1,986
Views
38
CrossRef citations to date
0
Altmetric
Review

Rho’ing in and out of cells

Viral interactions with Rho GTPase signaling

, &
Article: e28318 | Received 30 Sep 2013, Accepted 21 Feb 2014, Published online: 24 Mar 2014

References

  • Pollard TD, Cooper JA. Actin, a central player in cell shape and movement. Science 2009; 326:1208 - 12; http://dx.doi.org/10.1126/science.1175862; PMID: 19965462
  • Disanza A, Steffen A, Hertzog M, Frittoli E, Rottner K, Scita G. Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement. Cell Mol Life Sci 2005; 62:955 - 70; http://dx.doi.org/10.1007/s00018-004-4472-6; PMID: 15868099
  • Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003; 112:453 - 65; http://dx.doi.org/10.1016/S0092-8674(03)00120-X; PMID: 12600310
  • Pantaloni D, Le Clainche C, Carlier MF. Mechanism of actin-based motility. Science 2001; 292:1502 - 6; http://dx.doi.org/10.1126/science.1059975; PMID: 11379633
  • Hall A. Rho GTPases and the actin cytoskeleton. Science 1998; 279:509 - 14; http://dx.doi.org/10.1126/science.279.5350.509; PMID: 9438836
  • Aspenström P, Fransson A, Saras J. Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J 2004; 377:327 - 37; http://dx.doi.org/10.1042/BJ20031041; PMID: 14521508
  • Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 2002; 16:1587 - 609; http://dx.doi.org/10.1101/gad.1003302; PMID: 12101119
  • Bernards A. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim Biophys Acta 2003; 1603:47 - 82; PMID: 12618308
  • Olofsson B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal 1999; 11:545 - 54; http://dx.doi.org/10.1016/S0898-6568(98)00063-1; PMID: 10433515
  • Hall A. The cytoskeleton and cancer. Cancer Metastasis Rev 2009; 28:5 - 14; http://dx.doi.org/10.1007/s10555-008-9166-3; PMID: 19153674
  • Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J 2000; 348:241 - 55; http://dx.doi.org/10.1042/0264-6021:3480241; PMID: 10816416
  • Satoh S, Tominaga T. mDia-interacting protein acts downstream of Rho-mDia and modifies Src activation and stress fiber formation. J Biol Chem 2001; 276:39290 - 4; http://dx.doi.org/10.1074/jbc.M107026200; PMID: 11509578
  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996; 273:245 - 8; http://dx.doi.org/10.1126/science.273.5272.245; PMID: 8662509
  • Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 1998; 393:809 - 12; http://dx.doi.org/10.1038/31735; PMID: 9655398
  • Matsui T, Yonemura S, Tsukita S, Tsukita S. Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases. Curr Biol 1999; 9:1259 - 62; http://dx.doi.org/10.1016/S0960-9822(99)80508-9; PMID: 10556088
  • Miki H, Suetsugu S, Takenawa T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J 1998; 17:6932 - 41; http://dx.doi.org/10.1093/emboj/17.23.6932; PMID: 9843499
  • Smith LG, Li R. Actin polymerization: riding the wave. Curr Biol 2004; 14:R109 - 11; http://dx.doi.org/10.1016/j.cub.2004.01.016; PMID: 14986640
  • Symons M, Derry JM, Karlak B, Jiang S, Lemahieu V, Mccormick F, Francke U, Abo A. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 1996; 84:723 - 34; http://dx.doi.org/10.1016/S0092-8674(00)81050-8; PMID: 8625410
  • Taylor MP, Koyuncu OO, Enquist LW. Subversion of the actin cytoskeleton during viral infection. Nat Rev Microbiol 2011; 9:427 - 39; http://dx.doi.org/10.1038/nrmicro2574; PMID: 21522191
  • Delorme-Axford E, Coyne CB. The actin cytoskeleton as a barrier to virus infection of polarized epithelial cells. Viruses 2011; 3:2462 - 77; http://dx.doi.org/10.3390/v3122462; PMID: 22355449
  • Barocchi MA, Masignani V, Rappuoli R. Opinion: Cell entry machines: a common theme in nature?. Nat Rev Microbiol 2005; 3:349 - 58; http://dx.doi.org/10.1038/nrmicro1131; PMID: 15759040
  • Sieczkarski SB, Whittaker GR. Dissecting virus entry via endocytosis. J Gen Virol 2002; 83:1535 - 45; PMID: 12075072
  • Marsh M, Helenius A. Virus entry: open sesame. Cell 2006; 124:729 - 40; http://dx.doi.org/10.1016/j.cell.2006.02.007; PMID: 16497584
  • Kaksonen M, Sun Y, Drubin DG. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 2003; 115:475 - 87; http://dx.doi.org/10.1016/S0092-8674(03)00883-3; PMID: 14622601
  • Kaksonen M, Toret CP, Drubin DG. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 2005; 123:305 - 20; http://dx.doi.org/10.1016/j.cell.2005.09.024; PMID: 16239147
  • Humphries AC, Way M. The non-canonical roles of clathrin and actin in pathogen internalization, egress and spread. Nat Rev Microbiol 2013; 11:551 - 60; http://dx.doi.org/10.1038/nrmicro3072; PMID: 24020073
  • Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annu Rev Biochem 2010; 79:803 - 33; http://dx.doi.org/10.1146/annurev-biochem-060208-104626; PMID: 20196649
  • Ghigo E. A dilemma for viruses and giant viruses: which endocytic pathway to use to enter cells?. Intervirology 2010; 53:274 - 83; http://dx.doi.org/10.1159/000312912; PMID: 20551679
  • Schelhaas M. Come in and take your coat off - how host cells provide endocytosis for virus entry. Cell Microbiol 2010; 12:1378 - 88; http://dx.doi.org/10.1111/j.1462-5822.2010.01510.x; PMID: 20678171
  • Sandvig K, Pust S, Skotland T, van Deurs B. Clathrin-independent endocytosis: mechanisms and function. Curr Opin Cell Biol 2011; 23:413 - 20; http://dx.doi.org/10.1016/j.ceb.2011.03.007; PMID: 21466956
  • Mercer J, Helenius A. Gulping rather than sipping: macropinocytosis as a way of virus entry. Curr Opin Microbiol 2012; 15:490 - 9; http://dx.doi.org/10.1016/j.mib.2012.05.016; PMID: 22749376
  • Mercer J, Helenius A. Virus entry by macropinocytosis. Nat Cell Biol 2009; 11:510 - 20; http://dx.doi.org/10.1038/ncb0509-510; PMID: 19404330
  • Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 2011; 89:836 - 43; http://dx.doi.org/10.1038/icb.2011.20; PMID: 21423264
  • Sayedyahossein S, Dagnino L. Integrins and small GTPases as modulators of phagocytosis. Int Rev Cell Mol Biol 2013; 302:321 - 54; http://dx.doi.org/10.1016/B978-0-12-407699-0.00006-6; PMID: 23351714
  • Lehmann MJ, Sherer NM, Marks CB, Pypaert M, Mothes W. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J Cell Biol 2005; 170:317 - 25; http://dx.doi.org/10.1083/jcb.200503059; PMID: 16027225
  • Schelhaas M, Ewers H, Rajamäki ML, Day PM, Schiller JT, Helenius A. Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions. PLoS Pathog 2008; 4:e1000148; http://dx.doi.org/10.1371/journal.ppat.1000148; PMID: 18773072
  • Mercer J, Helenius A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 2008; 320:531 - 5; http://dx.doi.org/10.1126/science.1155164; PMID: 18436786
  • Zamudio-Meza H, Castillo-Alvarez A, González-Bonilla C, Meza I. Cross-talk between Rac1 and Cdc42 GTPases regulates formation of filopodia required for dengue virus type-2 entry into HMEC-1 cells. J Gen Virol 2009; 90:2902 - 11; http://dx.doi.org/10.1099/vir.0.014159-0; PMID: 19710257
  • Oh MJ, Akhtar J, Desai P, Shukla D. A role for heparan sulfate in viral surfing. Biochem Biophys Res Commun 2010; 391:176 - 81; http://dx.doi.org/10.1016/j.bbrc.2009.11.027; PMID: 19909728
  • Brazzoli M, Bianchi A, Filippini S, Weiner A, Zhu Q, Pizza M, Crotta S. CD81 is a central regulator of cellular events required for hepatitis C virus infection of human hepatocytes. J Virol 2008; 82:8316 - 29; http://dx.doi.org/10.1128/JVI.00665-08; PMID: 18579606
  • Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C, Rouillé Y. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol 2006; 80:6964 - 72; http://dx.doi.org/10.1128/JVI.00024-06; PMID: 16809302
  • Coyne CB, Bergelson JM. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 2006; 124:119 - 31; http://dx.doi.org/10.1016/j.cell.2005.10.035; PMID: 16413486
  • Jiménez-Baranda S, Gómez-Moutón C, Rojas A, Martínez-Prats L, Mira E, Ana Lacalle R, Valencia A, Dimitrov DS, Viola A, Delgado R, et al. Filamin-A regulates actin-dependent clustering of HIV receptors. Nat Cell Biol 2007; 9:838 - 46; http://dx.doi.org/10.1038/ncb1610; PMID: 17572668
  • Iyengar S, Hildreth JE, Schwartz DH. Actin-dependent receptor colocalization required for human immunodeficiency virus entry into host cells. J Virol 1998; 72:5251 - 5; PMID: 9573299
  • Pontow S, Harmon B, Campbell N, Ratner L. Antiviral activity of a Rac GEF inhibitor characterized with a sensitive HIV/SIV fusion assay. Virology 2007; 368:1 - 6; http://dx.doi.org/10.1016/j.virol.2007.06.022; PMID: 17640696
  • del Real G, Jiménez-Baranda S, Mira E, Lacalle RA, Lucas P, Gómez-Moutón C, Alegret M, Peña JM, Rodríguez-Zapata M, Alvarez-Mon M, et al. Statins inhibit HIV-1 infection by down-regulating Rho activity. J Exp Med 2004; 200:541 - 7; http://dx.doi.org/10.1084/jem.20040061; PMID: 15314078
  • Harmon B, Campbell N, Ratner L. Role of Abl kinase and the Wave2 signaling complex in HIV-1 entry at a post-hemifusion step. PLoS Pathog 2010; 6:e1000956; http://dx.doi.org/10.1371/journal.ppat.1000956; PMID: 20585556
  • Yoder A, Yu D, Dong L, Iyer SR, Xu X, Kelly J, Liu J, Wang W, Vorster PJ, Agulto L, et al. HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell 2008; 134:782 - 92; http://dx.doi.org/10.1016/j.cell.2008.06.036; PMID: 18775311
  • Cameron PU, Saleh S, Sallmann G, Solomon A, Wightman F, Evans VA, Boucher G, Haddad EK, Sekaly RP, Harman AN, et al. Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc Natl Acad Sci U S A 2010; 107:16934 - 9; http://dx.doi.org/10.1073/pnas.1002894107; PMID: 20837531
  • Vorster PJ, Guo J, Yoder A, Wang W, Zheng Y, Xu X, Yu D, Spear M, Wu Y. LIM kinase 1 modulates cortical actin and CXCR4 cycling and is activated by HIV-1 to initiate viral infection. J Biol Chem 2011; 286:12554 - 64; http://dx.doi.org/10.1074/jbc.M110.182238; PMID: 21321123
  • Hoppe S, Schelhaas M, Jaeger V, Liebig T, Petermann P, Knebel-Mörsdorf D. Early herpes simplex virus type 1 infection is dependent on regulated Rac1/Cdc42 signalling in epithelial MDCKII cells. J Gen Virol 2006; 87:3483 - 94; http://dx.doi.org/10.1099/vir.0.82231-0; PMID: 17098962
  • De Regge N, Nauwynck HJ, Geenen K, Krummenacher C, Cohen GH, Eisenberg RJ, Mettenleiter TC, Favoreel HW. Alpha-herpesvirus glycoprotein D interaction with sensory neurons triggers formation of varicosities that serve as virus exit sites. J Cell Biol 2006; 174:267 - 75; http://dx.doi.org/10.1083/jcb.200510156; PMID: 16831884
  • Frampton AR Jr., Stolz DB, Uchida H, Goins WF, Cohen JB, Glorioso JC. Equine herpesvirus 1 enters cells by two different pathways, and infection requires the activation of the cellular kinase ROCK1. J Virol 2007; 81:10879 - 89; http://dx.doi.org/10.1128/JVI.00504-07; PMID: 17670830
  • Wang X, Huang DY, Huong SM, Huang ES. Integrin alphavbeta3 is a coreceptor for human cytomegalovirus. Nat Med 2005; 11:515 - 21; http://dx.doi.org/10.1038/nm1236; PMID: 15834425
  • Isaacson MK, Feire AL, Compton T. Epidermal growth factor receptor is not required for human cytomegalovirus entry or signaling. J Virol 2007; 81:6241 - 7; http://dx.doi.org/10.1128/JVI.00169-07; PMID: 17428848
  • Pastey MK, Crowe JE Jr., Graham BS. RhoA interacts with the fusion glycoprotein of respiratory syncytial virus and facilitates virus-induced syncytium formation. J Virol 1999; 73:7262 - 70; PMID: 10438814
  • Gower TL, Peeples ME, Collins PL, Graham BS. RhoA is activated during respiratory syncytial virus infection. Virology 2001; 283:188 - 96; http://dx.doi.org/10.1006/viro.2001.0891; PMID: 11336544
  • Gower TL, Pastey MK, Peeples ME, Collins PL, McCurdy LH, Hart TK, Guth A, Johnson TR, Graham BS. RhoA signaling is required for respiratory syncytial virus-induced syncytium formation and filamentous virion morphology. J Virol 2005; 79:5326 - 36; http://dx.doi.org/10.1128/JVI.79.9.5326-5336.2005; PMID: 15827147
  • Pastey MK, Gower TL, Spearman PW, Crowe JE Jr., Graham BS. A RhoA-derived peptide inhibits syncytium formation induced by respiratory syncytial virus and parainfluenza virus type 3. Nat Med 2000; 6:35 - 40; http://dx.doi.org/10.1038/71503; PMID: 10613821
  • Marsh M, Bron R. SFV infection in CHO cells: cell-type specific restrictions to productive virus entry at the cell surface. J Cell Sci 1997; 110:95 - 103; PMID: 9010788
  • Mettlen M, Pucadyil T, Ramachandran R, Schmid SL. Dissecting dynamin’s role in clathrin-mediated endocytosis. Biochem Soc Trans 2009; 37:1022 - 6; http://dx.doi.org/10.1042/BST0371022; PMID: 19754444
  • Li E, Stupack D, Bokoch GM, Nemerow GR. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J Virol 1998; 72:8806 - 12; PMID: 9765425
  • Akula SM, Naranatt PP, Walia NS, Wang FZ, Fegley B, Chandran B. Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis. J Virol 2003; 77:7978 - 90; http://dx.doi.org/10.1128/JVI.77.14.7978-7990.2003; PMID: 12829837
  • Sharma-Walia N, Naranatt PP, Krishnan HH, Zeng L, Chandran B. Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 envelope glycoprotein gB induces the integrin-dependent focal adhesion kinase-Src-phosphatidylinositol 3-kinase-rho GTPase signal pathways and cytoskeletal rearrangements. J Virol 2004; 78:4207 - 23; http://dx.doi.org/10.1128/JVI.78.8.4207-4223.2004; PMID: 15047836
  • Naranatt PP, Krishnan HH, Smith MS, Chandran B. Kaposi’s sarcoma-associated herpesvirus modulates microtubule dynamics via RhoA-GTP-diaphanous 2 signaling and utilizes the dynein motors to deliver its DNA to the nucleus. J Virol 2005; 79:1191 - 206; http://dx.doi.org/10.1128/JVI.79.2.1191-1206.2005; PMID: 15613346
  • Veettil MV, Sharma-Walia N, Sadagopan S, Raghu H, Sivakumar R, Naranatt PP, Chandran B. RhoA-GTPase facilitates entry of Kaposi’s sarcoma-associated herpesvirus into adherent target cells in a Src-dependent manner. J Virol 2006; 80:11432 - 46; http://dx.doi.org/10.1128/JVI.01342-06; PMID: 17005646
  • Cavalli V, Corti M, Gruenberg J. Endocytosis and signaling cascades: a close encounter. FEBS Lett 2001; 498:190 - 6; http://dx.doi.org/10.1016/S0014-5793(01)02484-X; PMID: 11412855
  • Lanzetti L, Di Fiore PP, Scita G. Pathways linking endocytosis and actin cytoskeleton in mammalian cells. Exp Cell Res 2001; 271:45 - 56; http://dx.doi.org/10.1006/excr.2001.5369; PMID: 11697881
  • Somsel Rodman J, Wandinger-Ness A. Rab GTPases coordinate endocytosis. J Cell Sci 2000; 113:183 - 92; PMID: 10633070
  • Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic 2002; 3:311 - 20; http://dx.doi.org/10.1034/j.1600-0854.2002.30501.x; PMID: 11967125
  • Pelkmans L, Püntener D, Helenius A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 2002; 296:535 - 9; http://dx.doi.org/10.1126/science.1069784; PMID: 11964480
  • Stergiou L, Bauer M, Mair W, Bausch-Fluck D, Drayman N, Wollscheid B, Oppenheim A, Pelkmans L. Integrin-mediated signaling induced by simian virus 40 leads to transient uncoupling of cortical actin and the plasma membrane. PLoS One 2013; 8:e55799; http://dx.doi.org/10.1371/journal.pone.0055799; PMID: 23409046
  • Hayer A, Stoeber M, Ritz D, Engel S, Meyer HH, Helenius A. Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 2010; 191:615 - 29; http://dx.doi.org/10.1083/jcb.201003086; PMID: 21041450
  • Parton RG, Howes MT. Revisiting caveolin trafficking: the end of the caveosome. J Cell Biol 2010; 191:439 - 41; http://dx.doi.org/10.1083/jcb.201009093; PMID: 21041440
  • Huang WR, Wang YC, Chi PI, Wang L, Wang CY, Lin CH, Liu HJ. Cell entry of avian reovirus follows a caveolin-1-mediated and dynamin-2-dependent endocytic pathway that requires activation of p38 mitogen-activated protein kinase (MAPK) and Src signaling pathways as well as microtubules and small GTPase Rab5 protein. J Biol Chem 2011; 286:30780 - 94; http://dx.doi.org/10.1074/jbc.M111.257154; PMID: 21705803
  • Mercer J, Knébel S, Schmidt FI, Crouse J, Burkard C, Helenius A. Vaccinia virus strains use distinct forms of macropinocytosis for host-cell entry. Proc Natl Acad Sci U S A 2010; 107:9346 - 51; http://dx.doi.org/10.1073/pnas.1004618107; PMID: 20439710
  • Schmidt FI, Bleck CK, Helenius A, Mercer J. Vaccinia extracellular virions enter cells by macropinocytosis and acid-activated membrane rupture. EMBO J 2011; 30:3647 - 61; http://dx.doi.org/10.1038/emboj.2011.245; PMID: 21792173
  • Sandgren KJ, Wilkinson J, Miranda-Saksena M, McInerney GM, Byth-Wilson K, Robinson PJ, Cunningham AL. A differential role for macropinocytosis in mediating entry of the two forms of vaccinia virus into dendritic cells. PLoS Pathog 2010; 6:e1000866; http://dx.doi.org/10.1371/journal.ppat.1000866; PMID: 20421949
  • Locker JK, Kuehn A, Schleich S, Rutter G, Hohenberg H, Wepf R, Griffiths G. Entry of the two infectious forms of vaccinia virus at the plasma membane is signaling-dependent for the IMV but not the EEV. Mol Biol Cell 2000; 11:2497 - 511; http://dx.doi.org/10.1091/mbc.11.7.2497; PMID: 10888684
  • Locker JK, Kuehn A, Schleich S, Rutter G, Hohenberg H, Wepf R, Griffiths G. Entry of the two infectious forms of vaccinia virus at the plasma membane is signaling-dependent for the IMV but not the EEV. Mol Biol Cell 2000; 11:2497 - 511; http://dx.doi.org/10.1091/mbc.11.7.2497; PMID: 10888684
  • Schelhaas M, Shah B, Holzer M, Blattmann P, Kühling L, Day PM, Schiller JT, Helenius A. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog 2012; 8:e1002657; http://dx.doi.org/10.1371/journal.ppat.1002657; PMID: 22536154
  • Nogalski MT, Chan GC, Stevenson EV, Collins-McMillen DK, Yurochko AD. The HCMV gH/gL/UL128-131 complex triggers the specific cellular activation required for efficient viral internalization into target monocytes. PLoS Pathog 2013; 9:e1003463; http://dx.doi.org/10.1371/journal.ppat.1003463; PMID: 23853586
  • Bottero V, Chakraborty S, Chandran B. Reactive oxygen species are induced by Kaposi’s sarcoma-associated herpesvirus early during primary infection of endothelial cells to promote virus entry. J Virol 2013; 87:1733 - 49; http://dx.doi.org/10.1128/JVI.02958-12; PMID: 23175375
  • Clement C, Tiwari V, Scanlan PM, Valyi-Nagy T, Yue BY, Shukla D. A novel role for phagocytosis-like uptake in herpes simplex virus entry. J Cell Biol 2006; 174:1009 - 21; http://dx.doi.org/10.1083/jcb.200509155; PMID: 17000878
  • Karjalainen M, Kakkonen E, Upla P, Paloranta H, Kankaanpää P, Liberali P, Renkema GH, Hyypiä T, Heino J, Marjomäki V. A Raft-derived, Pak1-regulated entry participates in alpha2beta1 integrin-dependent sorting to caveosomes. Mol Biol Cell 2008; 19:2857 - 69; http://dx.doi.org/10.1091/mbc.E07-10-1094; PMID: 18448666
  • Nonnenmacher M, Weber T. Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. Cell Host Microbe 2011; 10:563 - 76; http://dx.doi.org/10.1016/j.chom.2011.10.014; PMID: 22177561
  • Kalia M, Khasa R, Sharma M, Nain M, Vrati S. Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism. J Virol 2013; 87:148 - 62; http://dx.doi.org/10.1128/JVI.01399-12; PMID: 23055570
  • Coyne CB, Kim KS, Bergelson JM. Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2. EMBO J 2007; 26:4016 - 28; http://dx.doi.org/10.1038/sj.emboj.7601831; PMID: 17717529
  • Silva-Ayala D, López T, Gutiérrez M, Perrimon N, López S, Arias CF. Genome-wide RNAi screen reveals a role for the ESCRT complex in rotavirus cell entry. Proc Natl Acad Sci U S A 2013; 110:10270 - 5; http://dx.doi.org/10.1073/pnas.1304932110; PMID: 23733942
  • Zambrano JL, Sorondo O, Alcala A, Vizzi E, Diaz Y, Ruiz MC, Michelangeli F, Liprandi F, Ludert JE. Rotavirus infection of cells in culture induces activation of RhoA and changes in the actin and tubulin cytoskeleton. PLoS One 2012; 7:e47612; http://dx.doi.org/10.1371/journal.pone.0047612; PMID: 23082182
  • Laakkonen JP, Mäkelä AR, Kakkonen E, Turkki P, Kukkonen S, Peränen J, Ylä-Herttuala S, Airenne KJ, Oker-Blom C, Vihinen-Ranta M, et al. Clathrin-independent entry of baculovirus triggers uptake of E. coli in non-phagocytic human cells. PLoS One 2009; 4:e5093; http://dx.doi.org/10.1371/journal.pone.0005093; PMID: 19352496
  • Misinzo G, Delputte PL, Lefebvre DJ, Nauwynck HJ. Porcine circovirus 2 infection of epithelial cells is clathrin-, caveolae- and dynamin-independent, actin and Rho-GTPase-mediated, and enhanced by cholesterol depletion. Virus Res 2009; 139:1 - 9; http://dx.doi.org/10.1016/j.virusres.2008.09.005; PMID: 18952130
  • Lyman MG, Enquist LW. Herpesvirus interactions with the host cytoskeleton. J Virol 2009; 83:2058 - 66; http://dx.doi.org/10.1128/JVI.01718-08; PMID: 18842724
  • Döhner K, Sodeik B. The role of the cytoskeleton during viral infection. Curr Top Microbiol Immunol 2005; 285:67 - 108; http://dx.doi.org/10.1007/3-540-26764-6_3; PMID: 15609501
  • Radtke K, Döhner K, Sodeik B. Viral interactions with the cytoskeleton: a hitchhiker’s guide to the cell. Cell Microbiol 2006; 8:387 - 400; http://dx.doi.org/10.1111/j.1462-5822.2005.00679.x; PMID: 16469052
  • Greber UF, Way M. A superhighway to virus infection. Cell 2006; 124:741 - 54; http://dx.doi.org/10.1016/j.cell.2006.02.018; PMID: 16497585
  • Dodding MP, Way M. Coupling viruses to dynein and kinesin-1. EMBO J 2011; 30:3527 - 39; http://dx.doi.org/10.1038/emboj.2011.283; PMID: 21878994
  • Raghu H, Sharma-Walia N, Veettil MV, Sadagopan S, Caballero A, Sivakumar R, Varga L, Bottero V, Chandran B. Lipid rafts of primary endothelial cells are essential for Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8-induced phosphatidylinositol 3-kinase and RhoA-GTPases critical for microtubule dynamics and nuclear delivery of viral DNA but dispensable for binding and entry. J Virol 2007; 81:7941 - 59; http://dx.doi.org/10.1128/JVI.02848-06; PMID: 17507466
  • Frampton AR Jr., Uchida H, von Einem J, Goins WF, Grandi P, Cohen JB, Osterrieder N, Glorioso JC. Equine herpesvirus type 1 (EHV-1) utilizes microtubules, dynein, and ROCK1 to productively infect cells. Vet Microbiol 2010; 141:12 - 21; http://dx.doi.org/10.1016/j.vetmic.2009.07.035; PMID: 19713056
  • Warren JC, Cassimeris L. The contributions of microtubule stability and dynamic instability to adenovirus nuclear localization efficiency. Cell Motil Cytoskeleton 2007; 64:675 - 89; http://dx.doi.org/10.1002/cm.20215; PMID: 17565754
  • Warren JC, Rutkowski A, Cassimeris L. Infection with replication-deficient adenovirus induces changes in the dynamic instability of host cell microtubules. Mol Biol Cell 2006; 17:3557 - 68; http://dx.doi.org/10.1091/mbc.E05-09-0850; PMID: 16775012
  • Quetglas JI, Hernáez B, Galindo I, Muñoz-Moreno R, Cuesta-Geijo MA, Alonso C. Small rho GTPases and cholesterol biosynthetic pathway intermediates in African swine fever virus infection. J Virol 2012; 86:1758 - 67; http://dx.doi.org/10.1128/JVI.05666-11; PMID: 22114329
  • Wang L, Zhang H, Solski PA, Hart MJ, Der CJ, Su L. Modulation of HIV-1 replication by a novel RhoA effector activity. J Immunol 2000; 164:5369 - 74; PMID: 10799900
  • Helms WS, Jeffrey JL, Holmes DA, Townsend MB, Clipstone NA, Su L. Modulation of NFAT-dependent gene expression by the RhoA signaling pathway in T cells. J Leukoc Biol 2007; 82:361 - 9; http://dx.doi.org/10.1189/jlb.0206120; PMID: 17502338
  • Cook JA, Albacker L, August A, Henderson AJ. CD28-dependent HIV-1 transcription is associated with Vav, Rac, and NF-kappa B activation. J Biol Chem 2003; 278:35812 - 8; http://dx.doi.org/10.1074/jbc.M302878200; PMID: 12842899
  • Jiang W, Wang Q, Chen S, Gao S, Song L, Liu P, Huang W. Influenza A virus NS1 induces G0/G1 cell cycle arrest by inhibiting the expression and activity of RhoA protein. J Virol 2013; 87:3039 - 52; http://dx.doi.org/10.1128/JVI.03176-12; PMID: 23283961
  • Chan CP, Siu YT, Kok KH, Ching YP, Tang HM, Jin DY. Group I p21-activated kinases facilitate Tax-mediated transcriptional activation of the human T-cell leukemia virus type 1 long terminal repeats. Retrovirology 2013; 10; http://dx.doi.org/10.1186/1742-4690-10-47; PMID: 23622267
  • Ishida H, Li K, Yi M, Lemon SM. p21-activated kinase 1 is activated through the mammalian target of rapamycin/p70 S6 kinase pathway and regulates the replication of hepatitis C virus in human hepatoma cells. J Biol Chem 2007; 282:11836 - 48; http://dx.doi.org/10.1074/jbc.M610106200; PMID: 17255101
  • Rodrigues L, Pires de Miranda M, Caloca MJ, Bustelo XR, Simas JP. Activation of Vav by the gammaherpesvirus M2 protein contributes to the establishment of viral latency in B lymphocytes. J Virol 2006; 80:6123 - 35; http://dx.doi.org/10.1128/JVI.02700-05; PMID: 16731951
  • Madureira PA, Matos P, Soeiro I, Dixon LK, Simas JP, Lam EW. Murine gamma-herpesvirus 68 latency protein M2 binds to Vav signaling proteins and inhibits B-cell receptor-induced cell cycle arrest and apoptosis in WEHI-231 B cells. J Biol Chem 2005; 280:37310 - 8; http://dx.doi.org/10.1074/jbc.M507478200; PMID: 16150693
  • Krishnan V, Zeichner SL. Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency. J Virol 2004; 78:9458 - 73; http://dx.doi.org/10.1128/JVI.78.17.9458-9473.2004; PMID: 15308739
  • Wang S, Li H, Chen Y, Wei H, Gao GF, Liu H, Huang S, Chen JL. Transport of influenza virus neuraminidase (NA) to host cell surface is regulated by ARHGAP21 and Cdc42 proteins. J Biol Chem 2012; 287:9804 - 16; http://dx.doi.org/10.1074/jbc.M111.312959; PMID: 22318733
  • Hui EK, Barman S, Tang DH, France B, Nayak DP. YRKL sequence of influenza virus M1 functions as the L domain motif and interacts with VPS28 and Cdc42. J Virol 2006; 80:2291 - 308; http://dx.doi.org/10.1128/JVI.80.5.2291-2308.2006; PMID: 16474136
  • Husain M, Harrod KS. Enhanced acetylation of alpha-tubulin in influenza A virus infected epithelial cells. FEBS Lett 2011; 585:128 - 32; http://dx.doi.org/10.1016/j.febslet.2010.11.023; PMID: 21094644
  • Pascua PN, Lee JH, Song MS, Park SJ, Baek YH, Ann BH, Shin EY, Kim EG, Choi YK. Role of the p21-activated kinases (PAKs) in influenza A virus replication. Biochem Biophys Res Commun 2011; 414:569 - 74; http://dx.doi.org/10.1016/j.bbrc.2011.09.119; PMID: 21982772
  • Haidari M, Zhang W, Ganjehei L, Ali M, Chen Z. Inhibition of MLC phosphorylation restricts replication of influenza virus--a mechanism of action for anti-influenza agents. PLoS One 2011; 6:e21444; http://dx.doi.org/10.1371/journal.pone.0021444; PMID: 21731751
  • Murata T, Goshima F, Daikoku T, Takakuwa H, Nishiyama Y. Expression of herpes simplex virus type 2 US3 affects the Cdc42/Rac pathway and attenuates c-Jun N-terminal kinase activation. Genes Cells 2000; 5:1017 - 27; http://dx.doi.org/10.1046/j.1365-2443.2000.00383.x; PMID: 11168588
  • Van Minnebruggen G, Favoreel HW, Jacobs L, Nauwynck HJ. Pseudorabies virus US3 protein kinase mediates actin stress fiber breakdown. J Virol 2003; 77:9074 - 80; http://dx.doi.org/10.1128/JVI.77.16.9074-9080.2003; PMID: 12885923
  • Calton CM, Randall JA, Adkins MW, Banfield BW. The pseudorabies virus serine/threonine kinase Us3 contains mitochondrial, nuclear and membrane localization signals. Virus Genes 2004; 29:131 - 45; http://dx.doi.org/10.1023/B:VIRU.0000032796.27878.7f; PMID: 15215691
  • Favoreel HW, Van Minnebruggen G, Adriaensen D, Nauwynck HJ. Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an alphaherpesvirus are associated with enhanced spread. Proc Natl Acad Sci U S A 2005; 102:8990 - 5; http://dx.doi.org/10.1073/pnas.0409099102; PMID: 15951429
  • Schumacher D, Tischer BK, Trapp S, Osterrieder N. The protein encoded by the US3 orthologue of Marek’s disease virus is required for efficient de-envelopment of perinuclear virions and involved in actin stress fiber breakdown. J Virol 2005; 79:3987 - 97; http://dx.doi.org/10.1128/JVI.79.7.3987-3997.2005; PMID: 15767401
  • Van den Broeke C, Radu M, Deruelle M, Nauwynck H, Hofmann C, Jaffer ZM, Chernoff J, Favoreel HW. Alphaherpesvirus US3-mediated reorganization of the actin cytoskeleton is mediated by group A p21-activated kinases. Proc Natl Acad Sci U S A 2009; 106:8707 - 12; http://dx.doi.org/10.1073/pnas.0900436106; PMID: 19435845
  • Jacob T, Van den Broeke C, van Troys M, Waterschoot D, Ampe C, Favoreel HW. Alphaherpesviral US3 kinase induces cofilin dephosphorylation to reorganize the actin cytoskeleton. J Virol 2013; 87:4121 - 6; http://dx.doi.org/10.1128/JVI.03107-12; PMID: 23365433
  • Xiang Y, Zheng K, Ju H, Wang S, Pei Y, Ding W, Chen Z, Wang Q, Qiu X, Zhong M, et al. Cofilin 1-mediated biphasic F-actin dynamics of neuronal cells affect herpes simplex virus 1 infection and replication. J Virol 2012; 86:8440 - 51; http://dx.doi.org/10.1128/JVI.00609-12; PMID: 22623803
  • Naghavi MH, Gundersen GG, Walsh D. Plus-end tracking proteins, CLASPs, and a viral Akt mimic regulate herpesvirus-induced stable microtubule formation and virus spread. Proc Natl Acad Sci U S A 2013; 110:18268 - 73; http://dx.doi.org/10.1073/pnas.1310760110; PMID: 24145430
  • Van den Broeke C, Deruelle M, Nauwynck HJ, Coller KE, Smith GA, Van Doorsselaere J, Favoreel HW. The kinase activity of pseudorabies virus US3 is required for modulation of the actin cytoskeleton. Virology 2009; 385:155 - 60; http://dx.doi.org/10.1016/j.virol.2008.11.050; PMID: 19136132
  • Brzozowska A, Rychłowski M, Lipińska AD, Bieńkowska-Szewczyk K. Point mutations in BHV-1 Us3 gene abolish its ability to induce cytoskeletal changes in various cell types. Vet Microbiol 2010; 143:8 - 13; http://dx.doi.org/10.1016/j.vetmic.2010.02.008; PMID: 20197221
  • Finnen RL, Banfield BW. Subcellular localization of the alphaherpesvirus serine/threonine kinase Us3 as a determinant of Us3 function. Virulence 2010; 1:291 - 4; http://dx.doi.org/10.4161/viru.1.4.11980; PMID: 21178457
  • Finnen RL, Roy BB, Zhang H, Banfield BW. Analysis of filamentous process induction and nuclear localization properties of the HSV-2 serine/threonine kinase Us3. Virology 2010; 397:23 - 33; http://dx.doi.org/10.1016/j.virol.2009.11.012; PMID: 19945726
  • Schumacher D, McKinney C, Kaufer BB, Osterrieder N. Enzymatically inactive U(S)3 protein kinase of Marek’s disease virus (MDV) is capable of depolymerizing F-actin but results in accumulation of virions in perinuclear invaginations and reduced virus growth. Virology 2008; 375:37 - 47; http://dx.doi.org/10.1016/j.virol.2008.01.026; PMID: 18304599
  • Richerioux N, Blondeau C, Wiedemann A, Rémy S, Vautherot JF, Denesvre C. Rho-ROCK and Rac-PAK signaling pathways have opposing effects on the cell-to-cell spread of Marek’s Disease Virus. PLoS One 2012; 7:e44072; http://dx.doi.org/10.1371/journal.pone.0044072; PMID: 22952878
  • Loesing JB, Di Fiore S, Ritter K, Fischer R, Kleines M. Epstein-Barr virus BDLF2-BMRF2 complex affects cellular morphology. J Gen Virol 2009; 90:1440 - 9; http://dx.doi.org/10.1099/vir.0.009571-0; PMID: 19264620
  • Gill MB, Edgar R, May JS, Stevenson PG. A gamma-herpesvirus glycoprotein complex manipulates actin to promote viral spread. PLoS One 2008; 3:e1808.
  • Morales I, Carbajal MA, Bohn S, Holzer D, Kato SE, Greco FA, Moussatché N, Krijnse Locker J. The vaccinia virus F11L gene product facilitates cell detachment and promotes migration. Traffic 2008; 9:1283 - 98; http://dx.doi.org/10.1111/j.1600-0854.2008.00762.x; PMID: 18485055
  • Valderrama F, Cordeiro JV, Schleich S, Frischknecht F, Way M. Vaccinia virus-induced cell motility requires F11L-mediated inhibition of RhoA signaling. Science 2006; 311:377 - 81; http://dx.doi.org/10.1126/science.1122411; PMID: 16424340
  • Arakawa Y, Cordeiro JV, Schleich S, Newsome TP, Way M. The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin. Cell Host Microbe 2007; 1:227 - 40; http://dx.doi.org/10.1016/j.chom.2007.04.006; PMID: 18005701
  • Arakawa Y, Cordeiro JV, Way M. F11L-mediated inhibition of RhoA-mDia signaling stimulates microtubule dynamics during vaccinia virus infection. Cell Host Microbe 2007; 1:213 - 26; http://dx.doi.org/10.1016/j.chom.2007.04.007; PMID: 18005700
  • Cordeiro JV, Guerra S, Arakawa Y, Dodding MP, Esteban M, Way M. F11-mediated inhibition of RhoA signalling enhances the spread of vaccinia virus in vitro and in vivo in an intranasal mouse model of infection. PLoS One 2009; 4:e8506; http://dx.doi.org/10.1371/journal.pone.0008506; PMID: 20041165
  • Handa Y, Durkin CH, Dodding MP, Way M. Vaccinia virus F11 promotes viral spread by acting as a PDZ-containing scaffolding protein to bind myosin-9A and inhibit RhoA signaling. Cell Host Microbe 2013; 14:51 - 62; http://dx.doi.org/10.1016/j.chom.2013.06.006; PMID: 23870313
  • Ward BM, Moss B. Vaccinia virus A36R membrane protein provides a direct link between intracellular enveloped virions and the microtubule motor kinesin. J Virol 2004; 78:2486 - 93; http://dx.doi.org/10.1128/JVI.78.5.2486-2493.2004; PMID: 14963148
  • Rietdorf J, Ploubidou A, Reckmann I, Holmström A, Frischknecht F, Zettl M, Zimmermann T, Way M. Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat Cell Biol 2001; 3:992 - 1000; http://dx.doi.org/10.1038/ncb1101-992; PMID: 11715020
  • Katz E, Ward BM, Weisberg AS, Moss B. Mutations in the vaccinia virus A33R and B5R envelope proteins that enhance release of extracellular virions and eliminate formation of actin-containing microvilli without preventing tyrosine phosphorylation of the A36R protein. J Virol 2003; 77:12266 - 75; http://dx.doi.org/10.1128/JVI.77.22.12266-12275.2003; PMID: 14581563
  • Smith GL, Vanderplasschen A, Law M. The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 2002; 83:2915 - 31; PMID: 12466468
  • Frischknecht F, Moreau V, Röttger S, Gonfloni S, Reckmann I, Superti-Furga G, Way M. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 1999; 401:926 - 9; http://dx.doi.org/10.1038/44860; PMID: 10553910
  • Newsome TP, Scaplehorn N, Way M. SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 2004; 306:124 - 9; http://dx.doi.org/10.1126/science.1101509; PMID: 15297625
  • Moreau V, Frischknecht F, Reckmann I, Vincentelli R, Rabut G, Stewart D, Way M. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol 2000; 2:441 - 8; http://dx.doi.org/10.1038/35017080; PMID: 10878810
  • Reeves PM, Bommarius B, Lebeis S, McNulty S, Christensen J, Swimm A, Chahroudi A, Chavan R, Feinberg MB, Veach D, et al. Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nat Med 2005; 11:731 - 9; http://dx.doi.org/10.1038/nm1265; PMID: 15980865
  • Welch MD, Way M. Arp2/3-mediated actin-based motility: a tail of pathogen abuse. Cell Host Microbe 2013; 14:242 - 55; http://dx.doi.org/10.1016/j.chom.2013.08.011; PMID: 24034611
  • Moreau V, Frischknecht F, Reckmann I, Vincentelli R, Rabut G, Stewart D, Way M. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol 2000; 2:441 - 8; http://dx.doi.org/10.1038/35017080; PMID: 10878810
  • Scaplehorn N, Holmström A, Moreau V, Frischknecht F, Reckmann I, Way M. Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr Biol 2002; 12:740 - 5; http://dx.doi.org/10.1016/S0960-9822(02)00812-6; PMID: 12007418
  • Snapper SB, Takeshima F, Antón I, Liu CH, Thomas SM, Nguyen D, Dudley D, Fraser H, Purich D, Lopez-Ilasaca M, et al. N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nat Cell Biol 2001; 3:897 - 904; http://dx.doi.org/10.1038/ncb1001-897; PMID: 11584271
  • Zettl M, Way M. The WH1 and EVH1 domains of WASP and Ena/VASP family members bind distinct sequence motifs. Curr Biol 2002; 12:1617 - 22; http://dx.doi.org/10.1016/S0960-9822(02)01112-0; PMID: 12372256
  • Humphries AC, Dodding MP, Barry DJ, Collinson LM, Durkin CH, Way M. Clathrin potentiates vaccinia-induced actin polymerization to facilitate viral spread. Cell Host Microbe 2012; 12:346 - 59; http://dx.doi.org/10.1016/j.chom.2012.08.002; PMID: 22980331
  • Weisswange I, Newsome TP, Schleich S, Way M. The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility. Nature 2009; 458:87 - 91; http://dx.doi.org/10.1038/nature07773; PMID: 19262673
  • Cudmore S, Cossart P, Griffiths G, Way M. Actin-based motility of vaccinia virus. Nature 1995; 378:636 - 8; http://dx.doi.org/10.1038/378636a0; PMID: 8524400
  • Donnelly SK, Weisswange I, Zettl M, Way M. WIP provides an essential link between Nck and N-WASP during Arp2/3-dependent actin polymerization. Curr Biol 2013; 23:999 - 1006; http://dx.doi.org/10.1016/j.cub.2013.04.051; PMID: 23707428
  • Humphries AC, Donnelly SK, Way M. Cdc42 and the RhoGEF Intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation. J Cell Sci 2013; PMID: 24284073
  • Frischknecht F, Way M. Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol 2001; 11:30 - 8; http://dx.doi.org/10.1016/S0962-8924(00)01871-7; PMID: 11146296
  • Cudmore S, Reckmann I, Griffiths G, Way M. Vaccinia virus: a model system for actin-membrane interactions. J Cell Sci 1996; 109:1739 - 47; PMID: 8832396
  • Hollinshead M, Rodger G, Van Eijl H, Law M, Hollinshead R, Vaux DJ, Smith GL. Vaccinia virus utilizes microtubules for movement to the cell surface. J Cell Biol 2001; 154:389 - 402; http://dx.doi.org/10.1083/jcb.200104124; PMID: 11470826
  • Ward BM, Moss B. Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails. J Virol 2001; 75:11651 - 63; http://dx.doi.org/10.1128/JVI.75.23.11651-11663.2001; PMID: 11689647
  • Rodger G, Smith GL. Replacing the SCR domains of vaccinia virus protein B5R with EGFP causes a reduction in plaque size and actin tail formation but enveloped virions are still transported to the cell surface. J Gen Virol 2002; 83:323 - 32; PMID: 11807225
  • McNulty S, Powell K, Erneux C, Kalman D. The host phosphoinositide 5-phosphatase SHIP2 regulates dissemination of vaccinia virus. J Virol 2011; 85:7402 - 10; http://dx.doi.org/10.1128/JVI.02391-10; PMID: 21543482
  • Reeves PM, Smith SK, Olson VA, Thorne SH, Bornmann W, Damon IK, Kalman D. Variola and monkeypox viruses utilize conserved mechanisms of virion motility and release that depend on abl and SRC family tyrosine kinases. J Virol 2011; 85:21 - 31; http://dx.doi.org/10.1128/JVI.01814-10; PMID: 20962097
  • Jouvenet N, Windsor M, Rietdorf J, Hawes P, Monaghan P, Way M, Wileman T. African swine fever virus induces filopodia-like projections at the plasma membrane. Cell Microbiol 2006; 8:1803 - 11; http://dx.doi.org/10.1111/j.1462-5822.2006.00750.x; PMID: 16869831
  • Wolf D, Witte V, Laffert B, Blume K, Stromer E, Trapp S, d’Aloja P, Schürmann A, Baur AS. HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad-phosphorylation to induce anti-apoptotic signals. Nat Med 2001; 7:1217 - 24; http://dx.doi.org/10.1038/nm1101-1217; PMID: 11689886
  • Wei BL, Arora VK, Raney A, Kuo LS, Xiao GH, O’Neill E, Testa JR, Foster JL, Garcia JV. Activation of p21-activated kinase 2 by human immunodeficiency virus type 1 Nef induces merlin phosphorylation. J Virol 2005; 79:14976 - 80; http://dx.doi.org/10.1128/JVI.79.23.14976-14980.2005; PMID: 16282498
  • Stolp B, Reichman-Fried M, Abraham L, Pan X, Giese SI, Hannemann S, Goulimari P, Raz E, Grosse R, Fackler OT. HIV-1 Nef interferes with host cell motility by deregulation of Cofilin. Cell Host Microbe 2009; 6:174 - 86; http://dx.doi.org/10.1016/j.chom.2009.06.004; PMID: 19683683
  • Lee JH, Wittki S, Bräu T, Dreyer FS, Krätzel K, Dindorf J, Johnston IC, Gross S, Kremmer E, Zeidler R, et al. HIV Nef, paxillin, and Pak1/2 regulate activation and secretion of TACE/ADAM10 proteases. Mol Cell 2013; 49:668 - 79; http://dx.doi.org/10.1016/j.molcel.2012.12.004; PMID: 23317503
  • Kouwenhoven A, Minassian VD, Marsh JW. HIV-1 Nef mediates Pak phosphorylation of Mek1 serine298 and elicits an active phospho-state of Pak2. Curr HIV Res 2013; 11:198 - 209; http://dx.doi.org/10.2174/1570162X113119990039; PMID: 23746211
  • Fackler OT, Luo W, Geyer M, Alberts AS, Peterlin BM. Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol Cell 1999; 3:729 - 39; http://dx.doi.org/10.1016/S1097-2765(01)80005-8; PMID: 10394361
  • Lu TC, He JC, Wang ZH, Feng X, Fukumi-Tominaga T, Chen N, Xu J, Iyengar R, Klotman PE. HIV-1 Nef disrupts the podocyte actin cytoskeleton by interacting with diaphanous interacting protein. J Biol Chem 2008; 283:8173 - 82; http://dx.doi.org/10.1074/jbc.M708920200; PMID: 18234668
  • Tan R, Patni H, Tandon P, Luan L, Sharma B, Salhan D, Saleem MA, Mathieson PW, Malhotra A, Husain M, et al. Nef interaction with actin compromises human podocyte actin cytoskeletal integrity. Exp Mol Pathol 2013; 94:51 - 7; http://dx.doi.org/10.1016/j.yexmp.2012.06.001; PMID: 22721673
  • Aggarwal A, Iemma TL, Shih I, Newsome TP, McAllery S, Cunningham AL, Turville SG. Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog 2012; 8:e1002762; http://dx.doi.org/10.1371/journal.ppat.1002762; PMID: 22685410
  • Nobile C, Rudnicka D, Hasan M, Aulner N, Porrot F, Machu C, Renaud O, Prévost MC, Hivroz C, Schwartz O, et al. HIV-1 Nef inhibits ruffles, induces filopodia, and modulates migration of infected lymphocytes. J Virol 2010; 84:2282 - 93; http://dx.doi.org/10.1128/JVI.02230-09; PMID: 20015995
  • Stolp B, Abraham L, Rudolph JM, Fackler OT. Lentiviral Nef proteins utilize PAK2-mediated deregulation of cofilin as a general strategy to interfere with actin remodeling. J Virol 2010; 84:3935 - 48; http://dx.doi.org/10.1128/JVI.02467-09; PMID: 20147394
  • Mukerji J, Olivieri KC, Misra V, Agopian KA, Gabuzda D. Proteomic analysis of HIV-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation. Retrovirology 2012; 9:33; http://dx.doi.org/10.1186/1742-4690-9-33; PMID: 22534017
  • Wu RF, Gu Y, Xu YC, Mitola S, Bussolino F, Terada LS. Human immunodeficiency virus type 1 Tat regulates endothelial cell actin cytoskeletal dynamics through PAK1 activation and oxidant production. J Virol 2004; 78:779 - 89; http://dx.doi.org/10.1128/JVI.78.2.779-789.2004; PMID: 14694110
  • Rusnati M, Presta M. HIV-1 Tat protein and endothelium: from protein/cell interaction to AIDS-associated pathologies. Angiogenesis 2002; 5:141 - 51; http://dx.doi.org/10.1023/A:1023892223074; PMID: 12831055
  • Urbinati C, Mitola S, Tanghetti E, Kumar C, Waltenberger J, Ribatti D, Presta M, Rusnati M. Integrin alphavbeta3 as a target for blocking HIV-1 Tat-induced endothelial cell activation in vitro and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 2005; 25:2315 - 20; http://dx.doi.org/10.1161/01.ATV.0000186182.14908.7b; PMID: 16166568
  • Audoly G, Popoff MR, Gluschankof P. Involvement of a small GTP binding protein in HIV-1 release. Retrovirology 2005; 2:48; http://dx.doi.org/10.1186/1742-4690-2-48; PMID: 16080789
  • Loomis RJ, Holmes DA, Elms A, Solski PA, Der CJ, Su L. Citron kinase, a RhoA effector, enhances HIV-1 virion production by modulating exocytosis. Traffic 2006; 7:1643 - 53; http://dx.doi.org/10.1111/j.1600-0854.2006.00503.x; PMID: 17118119
  • Wang JL, Zhang JL, Chen W, Xu XF, Gao N, Fan DY, An J. Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection. PLoS Negl Trop Dis 2010; 4; http://dx.doi.org/10.1371/journal.pntd.0000809; PMID: 20824170
  • Awad A, Sar S, Barré R, Cariven C, Marin M, Salles JP, Erneux C, Samuel D, Gassama-Diagne A. SHIP2 regulates epithelial cell polarity through its lipid product, which binds to Dlg1, a pathway subverted by hepatitis C virus core protein. Mol Biol Cell 2013; 24:2171 - 85; http://dx.doi.org/10.1091/mbc.E12-08-0626; PMID: 23699395
  • Stove V, Naessens E, Stove C, Swigut T, Plum J, Verhasselt B. Signaling but not trafficking function of HIV-1 protein Nef is essential for Nef-induced defects in human intrathymic T-cell development. Blood 2003; 102:2925 - 32; http://dx.doi.org/10.1182/blood-2003-03-0833; PMID: 12855553
  • Rudolph JM, Eickel N, Haller C, Schindler M, Fackler OT. Inhibition of T-cell receptor-induced actin remodeling and relocalization of Lck are evolutionarily conserved activities of lentiviral Nef proteins. J Virol 2009; 83:11528 - 39; http://dx.doi.org/10.1128/JVI.01423-09; PMID: 19726522
  • Haller C, Rauch S, Fackler OT. HIV-1 Nef employs two distinct mechanisms to modulate Lck subcellular localization and TCR induced actin remodeling. PLoS One 2007; 2:e1212; http://dx.doi.org/10.1371/journal.pone.0001212; PMID: 18030346
  • Haller C, Rauch S, Michel N, Hannemann S, Lehmann MJ, Keppler OT, Fackler OT. The HIV-1 pathogenicity factor Nef interferes with maturation of stimulatory T-lymphocyte contacts by modulation of N-Wasp activity. J Biol Chem 2006; 281:19618 - 30; http://dx.doi.org/10.1074/jbc.M513802200; PMID: 16687395
  • Jolly C. T cell polarization at the virological synapse. Viruses 2010; 2:1261 - 78; http://dx.doi.org/10.3390/v2061261; PMID: 21994679
  • Llewellyn GN, Hogue IB, Grover JR, Ono A. Nucleocapsid promotes localization of HIV-1 gag to uropods that participate in virological synapses between T cells. PLoS Pathog 2010; 6:e1001167; http://dx.doi.org/10.1371/journal.ppat.1001167; PMID: 21060818
  • Stolp B, Imle A, Coelho FM, Hons M, Gorina R, Lyck R, Stein JV, Fackler OT. HIV-1 Nef interferes with T-lymphocyte circulation through confined environments in vivo. Proc Natl Acad Sci U S A 2012; 109:18541 - 6; http://dx.doi.org/10.1073/pnas.1204322109; PMID: 23093676
  • Abraham L, Fackler OT. HIV-1 Nef: a multifaceted modulator of T cell receptor signaling. Cell Commun Signal 2012; 10:39; http://dx.doi.org/10.1186/1478-811X-10-39; PMID: 23227982
  • Müller N, Avota E, Schneider-Schaulies J, Harms H, Krohne G, Schneider-Schaulies S. Measles virus contact with T cells impedes cytoskeletal remodeling associated with spreading, polarization, and CD3 clustering. Traffic 2006; 7:849 - 58; http://dx.doi.org/10.1111/j.1600-0854.2006.00426.x; PMID: 16787397
  • Hodges A, Sharrocks K, Edelmann M, Baban D, Moris A, Schwartz O, Drakesmith H, Davies K, Kessler B, McMichael A, et al. Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat Immunol 2007; 8:569 - 77; http://dx.doi.org/10.1038/ni1470; PMID: 17496896
  • Nikolic DS, Lehmann M, Felts R, Garcia E, Blanchet FP, Subramaniam S, Piguet V. HIV-1 activates Cdc42 and induces membrane extensions in immature dendritic cells to facilitate cell-to-cell virus propagation. Blood 2011; 118:4841 - 52; http://dx.doi.org/10.1182/blood-2010-09-305417; PMID: 21562048
  • Anand AR, Prasad A, Bradley RR, Deol YS, Nagaraja T, Ren X, Terwilliger EF, Ganju RK. HIV-1 gp120-induced migration of dendritic cells is regulated by a novel kinase cascade involving Pyk2, p38 MAP kinase, and LSP1. Blood 2009; 114:3588 - 600; http://dx.doi.org/10.1182/blood-2009-02-206342; PMID: 19700666
  • Prasad A, Kuzontkoski PM, Shrivastava A, Zhu W, Li DY, Groopman JE. Slit2N/Robo1 inhibit HIV-gp120-induced migration and podosome formation in immature dendritic cells by sequestering LSP1 and WASp. PLoS One 2012; 7:e48854; http://dx.doi.org/10.1371/journal.pone.0048854; PMID: 23119100
  • Quaranta MG, Mattioli B, Spadaro F, Straface E, Giordani L, Ramoni C, Malorni W, Viora M. HIV-1 Nef triggers Vav-mediated signaling pathway leading to functional and morphological differentiation of dendritic cells. FASEB J 2003; 17:2025 - 36; http://dx.doi.org/10.1096/fj.03-0272com; PMID: 14597672
  • Quaranta MG, Tritarelli E, Giordani L, Viora M. HIV-1 Nef induces dendritic cell differentiation: a possible mechanism of uninfected CD4(+) T cell activation. Exp Cell Res 2002; 275:243 - 54; http://dx.doi.org/10.1006/excr.2002.5497; PMID: 11969293
  • Mann J, Patrick CN, Cragg MS, Honeychurch J, Mann DA, Harris M. Functional analysis of HIV type 1 Nef reveals a role for PAK2 as a regulator of cell phenotype and function in the murine dendritic cell line, DC2.4. J Immunol 2005; 175:6560 - 9; PMID: 16272310
  • Zhang S, Kodys K, Babcock GJ, Szabo G. CD81/CD9 tetraspanins aid plasmacytoid dendritic cells in recognition of hepatitis C virus-infected cells and induction of interferon-alpha. Hepatology 2013; 58:940 - 9; http://dx.doi.org/10.1002/hep.25827; PMID: 22577054
  • Gotoh K, Tanaka Y, Nishikimi A, Nakamura R, Yamada H, Maeda N, Ishikawa T, Hoshino K, Uruno T, Cao Q, et al. Selective control of type I IFN induction by the Rac activator DOCK2 during TLR-mediated plasmacytoid dendritic cell activation. J Exp Med 2010; 207:721 - 30; http://dx.doi.org/10.1084/jem.20091776; PMID: 20231379
  • Chaudhry A, Das SR, Jameel S, George A, Bal V, Mayor S, Rath S. A two-pronged mechanism for HIV-1 Nef-mediated endocytosis of immune costimulatory molecules CD80 and CD86. Cell Host Microbe 2007; 1:37 - 49; http://dx.doi.org/10.1016/j.chom.2007.01.001; PMID: 18005680
  • Chaudhry A, Das SR, Jameel S, George A, Bal V, Mayor S, Rath S. HIV-1 Nef induces a Rab11-dependent routing of endocytosed immune costimulatory proteins CD80 and CD86 to the Golgi. Traffic 2008; 9:1925 - 35; http://dx.doi.org/10.1111/j.1600-0854.2008.00802.x; PMID: 18764822
  • Giagulli C, Magiera AK, Bugatti A, Caccuri F, Marsico S, Rusnati M, Vermi W, Fiorentini S, Caruso A. HIV-1 matrix protein p17 binds to the IL-8 receptor CXCR1 and shows IL-8-like chemokine activity on monocytes through Rho/ROCK activation. Blood 2012; 119:2274 - 83; http://dx.doi.org/10.1182/blood-2011-06-364083; PMID: 22262769
  • Xu W, Santini PA, Sullivan JS, He B, Shan M, Ball SC, Dyer WB, Ketas TJ, Chadburn A, Cohen-Gould L, et al. HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat Immunol 2009; 10:1008 - 17; http://dx.doi.org/10.1038/ni.1753; PMID: 19648924
  • Schreiber MT, Schuler B, Li L, Hall DJ. Activation of the small G-protein Rac by human rhinovirus attenuates the TLR3/IFN-α axis while promoting CCL2 release in human monocyte-lineage cells. Innate Immun 2013; 19:278 - 89; http://dx.doi.org/10.1177/1753425912460709; PMID: 23060458
  • Yamamoto M, Ramirez SH, Sato S, Kiyota T, Cerny RL, Kaibuchi K, Persidsky Y, Ikezu T. Phosphorylation of claudin-5 and occludin by rho kinase in brain endothelial cells. Am J Pathol 2008; 172:521 - 33; http://dx.doi.org/10.2353/ajpath.2008.070076; PMID: 18187566
  • Persidsky Y, Heilman D, Haorah J, Zelivyanskaya M, Persidsky R, Weber GA, Shimokawa H, Kaibuchi K, Ikezu T. Rho-mediated regulation of tight junctions during monocyte migration across the blood-brain barrier in HIV-1 encephalitis (HIVE). Blood 2006; 107:4770 - 80; http://dx.doi.org/10.1182/blood-2005-11-4721; PMID: 16478881
  • Zhong Y, Hennig B, Toborek M. Intact lipid rafts regulate HIV-1 Tat protein-induced activation of the Rho signaling and upregulation of P-glycoprotein in brain endothelial cells. J Cereb Blood Flow Metab 2010; 30:522 - 33; http://dx.doi.org/10.1038/jcbfm.2009.214; PMID: 19794400
  • Xu R, Feng X, Xie X, Zhang J, Wu D, Xu L. HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Brain Res 2012; 1436:13 - 9; http://dx.doi.org/10.1016/j.brainres.2011.11.052; PMID: 22197032
  • Avanzi S, Alvisi G, Ripalti A. How virus persistence can initiate the tumorigenesis process. World J Virol 2013; 2:102 - 9; http://dx.doi.org/10.5501/wjv.v2.i2.102; PMID: 24175234
  • Münger K, Hayakawa H, Nguyen CL, Melquiot NV, Duensing A, Duensing S. Viral carcinogenesis and genomic instability. EXS 2006; •••:179 - 99; http://dx.doi.org/10.1007/3-7643-7378-4_8; PMID: 16383019
  • de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 2012; 13:607 - 15; http://dx.doi.org/10.1016/S1470-2045(12)70137-7; PMID: 22575588
  • Duelli DM, Padilla-Nash HM, Berman D, Murphy KM, Ried T, Lazebnik Y. A virus causes cancer by inducing massive chromosomal instability through cell fusion. Curr Biol 2007; 17:431 - 7; http://dx.doi.org/10.1016/j.cub.2007.01.049; PMID: 17320392
  • Hall WW, Fujii M. Deregulation of cell-signaling pathways in HTLV-1 infection. Oncogene 2005; 24:5965 - 75; http://dx.doi.org/10.1038/sj.onc.1208975; PMID: 16155603
  • Feng H, Zhang J, Li X, Chen WN. HBX-mediated migration of HBV-replicating HepG2 cells: insights on development of hepatocellular carcinoma. J Biomed Biotechnol 2009; 2009:930268.
  • Lara-Pezzi E, Serrador JM, Montoya MC, Zamora D, Yáñez-Mó M, Carretero M, Furthmayr H, Sánchez-Madrid F, López-Cabrera M. The hepatitis B virus X protein (HBx) induces a migratory phenotype in a CD44-dependent manner: possible role of HBx in invasion and metastasis. Hepatology 2001; 33:1270 - 81; http://dx.doi.org/10.1053/jhep.2001.1270; PMID: 11343256
  • Xia L, Huang W, Tian D, Zhu H, Zhang Y, Hu H, Fan D, Nie Y, Wu K. Upregulated FoxM1 expression induced by hepatitis B virus X protein promotes tumor metastasis and indicates poor prognosis in hepatitis B virus-related hepatocellular carcinoma. J Hepatol 2012; 57:600 - 12; http://dx.doi.org/10.1016/j.jhep.2012.04.020; PMID: 22613004
  • Chen S, Belikova NA, Subbaiah PV. Structural elucidation of molecular species of pacific oyster ether amino phospholipids by normal-phase liquid chromatography/negative-ion electrospray ionization and quadrupole/multiple-stage linear ion-trap mass spectrometry. Anal Chim Acta 2012; 735:76 - 89; http://dx.doi.org/10.1016/j.aca.2012.05.035; PMID: 22713920
  • Chen J, Siddiqui A. Hepatitis B virus X protein stimulates the mitochondrial translocation of Raf-1 via oxidative stress. J Virol 2007; 81:6757 - 60; http://dx.doi.org/10.1128/JVI.00172-07; PMID: 17428866
  • Ma W, Wong CC, Tung EK, Wong CM, Ng IO. RhoE is frequently down-regulated in hepatocellular carcinoma (HCC) and suppresses HCC invasion through antagonizing the Rho/Rho-kinase/myosin phosphatase target pathway. Hepatology 2013; 57:152 - 61; http://dx.doi.org/10.1002/hep.25987; PMID: 22829315
  • Narayan N, Subbaiah VK, Banks L. The high-risk HPV E6 oncoprotein preferentially targets phosphorylated nuclear forms of hDlg. Virology 2009; 387:1 - 4; http://dx.doi.org/10.1016/j.virol.2009.02.030; PMID: 19307009
  • Dawson CW, Tramountanis G, Eliopoulos AG, Young LS. Epstein-Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J Biol Chem 2003; 278:3694 - 704; http://dx.doi.org/10.1074/jbc.M209840200; PMID: 12446712
  • Puls A, Eliopoulos AG, Nobes CD, Bridges T, Young LS, Hall A. Activation of the small GTPase Cdc42 by the inflammatory cytokines TNF(alpha) and IL-1, and by the Epstein-Barr virus transforming protein LMP1. J Cell Sci 1999; 112:2983 - 92; PMID: 10444392
  • Sharma-Walia N, Patel K, Chandran K, Marginean A, Bottero V, Kerur N, Paul AG. COX-2/PGE2: molecular ambassadors of Kaposi’s sarcoma-associated herpes virus oncoprotein-v-FLIP. Oncogenesis 2012; 1; http://dx.doi.org/10.1038/oncsis.2012.5; PMID: 23552603
  • Sharma-Walia N, Paul AG, Bottero V, Sadagopan S, Veettil MV, Kerur N, Chandran B. Kaposi’s sarcoma associated herpes virus (KSHV) induced COX-2: a key factor in latency, inflammation, angiogenesis, cell survival and invasion. PLoS Pathog 2010; 6:e1000777; http://dx.doi.org/10.1371/journal.ppat.1000777; PMID: 20169190
  • Dadke D, Fryer BH, Golemis EA, Field J. Activation of p21-activated kinase 1-nuclear factor kappaB signaling by Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor during cellular transformation. Cancer Res 2003; 63:8837 - 47; PMID: 14695200
  • McHenry PR, Sears JC, Herrick MP, Chang P, Heckman-Stoddard BM, Rybarczyk M, Chodosh LA, Gunther EJ, Hilsenbeck SG, Rosen JM, et al. P190B RhoGAP has pro-tumorigenic functions during MMTV-Neu mammary tumorigenesis and metastasis. Breast Cancer Res 2010; 12:R73; http://dx.doi.org/10.1186/bcr2643; PMID: 20860838
  • Nunbhakdi-Craig V, Craig L, Machleidt T, Sontag E. Simian virus 40 small tumor antigen induces deregulation of the actin cytoskeleton and tight junctions in kidney epithelial cells. J Virol 2003; 77:2807 - 18; http://dx.doi.org/10.1128/JVI.77.5.2807-2818.2003; PMID: 12584304
  • Zhao JJ, Gjoerup OV, Subramanian RR, Cheng Y, Chen W, Roberts TM, Hahn WC. Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell 2003; 3:483 - 95; http://dx.doi.org/10.1016/S1535-6108(03)00088-6; PMID: 12781366
  • Maeda N, Fan H. Signal transduction pathways utilized by enzootic nasal tumor virus (ENTV-1) envelope protein in transformation of rat epithelial cells resemble those used by jaagsiekte sheep retrovirus. Virus Genes 2008; 36:147 - 55; http://dx.doi.org/10.1007/s11262-007-0193-x; PMID: 18176837
  • Thomas MA, Broughton RS, Goodrum FD, Ornelles DA. E4orf1 limits the oncolytic potential of the E1B-55K deletion mutant adenovirus. J Virol 2009; 83:2406 - 16; http://dx.doi.org/10.1128/JVI.01972-08; PMID: 19129452
  • Puhlmann J, Puehler F, Mumberg D, Boukamp P, Beier R. Rac1 is required for oncolytic NDV replication in human cancer cells and establishes a link between tumorigenesis and sensitivity to oncolytic virus. Oncogene 2010; 29:2205 - 16; http://dx.doi.org/10.1038/onc.2009.507; PMID: 20101224
  • Maselko M, Ward C, Pastey M. A RhoA-derived peptide inhibits human immunodeficiency virus-1 entry in vitro. Curr HIV Res 2011; 9:1 - 5; http://dx.doi.org/10.2174/157016211794582605; PMID: 21198428

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.