM. Vascular endothelial growth factor (VEGF) regulates cranial neural crest migration in vivo. Dev Biol 2010; 339:114 - 25; http://dx.doi.org/10.1016/j.ydbio.2009.12.022; PMID: 20036652
  • Kubota Y, Ito K. Chemotactic migration of mesencephalic neural crest cells in the mouse. Dev Dyn 2000; 217:170 - 9; http://dx.doi.org/10.1002/(SICI)1097-0177(200002)217:2<170::AID-DVDY4>3.0.CO;2-9; PMID: 10706141
  • Sato A, Scholl AM, Kuhn EN, Stadt HA, Decker JR, Pegram K, Hutson MR, Kirby ML. FGF8 signaling is chemotactic for cardiac neural crest cells. Dev Biol 2011; 354:18 - 30; http://dx.doi.org/10.1016/j.ydbio.2011.03.010; PMID: 21419761
  • Creuzet S, Schuler B, Couly G, Le Douarin NM. Reciprocal relationships between Fgf8 and neural crest cells in facial and forebrain development. Proc Natl Acad Sci U S A 2004; 101:4843 - 7; http://dx.doi.org/10.1073/pnas.0400869101; PMID: 15041748
  • Theveneau E, Steventon B, Scarpa E, Garcia S, Trepat X, Streit A, Mayor R. Chase-and-run between adjacent cell populations promotes directional collective migration. Nat Cell Biol 2013; 15:763 - 72; http://dx.doi.org/10.1038/ncb2772; PMID: 23770678
  • Escot S, Blavet C, Härtle S, Duband JL, Fournier-Thibault C. Misregulation of SDF1-CXCR4 signaling impairs early cardiac neural crest cell migration leading to conotruncal defects. Circ Res 2013; 113:505 - 16; http://dx.doi.org/10.1161/CIRCRESAHA.113.301333; PMID: 23838132
  • Saito D, Takase Y, Murai H, Takahashi Y. The dorsal aorta initiates a molecular cascade that instructs sympatho-adrenal specification. Science 2012; 336:1578 - 81; http://dx.doi.org/10.1126/science.1222369; PMID: 22723422
  • Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M, Mayor R. Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 2010; 19:39 - 53; http://dx.doi.org/10.1016/j.devcel.2010.06.012; PMID: 20643349
  • Kasemeier-Kulesa JC, McLennan R, Romine MH, Kulesa PM, Lefcort F. CXCR4 controls ventral migration of sympathetic precursor cells. J Neurosci 2010; 30:13078 - 88; http://dx.doi.org/10.1523/JNEUROSCI.0892-10.2010; PMID: 20881125
  • Olesnicky Killian EC, Birkholz DA, Artinger KB. A role for chemokine signaling in neural crest cell migration and craniofacial development. Dev Biol 2009; 333:161 - 72; http://dx.doi.org/10.1016/j.ydbio.2009.06.031; PMID: 19576198
  • Belmadani A, Jung H, Ren D, Miller RJ. The chemokine SDF-1/CXCL12 regulates the migration of melanocyte progenitors in mouse hair follicles. Differentiation 2009; 77:395 - 411; http://dx.doi.org/10.1016/j.diff.2008.10.015; PMID: 19281787
  • Svetic V, Hollway GE, Elworthy S, Chipperfield TR, Davison C, Adams RJ, Eisen JS, Ingham PW, Currie PD, Kelsh RN. Sdf1a patterns zebrafish melanophores and links the somite and melanophore pattern defects in choker mutants. Development 2007; 134:1011 - 22; http://dx.doi.org/10.1242/dev.02789; PMID: 17267445
  • Belmadani A, Tran PB, Ren D, Assimacopoulos S, Grove EA, Miller RJ. The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors. J Neurosci 2005; 25:3995 - 4003; http://dx.doi.org/10.1523/JNEUROSCI.4631-04.2005; PMID: 15843601
  • Eberhart JK, He X, Swartz ME, Yan YL, Song H, Boling TC, Kunerth AK, Walker MB, Kimmel CB, Postlethwait JH. MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet 2008; 40:290 - 8; http://dx.doi.org/10.1038/ng.82; PMID: 18264099
  • Richarte AM, Mead HB, Tallquist MD. Cooperation between the PDGF receptors in cardiac neural crest cell migration. Dev Biol 2007; 306:785 - 96; http://dx.doi.org/10.1016/j.ydbio.2007.04.023; PMID: 17499702
  • Mwizerwa O, Das P, Nagy N, Akbareian SE, Mably JD, Goldstein AM. Gdnf is mitogenic, neurotrophic, and chemoattractive to enteric neural crest cells in the embryonic colon. Dev Dyn 2011; 240:1402 - 11; http://dx.doi.org/10.1002/dvdy.22630; PMID: 21465624
  • Cornejo M, Nambi D, Walheim C, Somerville M, Walker J, Kim L, Ollison L, Diamante G, Vyawahare S, de Bellard ME. Effect of NRG1, GDNF, EGF and NGF in the migration of a Schwann cell precursor line. Neurochem Res 2010; 35:1643 - 51; http://dx.doi.org/10.1007/s11064-010-0225-0; PMID: 20623378
  • Young HM, Hearn CJ, Farlie PG, Canty AJ, Thomas PQ, Newgreen DF. GDNF is a chemoattractant for enteric neural cells. Dev Biol 2001; 229:503 - 16; http://dx.doi.org/10.1006/dbio.2000.0100; PMID: 11150245
  • Pla P, Alberti C, Solov’eva O, Pasdar M, Kunisada T, Larue L. Ednrb2 orients cell migration towards the dorsolateral neural crest pathway and promotes melanocyte differentiation. Pigment Cell Res 2005; 18:181 - 7; http://dx.doi.org/10.1111/j.1600-0749.2005.00230.x; PMID: 15892714
  • Lee HO, Levorse JM, Shin MK. The endothelin receptor-B is required for the migration of neural crest-derived melanocyte and enteric neuron precursors. Dev Biol 2003; 259:162 - 75; http://dx.doi.org/10.1016/S0012-1606(03)00160-X; PMID: 12812796
  • Young HM, Anderson RB, Anderson CR. Guidance cues involved in the development of the peripheral autonomic nervous system. Auton Neurosci 2004; 112:1 - 14; http://dx.doi.org/10.1016/j.autneu.2004.02.008; PMID: 15233925
  • Teddy JM, Kulesa PM. In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development 2004; 131:6141 - 51; http://dx.doi.org/10.1242/dev.01534; PMID: 15548586
  • Kulesa PM, Fraser SE. In ovo time-lapse analysis of chick hindbrain neural crest cell migration shows cell interactions during migration to the branchial arches. Development 2000; 127:1161 - 72; PMID: 10683170
  • Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, Stern CD, Mayor R. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 2008; 456:957 - 61; http://dx.doi.org/10.1038/nature07441; PMID: 19078960
  • Abercrombie M, Heaysman JE. Observations on the social behaviour of cells in tissue culture. I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts. Exp Cell Res 1953; 5:111 - 31; http://dx.doi.org/10.1016/0014-4827(53)90098-6; PMID: 13083622
  • Mayor R, Carmona-Fontaine C. Keeping in touch with contact inhibition of locomotion. Trends Cell Biol 2010; 20:319 - 28; http://dx.doi.org/10.1016/j.tcb.2010.03.005; PMID: 20399659
  • Carmona-Fontaine C, Theveneau E, Tzekou A, Tada M, Woods M, Page KM, Parsons M, Lambris JD, Mayor R. Complement fragment C3a controls mutual cell attraction during collective cell migration. Dev Cell 2011; 21:1026 - 37; http://dx.doi.org/10.1016/j.devcel.2011.10.012; PMID: 22118769
  • Hall A. Rho family GTPases. Biochem Soc Trans 2012; 40:1378 - 82; http://dx.doi.org/10.1042/BST20120103; PMID: 23176484
  • Boureux A, Vignal E, Faure S, Fort P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 2007; 24:203 - 16; http://dx.doi.org/10.1093/molbev/msl145; PMID: 17035353
  • Foster R, Hu KQ, Lu Y, Nolan KM, Thissen J, Settleman J. Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol 1996; 16:2689 - 99; PMID: 8649376
  • Jordan P, Brazåo R, Boavida MG, Gespach C, Chastre E. Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene 1999; 18:6835 - 9; http://dx.doi.org/10.1038/sj.onc.1203233; PMID: 10597294
  • Vignal E, De Toledo M, Comunale F, Ladopoulou A, Gauthier-Rouvière C, Blangy A, Fort P. Characterization of TCL, a new GTPase of the rho family related to TC10 andCcdc42. J Biol Chem 2000; 275:36457 - 64; http://dx.doi.org/10.1074/jbc.M003487200; PMID: 10967094
  • Aspenström P, Fransson A, Saras J. Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J 2004; 377:327 - 37; http://dx.doi.org/10.1042/BJ20031041; PMID: 14521508
  • Shutes A, Berzat AC, Cox AD, Der CJ. Atypical mechanism of regulation of the Wrch-1 Rho family small GTPase. Curr Biol 2004; 14:2052 - 6; http://dx.doi.org/10.1016/j.cub.2004.11.011; PMID: 15556869
  • Aspenström P, Ruusala A, Pacholsky D. Taking Rho GTPases to the next level: the cellular functions of atypical Rho GTPases. Exp Cell Res 2007; 313:3673 - 9; http://dx.doi.org/10.1016/j.yexcr.2007.07.022; PMID: 17850788
  • Steventon B, Carmona-Fontaine C, Mayor R. Genetic network during neural crest induction: from cell specification to cell survival. Semin Cell Dev Biol 2005; 16:647 - 54; http://dx.doi.org/10.1016/j.semcdb.2005.06.001; PMID: 16084743
  • Klymkowsky MW, Rossi CC, Artinger KB. Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis. Cell Adh Migr 2010; 4:595 - 608; http://dx.doi.org/10.4161/cam.4.4.12962; PMID: 20962584
  • Morgan R, Hooiveld MH, Durston AJ. A novel guanine exchange factor increases the competence of early ectoderm to respond to neural induction. Mech Dev 1999; 88:67 - 72; http://dx.doi.org/10.1016/S0925-4773(99)00172-0; PMID: 10525189
  • Guémar L, de Santa Barbara P, Vignal E, Maurel B, Fort P, Faure S. The small GTPase RhoV is an essential regulator of neural crest induction in Xenopus. Dev Biol 2007; 310:113 - 28; http://dx.doi.org/10.1016/j.ydbio.2007.07.031; PMID: 17761159
  • Notarnicola C, Le Guen L, Fort P, Faure S, de Santa Barbara P. Dynamic expression patterns of RhoV/Chp and RhoU/Wrch during chicken embryonic development. Dev Dyn 2008; 237:1165 - 71; http://dx.doi.org/10.1002/dvdy.21507; PMID: 18351666
  • De Calisto J, Araya C, Marchant L, Riaz CF, Mayor R. Essential role of non-canonical Wnt signalling in neural crest migration. Development 2005; 132:2587 - 97; http://dx.doi.org/10.1242/dev.01857; PMID: 15857909
  • Broders-Bondon F, Chesneau A, Romero-Oliva F, Mazabraud A, Mayor R, Thiery JP. Regulation of XSnail2 expression by Rho GTPases. Dev Dyn 2007; 236:2555 - 66; http://dx.doi.org/10.1002/dvdy.21273; PMID: 17676632
  • Hotta R, Pepdjonovic L, Anderson RB, Zhang D, Bergner AJ, Leung J, Pébay A, Young HM, Newgreen DF, Dottori M. Small-molecule induction of neural crest-like cells derived from human neural progenitors. Stem Cells 2009; 27:2896 - 905; PMID: 19711454
  • Bisson N, Wedlich D, Moss T. The p21-activated kinase Pak1 regulates induction and migration of the neural crest in Xenopus. Cell Cycle 2012; 11:1316 - 24; http://dx.doi.org/10.4161/cc.19685; PMID: 22421159
  • Kerosuo L, Bronner ME. Biphasic influence of Miz1 on neural crest development by regulating cell survival and apical adhesion complex formation in the developing neural tube. Mol Biol Cell 2014; 25:347 - 55; http://dx.doi.org/10.1091/mbc.E13-06-0327; PMID: 24307680
  • Gammill LS, Bronner-Fraser M. Genomic analysis of neural crest induction. Development 2002; 129:5731 - 41; http://dx.doi.org/10.1242/dev.00175; PMID: 12421712
  • Nikolova E, Mitev V, Minner F, Deroanne CF, Poumay Y. The inhibition of the expression of the small Rho GTPase Rac1 induces differentiation with no effect on cell proliferation in growing human adult keratinocytes. J Cell Biochem 2008; 103:857 - 64; http://dx.doi.org/10.1002/jcb.21455; PMID: 17615554
  • Ahlstrom JD, Erickson CA. The neural crest epithelial-mesenchymal transition in 4D: a ‘tail’ of multiple non-obligatory cellular mechanisms. Development 2009; 136:1801 - 12; http://dx.doi.org/10.1242/dev.034785; PMID: 19429784
  • Berndt JD, Clay MR, Langenberg T, Halloran MC. Rho-kinase and myosin II affect dynamic neural crest cell behaviors during epithelial to mesenchymal transition in vivo. Dev Biol 2008; 324:236 - 44; http://dx.doi.org/10.1016/j.ydbio.2008.09.013; PMID: 18926812
  • Liu JP, Jessell TM. A role for rhoB in the delamination of neural crest cells from the dorsal neural tube. Development 1998; 125:5055 - 67; PMID: 9811589
  • Groysman M, Shoval I, Kalcheim C. A negative modulatory role for rho and rho-associated kinase signaling in delamination of neural crest cells. Neural Dev 2008; 3:27; http://dx.doi.org/10.1186/1749-8104-3-27; PMID: 18945340
  • Clay MR, Halloran MC. Rho activation is apically restricted by Arhgap1 in neural crest cells and drives epithelial-to-mesenchymal transition. Development 2013; 140:3198 - 209; http://dx.doi.org/10.1242/dev.095448; PMID: 23804498
  • Hou X, Katahira T, Ohashi K, Mizuno K, Sugiyama S, Nakamura H. Coactosin accelerates cell dynamism by promoting actin polymerization. Dev Biol 2013; 379:53 - 63; http://dx.doi.org/10.1016/j.ydbio.2013.04.006; PMID: 23603493
  • Fort P, Guémar L, Vignal E, Morin N, Notarnicola C, de Santa Barbara P, Faure S. Activity of the RhoU/Wrch1 GTPase is critical for cranial neural crest cell migration. Dev Biol 2011; 350:451 - 63; http://dx.doi.org/10.1016/j.ydbio.2010.12.011; PMID: 21156169
  • Tahtakran SA, Selleck MA. Ets-1 expression is associated with cranial neural crest migration and vasculogenesis in the chick embryo. Gene Expr Patterns 2003; 3:455 - 8; http://dx.doi.org/10.1016/S1567-133X(03)00065-6; PMID: 12915311
  • Coles EG, Taneyhill LA, Bronner-Fraser M. A critical role for Cadherin6B in regulating avian neural crest emigration. Dev Biol 2007; 312:533 - 44; http://dx.doi.org/10.1016/j.ydbio.2007.09.056; PMID: 17991460
  • Fernández Caso M, De Paz P, Fernandez Alvarez JG, Chamorro C, Villar JM. Delamination of neuroepithelium and nonneural ectoderm and its relation to the convergence step in chick neurulation. J Anat 1992; 180:143 - 53; PMID: 1452469
  • Innes PB. The ultrastructure of early cephalic neural crest cell migration in the mouse. Anat Embryol (Berl) 1985; 172:33 - 8; http://dx.doi.org/10.1007/BF00318941; PMID: 4037370
  • Alfandari D, Cousin H, Marsden M. Mechanism of Xenopus cranial neural crest cell migration. Cell Adh Migr 2010; 4:553 - 60; http://dx.doi.org/10.4161/cam.4.4.12202; PMID: 20505318
  • Sadaghiani B, Thiébaud CH. Neural crest development in the Xenopus laevis embryo, studied by interspecific transplantation and scanning electron microscopy. Dev Biol 1987; 124:91 - 110; http://dx.doi.org/10.1016/0012-1606(87)90463-5; PMID: 3666314
  • Lucas JM, Nikolic I, Hens MD. cDNA cloning, sequence comparison, and developmental expression of Xenopus rac1. Mech Dev 2002; 115:113 - 6; http://dx.doi.org/10.1016/S0925-4773(02)00117-X; PMID: 12049773
  • Shoval I, Kalcheim C. Antagonistic activities of Rho and Rac GTPases underlie the transition from neural crest delamination to migration. Dev Dyn 2012; 241:1155 - 68; http://dx.doi.org/10.1002/dvdy.23799; PMID: 22553120
  • Matthews HK, Marchant L, Carmona-Fontaine C, Kuriyama S, Larraín J, Holt MR, Parsons M, Mayor R. Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA. Development 2008; 135:1771 - 80; http://dx.doi.org/10.1242/dev.017350; PMID: 18403410
  • Moore R, Theveneau E, Pozzi S, Alexandre P, Kashef J, Richardson J, Linker C, Mayor R.. Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion. 2013; 140:4763 - 75
  • Shnitsar I, Borchers A. PTK7 recruits dsh to regulate neural crest migration. Development 2008; 135:4015 - 24; http://dx.doi.org/10.1242/dev.023556; PMID: 19004858
  • Wagner G, Peradziryi H, Wehner P, Borchers A. PlexinA1 interacts with PTK7 and is required for neural crest migration. Biochem Biophys Res Commun 2010; 402:402 - 7; http://dx.doi.org/10.1016/j.bbrc.2010.10.044; PMID: 20946874
  • Kashef J, Köhler A, Kuriyama S, Alfandari D, Mayor R, Wedlich D. Cadherin-11 regulates protrusive activity in Xenopus cranial neural crest cells upstream of Trio and the small GTPases. Genes Dev 2009; 23:1393 - 8; http://dx.doi.org/10.1101/gad.519409; PMID: 19528317
  • Goto A, Sumiyama K, Kamioka Y, Nakasyo E, Ito K, Iwasaki M, Enomoto H, Matsuda M. GDNF and endothelin 3 regulate migration of enteric neural crest-derived cells via protein kinase A and Rac1. J Neurosci 2013; 33:4901 - 12; http://dx.doi.org/10.1523/JNEUROSCI.4828-12.2013; PMID: 23486961
  • Zhang Y, Kim TH, Niswander L. Phactr4 regulates directional migration of enteric neural crest through PP1, integrin signaling, and cofilin activity. Genes Dev 2012; 26:69 - 81; http://dx.doi.org/10.1101/gad.179283.111; PMID: 22215812
  • Rupp PA, Kulesa PM. A role for RhoA in the two-phase migratory pattern of post-otic neural crest cells. Dev Biol 2007; 311:159 - 71; http://dx.doi.org/10.1016/j.ydbio.2007.08.027; PMID: 17900555
  • Fuchs S, Herzog D, Sumara G, Büchmann-Møller S, Civenni G, Wu X, Chrostek-Grashoff A, Suter U, Ricci R, Relvas JB, et al. Stage-specific control of neural crest stem cell proliferation by the small rho GTPases Cdc42 and Rac1. Cell Stem Cell 2009; 4:236 - 47; http://dx.doi.org/10.1016/j.stem.2009.01.017; PMID: 19265663
  • Henderson DJ, Ybot-Gonzalez P, Copp AJ. RhoB is expressed in migrating neural crest and endocardial cushions of the developing mouse embryo. Mech Dev 2000; 95:211 - 4; http://dx.doi.org/10.1016/S0925-4773(00)00333-6; PMID: 10906464
  • Vignal E, de Santa Barbara P, Guémar L, Donnay J-M, Fort P, Faure S. Expression of RhoB in the developing Xenopus laevis embryo. Gene Expr Patterns 2007; 7:282 - 8; http://dx.doi.org/10.1016/j.modgep.2006.09.002; PMID: 17049930
  • Brady DC, Alan JK, Madigan JP, Fanning AS, Cox AD. The transforming Rho family GTPase Wrch-1 disrupts epithelial cell tight junctions and epithelial morphogenesis. Mol Cell Biol 2009; 29:1035 - 49; http://dx.doi.org/10.1128/MCB.00336-08; PMID: 19064640
  • Chuang YY, Valster A, Coniglio SJ, Backer JM, Symons M. The atypical Rho family GTPase Wrch-1 regulates focal adhesion formation and cell migration. J Cell Sci 2007; 120:1927 - 34; http://dx.doi.org/10.1242/jcs.03456; PMID: 17504809
  • Ory S, Brazier H, Blangy A. Identification of a bipartite focal adhesion localization signal in RhoU/Wrch-1, a Rho family GTPase that regulates cell adhesion and migration. Biol Cell 2007; 99:701 - 16; http://dx.doi.org/10.1042/BC20070058; PMID: 17620058

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.