1,693
Views
53
CrossRef citations to date
0
Altmetric
Review

Rho GTPases at the crossroad of signaling networks in mammals

Impact of Rho-GTPases on microtubule organization and dynamics

, , &
Article: e28430 | Received 04 Oct 2013, Accepted 04 Mar 2014, Published online: 20 Mar 2014

References

  • Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420:629 - 35; http://dx.doi.org/10.1038/nature01148; PMID: 12478284
  • González-Billault C, Muñoz-Llancao P, Henriquez DR, Wojnacki J, Conde C, Cáceres A. The role of small GTPases in neuronal morphogenesis and polarity. Cytoskeleton (Hoboken) 2012; 69:464 - 85; http://dx.doi.org/10.1002/cm.21034; PMID: 22605667
  • Pertz O. Spatio-temporal Rho GTPase signaling - where are we now?. J Cell Sci 2010; 123:1841 - 50; http://dx.doi.org/10.1242/jcs.064345; PMID: 20484664
  • Etienne-Manneville S. Microtubules in cell migration. Annu Rev Cell Dev Biol 2013; 29:471 - 99; http://dx.doi.org/10.1146/annurev-cellbio-101011-155711; PMID: 23875648
  • Li R, Gundersen GG. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol 2008; 9:860 - 73; http://dx.doi.org/10.1038/nrm2522; PMID: 18946475
  • Conde C, Cáceres A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 2009; 10:319 - 32; http://dx.doi.org/10.1038/nrn2631; PMID: 19377501
  • Burbank KS, Mitchison TJ. Microtubule dynamic instability. Curr Biol 2006; 16:R516 - 7; http://dx.doi.org/10.1016/j.cub.2006.06.044; PMID: 16860721
  • Schulze E, Kirschner M. Microtubule dynamics in interphase cells. J Cell Biol 1986; 102:1020 - 31; http://dx.doi.org/10.1083/jcb.102.3.1020; PMID: 3512576
  • Kirschner M, Mitchison T. Beyond self-assembly: from microtubules to morphogenesis. Cell 1986; 45:329 - 42; http://dx.doi.org/10.1016/0092-8674(86)90318-1; PMID: 3516413
  • Verhey KJ, Gaertig J. The tubulin code. Cell Cycle 2007; 6:2152 - 60; http://dx.doi.org/10.4161/cc.6.17.4633; PMID: 17786050
  • Janke C, Kneussel M. Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci 2010; 33:362 - 72; http://dx.doi.org/10.1016/j.tins.2010.05.001; PMID: 20541813
  • Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 2011; 12:773 - 86; http://dx.doi.org/10.1038/nrm3227; PMID: 22086369
  • Palazzo A, Ackerman B, Gundersen GG. Cell biology: Tubulin acetylation and cell motility. Nature 2003; 421:230; http://dx.doi.org/10.1038/421230a; PMID: 12529632
  • LeDizet M, Piperno G. Identification of an acetylation site of Chlamydomonas alpha-tubulin. Proc Natl Acad Sci U S A 1987; 84:5720 - 4; http://dx.doi.org/10.1073/pnas.84.16.5720; PMID: 2441392
  • Nogales E, Wolf SG, Downing KH. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 1998; 391:199 - 203; http://dx.doi.org/10.1038/34465; PMID: 9428769
  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325:834 - 40; http://dx.doi.org/10.1126/science.1175371; PMID: 19608861
  • Steinmetz MO, Akhmanova A. Capturing protein tails by CAP-Gly domains. Trends Biochem Sci 2008; 33:535 - 45; http://dx.doi.org/10.1016/j.tibs.2008.08.006; PMID: 18835717
  • Gundersen GG, Bulinski JC. Selective stabilization of microtubules oriented toward the direction of cell migration. Proc Natl Acad Sci U S A 1988; 85:5946 - 50; http://dx.doi.org/10.1073/pnas.85.16.5946; PMID: 3413068
  • Gundersen GG, Khawaja S, Bulinski JC. Generation of a stable, posttranslationally modified microtubule array is an early event in myogenic differentiation. J Cell Biol 1989; 109:2275 - 88; http://dx.doi.org/10.1083/jcb.109.5.2275; PMID: 2681230
  • Wen Y, Eng CH, Schmoranzer J, Cabrera-Poch N, Morris EJ, Chen M, Wallar BJ, Alberts AS, Gundersen GG. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat Cell Biol 2004; 6:820 - 30; http://dx.doi.org/10.1038/ncb1160; PMID: 15311282
  • Gundersen GG, Wen Y, Eng CH, Schmoranzer J, Cabrera-Poch N, Morris EJ, Chen M, Gomes ER. Regulation of microtubules by Rho GTPases in migrating cells. Novartis Found Symp 2005; 269:116 - 26, discussion 116-26, 223-30; http://dx.doi.org/10.1002/047001766X.ch10; PMID: 16358406
  • Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992; 70:389 - 99; http://dx.doi.org/10.1016/0092-8674(92)90163-7; PMID: 1643657
  • Gundersen GG, Kim I, Chapin CJ. Induction of stable microtubules in 3T3 fibroblasts by TGF-beta and serum. J Cell Sci 1994; 107:645 - 59; PMID: 8006078
  • Cook TA, Nagasaki T, Gundersen GG. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J Cell Biol 1998; 141:175 - 85; http://dx.doi.org/10.1083/jcb.141.1.175; PMID: 9531557
  • Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, et al. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 2010; 50:157 - 86; http://dx.doi.org/10.1146/annurev.pharmtox.010909.105753; PMID: 20055701
  • Xiang SY, Dusaban SS, Brown JH. Lysophospholipid receptor activation of RhoA and lipid signaling pathways. Biochim Biophys Acta 2013; 1831:213 - 22; http://dx.doi.org/10.1016/j.bbalip.2012.09.004; PMID: 22986288
  • Lin ME, Herr DR, Chun J. Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat 2010; 91:130 - 8; http://dx.doi.org/10.1016/j.prostaglandins.2009.02.002; PMID: 20331961
  • Goulimari P, Kitzing TM, Knieling H, Brandt DT, Offermanns S, Grosse R. Galpha12/13 is essential for directed cell migration and localized Rho-Dia1 function. J Biol Chem 2005; 280:42242 - 51; http://dx.doi.org/10.1074/jbc.M508690200; PMID: 16251183
  • Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG, Sternweis PC, Bollag G. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 1998; 280:2112 - 4; http://dx.doi.org/10.1126/science.280.5372.2112; PMID: 9641916
  • Slattum G, McGee KM, Rosenblatt J. P115 RhoGEF and microtubules decide the direction apoptotic cells extrude from an epithelium. J Cell Biol 2009; 186:693 - 702; http://dx.doi.org/10.1083/jcb.200903079; PMID: 19720875
  • Fukuhara S, Chikumi H, Gutkind JS. Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) family to Rho. FEBS Lett 2000; 485:183 - 8; http://dx.doi.org/10.1016/S0014-5793(00)02224-9; PMID: 11094164
  • Pertz O, Hodgson L, Klemke RL, Hahn KM. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 2006; 440:1069 - 72; http://dx.doi.org/10.1038/nature04665; PMID: 16547516
  • Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G. Coordination of Rho GTPase activities during cell protrusion. Nature 2009; 461:99 - 103; http://dx.doi.org/10.1038/nature08242; PMID: 19693013
  • Young KG, Copeland JW. Formins in cell signaling. Biochim Biophys Acta 2010; 1803:183 - 90; http://dx.doi.org/10.1016/j.bbamcr.2008.09.017; PMID: 18977250
  • Breitsprecher D, Goode BL. Formins at a glance. J Cell Sci 2013; 126:1 - 7; http://dx.doi.org/10.1242/jcs.107250; PMID: 23516326
  • Wallar BJ, Alberts AS. The formins: active scaffolds that remodel the cytoskeleton. Trends Cell Biol 2003; 13:435 - 46; http://dx.doi.org/10.1016/S0962-8924(03)00153-3; PMID: 12888296
  • Palazzo AF, Cook TA, Alberts AS, Gundersen GG. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 2001; 3:723 - 9; http://dx.doi.org/10.1038/35087035; PMID: 11483957
  • Bartolini F, Ramalingam N, Gundersen GG. Actin-capping protein promotes microtubule stability by antagonizing the actin activity of mDia1. Mol Biol Cell 2012; 23:4032 - 40; http://dx.doi.org/10.1091/mbc.E12-05-0338; PMID: 22918941
  • Palazzo AF, Eng CH, Schlaepfer DD, Marcantonio EE, Gundersen GG. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 2004; 303:836 - 9; http://dx.doi.org/10.1126/science.1091325; PMID: 14764879
  • Kohno H, Tanaka K, Mino A, Umikawa M, Imamura H, Fujiwara T, Fujita Y, Hotta K, Qadota H, Watanabe T, et al. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J 1996; 15:6060 - 8; PMID: 8947028
  • Lee L, Klee SK, Evangelista M, Boone C, Pellman D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J Cell Biol 1999; 144:947 - 61; http://dx.doi.org/10.1083/jcb.144.5.947; PMID: 10085293
  • Gundersen GG, Gomes ER, Wen Y. Cortical control of microtubule stability and polarization. Curr Opin Cell Biol 2004; 16:106 - 12; http://dx.doi.org/10.1016/j.ceb.2003.11.010; PMID: 15037313
  • Nakaya Y, Sheng G. Epithelial to mesenchymal transition during gastrulation: an embryological view. Dev Growth Differ 2008; 50:755 - 66; http://dx.doi.org/10.1111/j.1440-169X.2008.01070.x; PMID: 19046163
  • Nakaya Y, Sukowati EW, Wu Y, Sheng G. RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation. Nat Cell Biol 2008; 10:765 - 75; http://dx.doi.org/10.1038/ncb1739; PMID: 18552836
  • Naranatt PP, Krishnan HH, Smith MS, Chandran B. Kaposi’s sarcoma-associated herpesvirus modulates microtubule dynamics via RhoA-GTP-diaphanous 2 signaling and utilizes the dynein motors to deliver its DNA to the nucleus. J Virol 2005; 79:1191 - 206; http://dx.doi.org/10.1128/JVI.79.2.1191-1206.2005; PMID: 15613346
  • Gomez TS, Kumar K, Medeiros RB, Shimizu Y, Leibson PJ, Billadeau DD. Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity 2007; 26:177 - 90; http://dx.doi.org/10.1016/j.immuni.2007.01.008; PMID: 17306570
  • Andrés-Delgado L, Antón OM, Bartolini F, Ruiz-Sáenz A, Correas I, Gundersen GG, Alonso MA. INF2 promotes the formation of detyrosinated microtubules necessary for centrosome reorientation in T cells. J Cell Biol 2012; 198:1025 - 37; http://dx.doi.org/10.1083/jcb.201202137; PMID: 22986496
  • Arakawa Y, Bito H, Furuyashiki T, Tsuji T, Takemoto-Kimura S, Kimura K, Nozaki K, Hashimoto N, Narumiya S. Control of axon elongation via an SDF-1alpha/Rho/mDia pathway in cultured cerebellar granule neurons. J Cell Biol 2003; 161:381 - 91; http://dx.doi.org/10.1083/jcb.200210149; PMID: 12707308
  • Stowers L, Yelon D, Berg LJ, Chant J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc Natl Acad Sci U S A 1995; 92:5027 - 31; http://dx.doi.org/10.1073/pnas.92.11.5027; PMID: 7761442
  • Etienne-Manneville S. Cdc42--the centre of polarity. J Cell Sci 2004; 117:1291 - 300; http://dx.doi.org/10.1242/jcs.01115; PMID: 15020669
  • Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 1999; 144:1235 - 44; http://dx.doi.org/10.1083/jcb.144.6.1235; PMID: 10087266
  • Etienne-Manneville S, Hall A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 2001; 106:489 - 98; http://dx.doi.org/10.1016/S0092-8674(01)00471-8; PMID: 11525734
  • Etienne-Manneville S, Hall A. Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 2003; 421:753 - 6; http://dx.doi.org/10.1038/nature01423; PMID: 12610628
  • Cau J, Hall A. Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J Cell Sci 2005; 118:2579 - 87; http://dx.doi.org/10.1242/jcs.02385; PMID: 15928049
  • Dujardin DL, Vallee RB. Dynein at the cortex. Curr Opin Cell Biol 2002; 14:44 - 9; http://dx.doi.org/10.1016/S0955-0674(01)00292-7; PMID: 11792543
  • Shi SH, Jan LY, Jan YN. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 2003; 112:63 - 75; http://dx.doi.org/10.1016/S0092-8674(02)01249-7; PMID: 12526794
  • Kim WY, Zhou FQ, Zhou J, Yokota Y, Wang YM, Yoshimura T, Kaibuchi K, Woodgett JR, Anton ES, Snider WD. Essential roles for GSK-3s and GSK-3-primed substrates in neurotrophin-induced and hippocampal axon growth. Neuron 2006; 52:981 - 96; http://dx.doi.org/10.1016/j.neuron.2006.10.031; PMID: 17178402
  • Shi SH, Cheng T, Jan LY, Jan YN. APC and GSK-3beta are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr Biol 2004; 14:2025 - 32; http://dx.doi.org/10.1016/j.cub.2004.11.009; PMID: 15556865
  • Zhou FQ, Zhou J, Dedhar S, Wu YH, Snider WD. NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron 2004; 42:897 - 912; http://dx.doi.org/10.1016/j.neuron.2004.05.011; PMID: 15207235
  • Dent EW, Gupton SL, Gertler FB. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 2011; 3:a001800; http://dx.doi.org/10.1101/cshperspect.a001800; PMID: 21106647
  • Etienne-Manneville S, Manneville JB, Nicholls S, Ferenczi MA, Hall A. Cdc42 and Par6-PKCzeta regulate the spatially localized association of Dlg1 and APC to control cell polarization. J Cell Biol 2005; 170:895 - 901; http://dx.doi.org/10.1083/jcb.200412172; PMID: 16157700
  • Manneville JB, Jehanno M, Etienne-Manneville S. Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity. J Cell Biol 2010; 191:585 - 98; http://dx.doi.org/10.1083/jcb.201002151; PMID: 21041448
  • Gomes ER, Jani S, Gundersen GG. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 2005; 121:451 - 63; http://dx.doi.org/10.1016/j.cell.2005.02.022; PMID: 15882626
  • Fais S, Malorni W. Leukocyte uropod formation and membrane/cytoskeleton linkage in immune interactions. J Leukoc Biol 2003; 73:556 - 63; http://dx.doi.org/10.1189/jlb.1102568; PMID: 12714569
  • Kumar S, Xu J, Perkins C, Guo F, Snapper S, Finkelman FD, Zheng Y, Filippi MD. Cdc42 regulates neutrophil migration via crosstalk between WASp, CD11b, and microtubules. Blood 2012; 120:3563 - 74; http://dx.doi.org/10.1182/blood-2012-04-426981; PMID: 22932798
  • Wittmann T, Bokoch GM, Waterman-Storer CM. Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J Cell Biol 2003; 161:845 - 51; http://dx.doi.org/10.1083/jcb.200303082; PMID: 12796474
  • Daub H, Gevaert K, Vandekerckhove J, Sobel A, Hall A. Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J Biol Chem 2001; 276:1677 - 80; http://dx.doi.org/10.1074/jbc.C000635200; PMID: 11058583
  • Wittmann T, Bokoch GM, Waterman-Storer CM. Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1. J Biol Chem 2004; 279:6196 - 203; http://dx.doi.org/10.1074/jbc.M307261200; PMID: 14645234
  • Watabe-Uchida M, John KA, Janas JA, Newey SE, Van Aelst L. The Rac activator DOCK7 regulates neuronal polarity through local phosphorylation of stathmin/Op18. Neuron 2006; 51:727 - 39; http://dx.doi.org/10.1016/j.neuron.2006.07.020; PMID: 16982419
  • Ellenbroek SI, Iden S, Collard JG. The Rac activator Tiam1 is required for polarized protrusional outgrowth of primary astrocytes by affecting the organization of the microtubule network. Small GTPases 2012; 3:4 - 14; http://dx.doi.org/10.4161/sgtp.19379; PMID: 22710731
  • Pegtel DM, Ellenbroek SI, Mertens AE, van der Kammen RA, de Rooij J, Collard JG. The Par-Tiam1 complex controls persistent migration by stabilizing microtubule-dependent front-rear polarity. Curr Biol 2007; 17:1623 - 34; http://dx.doi.org/10.1016/j.cub.2007.08.035; PMID: 17825562
  • Akhmanova A, Hoogenraad CC, Drabek K, Stepanova T, Dortland B, Verkerk T, Vermeulen W, Burgering BM, De Zeeuw CI, Grosveld F, et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 2001; 104:923 - 35; http://dx.doi.org/10.1016/S0092-8674(01)00288-4; PMID: 11290329
  • Galjart N. CLIPs and CLASPs and cellular dynamics. Nat Rev Mol Cell Biol 2005; 6:487 - 98; http://dx.doi.org/10.1038/nrm1664; PMID: 15928712
  • Kumar P, Wittmann T. +TIPs: SxIPping along microtubule ends. Trends Cell Biol 2012; 22:418 - 28; http://dx.doi.org/10.1016/j.tcb.2012.05.005; PMID: 22748381
  • Wittmann T, Waterman-Storer CM. Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3beta in migrating epithelial cells. [Erratum in: J Cell Biol 2005; 171: 393] J Cell Biol 2005; 169:929 - 39; http://dx.doi.org/10.1083/jcb.200412114; PMID: 15955847
  • Drabek K, van Ham M, Stepanova T, Draegestein K, van Horssen R, Sayas CL, Akhmanova A, Ten Hagen T, Smits R, Fodde R, et al. Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Curr Biol 2006; 16:2259 - 64; http://dx.doi.org/10.1016/j.cub.2006.09.065; PMID: 17113391
  • Lansbergen G, Grigoriev I, Mimori-Kiyosue Y, Ohtsuka T, Higa S, Kitajima I, Demmers J, Galjart N, Houtsmuller AB, Grosveld F, et al. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta. Dev Cell 2006; 11:21 - 32; http://dx.doi.org/10.1016/j.devcel.2006.05.012; PMID: 16824950
  • Waterman-Storer CM, Worthylake RA, Liu BP, Burridge K, Salmon ED. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat Cell Biol 1999; 1:45 - 50; http://dx.doi.org/10.1038/9018; PMID: 10559863
  • Wittmann T, Waterman-Storer CM. Cell motility: can Rho GTPases and microtubules point the way?. J Cell Sci 2001; 114:3795 - 803; PMID: 11719546
  • Waterman-Storer CM, Salmon E. Positive feedback interactions between microtubule and actin dynamics during cell motility. Curr Opin Cell Biol 1999; 11:61 - 7; http://dx.doi.org/10.1016/S0955-0674(99)80008-8; PMID: 10047528
  • Birkenfeld J, Nalbant P, Yoon SH, Bokoch GM. Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis?. Trends Cell Biol 2008; 18:210 - 9; http://dx.doi.org/10.1016/j.tcb.2008.02.006; PMID: 18394899
  • Birukova AA, Adyshev D, Gorshkov B, Bokoch GM, Birukov KG, Verin AD. GEF-H1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2006; 290:L540 - 8; http://dx.doi.org/10.1152/ajplung.00259.2005; PMID: 16257999
  • Krendel M, Zenke FT, Bokoch GM. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 2002; 4:294 - 301; http://dx.doi.org/10.1038/ncb773; PMID: 11912491
  • Conde C, Arias C, Robin M, Li A, Saito M, Chuang JZ, Nairn AC, Sung CH, Cáceres A. Evidence for the involvement of Lfc and Tctex-1 in axon formation. J Neurosci 2010; 30:6793 - 800; http://dx.doi.org/10.1523/JNEUROSCI.5420-09.2010; PMID: 20463241
  • Gauthier-Fisher A, Lin DC, Greeve M, Kaplan DR, Rottapel R, Miller FD. Lfc and Tctex-1 regulate the genesis of neurons from cortical precursor cells. Nat Neurosci 2009; 12:735 - 44; http://dx.doi.org/10.1038/nn.2339; PMID: 19448628
  • Ryan XP, Alldritt J, Svenningsson P, Allen PB, Wu GY, Nairn AC, Greengard P. The Rho-specific GEF Lfc interacts with neurabin and spinophilin to regulate dendritic spine morphology. Neuron 2005; 47:85 - 100; http://dx.doi.org/10.1016/j.neuron.2005.05.013; PMID: 15996550
  • Tai AW, Chuang JZ, Bode C, Wolfrum U, Sung CH. Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 1999; 97:877 - 87; http://dx.doi.org/10.1016/S0092-8674(00)80800-4; PMID: 10399916
  • Chuang JZ, Yeh TY, Bollati F, Conde C, Canavosio F, Caceres A, Sung CH. The dynein light chain Tctex-1 has a dynein-independent role in actin remodeling during neurite outgrowth. Dev Cell 2005; 9:75 - 86; http://dx.doi.org/10.1016/j.devcel.2005.04.003; PMID: 15992542
  • Meiri D, Marshall CB, Greeve MA, Kim B, Balan M, Suarez F, Bakal C, Wu C, Larose J, Fine N, et al. Mechanistic insight into the microtubule and actin cytoskeleton coupling through dynein-dependent RhoGEF inhibition. Mol Cell 2012; 45:642 - 55 Erratum in. Mol Cell 2012; 45:844; http://dx.doi.org/10.1016/j.molcel.2012.01.027; PMID: 22405273
  • Bradke F, Dotti CG. The role of local actin instability in axon formation. Science 1999; 283:1931 - 4; http://dx.doi.org/10.1126/science.283.5409.1931; PMID: 10082468
  • Kunda P, Paglini G, Quiroga S, Kosik K, Caceres A. Evidence for the involvement of Tiam1 in axon formation. J Neurosci 2001; 21:2361 - 72; PMID: 11264310
  • Nishimura T, Yamaguchi T, Kato K, Yoshizawa M, Nabeshima Y, Ohno S, Hoshino M, Kaibuchi K. PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nat Cell Biol 2005; 7:270 - 7; http://dx.doi.org/10.1038/ncb1227; PMID: 15723051
  • Arimura N, Kaibuchi K. Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 2007; 8:194 - 205; http://dx.doi.org/10.1038/nrn2056; PMID: 17311006
  • González-Billault C, Avila J, Cáceres A. Evidence for the role of MAP1B in axon formation. Mol Biol Cell 2001; 12:2087 - 98; http://dx.doi.org/10.1091/mbc.12.7.2087; PMID: 11452005
  • González-Billault C, Jiménez-Mateos EM, Cáceres A, Díaz-Nido J, Wandosell F, Avila J. Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. J Neurobiol 2004; 58:48 - 59; http://dx.doi.org/10.1002/neu.10283; PMID: 14598369
  • Montenegro-Venegas C, Tortosa E, Rosso S, Peretti D, Bollati F, Bisbal M, Jausoro I, Avila J, Cáceres A, González-Billault C. MAP1B regulates axonal development by modulating Rho-GTPase Rac1 activity. Mol Biol Cell 2010; 21:3518 - 28; http://dx.doi.org/10.1091/mbc.E09-08-0709; PMID: 20719958
  • Henríquez DR, Bodaleo FJ, Montenegro-Venegas C, González-Billault C. The light chain 1 subunit of the microtubule-associated protein 1B (MAP1B) is responsible for Tiam1 binding and Rac1 activation in neuronal cells. PLoS One 2012; 7:e53123; http://dx.doi.org/10.1371/journal.pone.0053123; PMID: 23300879
  • Luxton GW, Gomes ER, Folker ES, Worman HJ, Gundersen GG. TAN lines: a novel nuclear envelope structure involved in nuclear positioning. Nucleus 2011; 2:173 - 81; http://dx.doi.org/10.4161/nucl.2.3.16243; PMID: 21818410
  • Schmoranzer J, Fawcett JP, Segura M, Tan S, Vallee RB, Pawson T, Gundersen GG. Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration. Curr Biol 2009; 19:1065 - 74; http://dx.doi.org/10.1016/j.cub.2009.05.065; PMID: 19540120

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.