716
Views
24
CrossRef citations to date
0
Altmetric
Report

Tumor necrosis factor α-mediated restructuring of the Sertoli cell barrier in vitro involves matrix metalloprotease 9 (MMP9), membrane-bound intercellular adhesion molecule-1 (ICAM-1) and the actin cytoskeleton

, , &
Pages 294-303 | Published online: 01 Dec 2012

References

  • de Kretser DM, Kerr JB. in The Physiology of Reproduction. (eds Knobil, E et al.) 837-932 (Raven Press, 1988).
  • Kerr JB, Loveland KL, O'Bryan MK, de Kretser DM. in Knobil and Neill's Physiology of Reproduction. (ed Neill, JD) 827-947 (Elsevier, 2006).
  • Carreau S, Hess RA. Oestrogens and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1517 - 35; http://dx.doi.org/10.1098/rstb.2009.0235; PMID: 20403867
  • Stanton H, Melrose J, Little CB, Fosang AJ. Proteoglycan degradation by the ADAMTS family of proteinases. Biochim Biophys Acta 2011; 1812:1616 - 29; http://dx.doi.org/10.1016/j.bbadis.2011.08.009; PMID: 21914474
  • Russell LD. The blood-testis barrier and its formation relative to spermatocyte maturation in the adult rat: a lanthanum tracer study. Anat Rec 1978; 190:99 - 111; http://dx.doi.org/10.1002/ar.1091900109; PMID: 626419
  • Setchell BP, Waites GMB. in The Handbook of Physiology. (eds Hamilton, DW & Greep, RO) 143-172 (Williams and Wilkens, 1975).
  • Cheng CY, Mruk DD. The blood-testis barrier and its implications for male contraception. Pharmacol Rev 2012; 64:16 - 64; http://dx.doi.org/10.1124/pr.110.002790; PMID: 22039149
  • Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747 - 806; http://dx.doi.org/10.1210/er.2003-0022; PMID: 15466940
  • Russell LD. Movement of spermatocytes from the basal to the adluminal compartment of the rat testis. Am J Anat 1977; 148:313 - 28; http://dx.doi.org/10.1002/aja.1001480303; PMID: 857632
  • Cheng CY, Mruk DD. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol Rev 2002; 82:825 - 74; PMID: 12270945
  • Russell LD. in The Sertoli Cell. (eds Russell, LD & Griswold, MD) 365-390 (Cache River Press, 1993).
  • Yan HHN, Mruk DD, Lee WM, Cheng CY. Blood-testis barrier dynamics are regulated by testosterone and cytokines via their differential effects on the kinetics of protein endocytosis and recycling in Sertoli cells. FASEB J 2008; 22:1945 - 59; http://dx.doi.org/10.1096/fj.06-070342; PMID: 18192323
  • Nourshargh S, Hordijk PL, Sixt M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol 2010; 11:366 - 78; http://dx.doi.org/10.1038/nrm2889; PMID: 20414258
  • Xiao X, Cheng CY, Mruk DD. Intercellular adhesion molecule-1 is a regulator of blood-testis barrier function. J Cell Sci 2012; http://dx.doi.org/10.1242/jcs.107987; PMID: 22976294
  • Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. Pharmacol Rep 2009; 61:22 - 32; PMID: 19307690
  • Witkowska AM, Borawska MH. Soluble intercellular adhesion molecule-1 (sICAM-1): an overview. Eur Cytokine Netw 2004; 15:91 - 8; PMID: 15319166
  • van de Stolpe A, van der Saag PT. Intercellular adhesion molecule-1. J Mol Med (Berl) 1996; 74:13 - 33; http://dx.doi.org/10.1007/BF00202069; PMID: 8834767
  • Ziparo E, Riccioli A, Filippini A, De Cesaris P, Barbacci E. TNF-α induces surface modifications in mouse Sertoli cells: physiopathological implications. Ital J Anat Embryol 1995; 100:Suppl 1 553 - 62; PMID: 11322336
  • De Cesaris P, Starace D, Starace G, Filippini A, Stefanini M, Ziparo E. Activation of Jun N-terminal kinase/stress-activated protein kinase pathway by tumor necrosis factor α leads to intercellular adhesion molecule-1 expression. J Biol Chem 1999; 274:28978 - 82; http://dx.doi.org/10.1074/jbc.274.41.28978; PMID: 10506145
  • Riccioli A, Filippini A, De Cesaris P, Barbacci E, Stefanini M, Starace G, et al. Inflammatory mediators increase surface expression of integrin ligands, adhesion to lymphocytes, and secretion of interleukin 6 in mouse Sertoli cells. Proc Natl Acad Sci USA 1995; 92:5808 - 12; http://dx.doi.org/10.1073/pnas.92.13.5808; PMID: 7541137
  • De SK, Chen HL, Pace JL, Hunt JS, Terranova PF, Enders GC. Expression of tumor necrosis factor-α in mouse spermatogenic cells. Endocrinology 1993; 133:389 - 96; http://dx.doi.org/10.1210/en.133.1.389; PMID: 8319585
  • Xia W, Wong EWP, Mruk DD, Cheng CY. TGF-β3 and TNFalpha perturb blood-testis barrier (BTB) dynamics by accelerating the clathrin-mediated endocytosis of integral membrane proteins: a new concept of BTB regulation during spermatogenesis. Dev Biol 2009; 327:48 - 61; http://dx.doi.org/10.1016/j.ydbio.2008.11.028; PMID: 19103189
  • Wang CQF, Mruk DD, Lee WM, Cheng CY. Coxsackie and adenovirus receptor (CAR) is a product of Sertoli and germ cells in rat testes which is localized at the Sertoli-Sertoli and Sertoli-germ cell interface. Exp Cell Res 2007; 313:1373 - 92; http://dx.doi.org/10.1016/j.yexcr.2007.01.017; PMID: 17359973
  • Siu MKY, Lee WM, Cheng CY. The interplay of collagen IV, tumor necrosis factor-α, gelatinase B (matrix metalloprotease-9), and tissue inhibitor of metalloproteases-1 in the basal lamina regulates Sertoli cell-tight junction dynamics in the rat testis. Endocrinology 2003; 144:371 - 87; http://dx.doi.org/10.1210/en.2002-220786; PMID: 12488366
  • Li MWM, Xia W, Mruk DD, Wang CQ, Yan HH, Siu MK, et al. Tumor necrosis factor α reversibly disrupts the blood-testis barrier and impairs Sertoli-germ cell adhesion in the seminiferous epithelium of adult rat testes. J Endocrinol 2006; 190:313 - 29; http://dx.doi.org/10.1677/joe.1.06781; PMID: 16899565
  • Mruk DD, Siu MK, Conway AM, Lee NP, Lau AS, Cheng CY. Role of tissue inhibitor of metalloproteases-1 in junction dynamics in the testis. J Androl 2003; 24:510 - 23; PMID: 12826691
  • Cheng CY, Mather JP, Byer AL, Bardin CW. Identification of hormonally responsive proteins in primary Sertoli cell culture medium by anion-exchange high performance liquid chromatography. Endocrinology 1986; 118:480 - 8; http://dx.doi.org/10.1210/endo-118-2-480; PMID: 3080306
  • Mruk DD, Cheng CY. An in vitro system to study Sertoli cell blood-testis barrier dynamics. Methods Mol Biol 2011; 763:237 - 52; http://dx.doi.org/10.1007/978-1-61779-191-8_16; PMID: 21874456
  • Galdieri M, Ziparo E, Palombi F, Russo MA, Stefanini M. Pure Sertoli cell cultures: a new model for the study of somatic-germ cell interactions. J Androl 1981; 5:249 - 59
  • Kopera I, Durlej M, Hejmej A, Knapczyk-Stwora K, Duda M, Slomczynska M, et al. Differential expression of connexin 43 in adult pig testes during normal spermatogenic cycle and after flutamide treatment. Reprod Domest Anim 2011; 46:1050 - 60; http://dx.doi.org/10.1111/j.1439-0531.2011.01783.x; PMID: 21457361
  • Aravindan GR, Pineau CP, Bardin CW, Cheng CY. Ability of trypsin in mimicking germ cell factors that affect Sertoli cell secretory function. J Cell Physiol 1996; 168:123 - 33; http://dx.doi.org/10.1002/(SICI)1097-4652(199607)168:1<123::AID-JCP15>3.0.CO;2-8; PMID: 8647906
  • Zwain IH, Cheng CY. Rat seminiferous tubular culture medium contains a biological factor that inhibits Leydig cell steroidogenesis: its purification and mechanism of action. Mol Cell Endocrinol 1994; 104:213 - 27; http://dx.doi.org/10.1016/0303-7207(94)90124-4; PMID: 7988748
  • Lee NPY, Mruk DD, Conway AM, Cheng CY. Zyxin, axin, and Wiskott-Aldrich syndrome protein are adaptors that link the cadherin/catenin protein complex to the cytoskeleton at adherens junctions in the seminiferous epithelium of the rat testis. J Androl 2004; 25:200 - 15; PMID: 14760006
  • Zong SD, Bardin CW, Phillips D, Cheng CY. Testins are localized to the junctional complexes of rat Sertoli and epididymal cells. Biol Reprod 1992; 47:568 - 72; http://dx.doi.org/10.1095/biolreprod47.4.568; PMID: 1391343
  • Zong SD, Zhu LJ, Grima J, Aravindan GR, Bardin CW, Cheng CY. Cyclic and postnatal developmental changes of testin in the rat seminiferous epithelium--an immunohistochemical study. Biol Reprod 1994; 51:843 - 51; http://dx.doi.org/10.1095/biolreprod51.5.843; PMID: 7849186
  • Cheng CY, Bardin CW. Identification of two testosterone-responsive testicular proteins in Sertoli cell-enriched culture medium whose secretion is suppressed by cells of the intact seminiferous tubule. J Biol Chem 1987; 262:12768 - 79; PMID: 3624278
  • Siu MKY, Cheng CY. Interactions of proteases, protease inhibitors, and the β1 integrin/laminin gamma3 protein complex in the regulation of ectoplasmic specialization dynamics in the rat testis. Biol Reprod 2004; 70:945 - 64; http://dx.doi.org/10.1095/biolreprod.103.023606; PMID: 14645107
  • Longin J, Guillaumot P, Chauvin MA, Morera AM, Le Magueresse-Battistoni B. MT1-MMP in rat testicular development and the control of Sertoli cell proMMP-2 activation. J Cell Sci 2001; 114:2125 - 34; PMID: 11493648
  • Smith BV, Lacy D. Residual bodies of seminiferous tubules of the rat. Nature 1959; 184:249 - 51; http://dx.doi.org/10.1038/184249a0; PMID: 13831896
  • Kerr JB, de Kretser DM. Proceedings: The role of the Sertoli cell in phagocytosis of the residual bodies of spermatids. J Reprod Fertil 1974; 36:439 - 40; http://dx.doi.org/10.1530/jrf.0.0360439; PMID: 4819326
  • Osenkowski P, Meroueh SO, Pavel D, Mobashery S, Fridman R. Mutational and structural analyses of the hinge region of membrane type 1-matrix metalloproteinase and enzyme processing. J Biol Chem 2005; 280:26160 - 8; http://dx.doi.org/10.1074/jbc.M414379200; PMID: 15901740
  • Yao PL, Lin YC, Richburg JH. TNF α-mediated disruption of spermatogenesis in response to Sertoli cell injury in rodents is partially regulated by MMP2. Biol Reprod 2009; 80:581 - 9; http://dx.doi.org/10.1095/biolreprod.108.073122; PMID: 19038859
  • Delfino FJ, Boustead JN, Fix C, Walker WH. NF-kappaB and TNF-α stimulate androgen receptor expression in Sertoli cells. Mol Cell Endocrinol 2003; 201:1 - 12; http://dx.doi.org/10.1016/S0303-7207(03)00005-4; PMID: 12706288
  • Gingras D, Béliveau R. Emerging concepts in the regulation of membrane-type 1 matrix metalloproteinase activity. Biochim Biophys Acta 2010; 1803:142 - 50; http://dx.doi.org/10.1016/j.bbamcr.2009.04.011; PMID: 19409422
  • Koziol A, Martín-Alonso M, Clemente C, Gonzalo P, Arroyo AG. Site-specific cellular functions of MT1-MMP. Eur J Cell Biol 2012; 91:889 - 95; http://dx.doi.org/10.1016/j.ejcb.2012.07.003; PMID: 22939226
  • Kirkbride KC, Sung BH, Sinha S, Weaver AM. Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adh Migr 2011; 5:187 - 98; http://dx.doi.org/10.4161/cam.5.2.14773; PMID: 21258212
  • Ren GR, Crampton MS, Yap AS. Cortactin: Coordinating adhesion and the actin cytoskeleton at cellular protrusions. Cell Motil Cytoskeleton 2009; 66:865 - 73; http://dx.doi.org/10.1002/cm.20380; PMID: 19437513
  • Sarkar O, Mathur PP, Cheng CY, Mruk DD. Interleukin 1 α (IL1A) is a novel regulator of the blood-testis barrier in the rat. Biol Reprod 2008; 78:445 - 54; http://dx.doi.org/10.1095/biolreprod.107.064501; PMID: 18057314
  • Lie PPY, Cheng CY, Mruk DD. Interleukin-1alpha is a regulator of the blood-testis barrier. FASEB J 2011; 25:1244 - 53; http://dx.doi.org/10.1096/fj.10-169995; PMID: 21191089
  • Li MWM, Mruk DD, Lee WM, Cheng CY. Cytokines and junction restructuring events during spermatogenesis in the testis: an emerging concept of regulation. Cytokine Growth Factor Rev 2009; 20:329 - 38; http://dx.doi.org/10.1016/j.cytogfr.2009.07.007; PMID: 19651533
  • O'Bryan MK, Hedger MP. in Molecular Mechanisms in Spermatogenesis. (ed Cheng, CY) 92-114 (Landes Bioscience and Springer Science+Business Media, 2008).
  • Hutson JC. Secretion of tumor necrosis factor α by testicular macrophages. J Reprod Immunol 1993; 23:63 - 72; http://dx.doi.org/10.1016/0165-0378(93)90027-F; PMID: 8429525
  • Boussouar F, Grataroli R, Ji J, Benahmed M. Tumor necrosis factor-α stimulates lactate dehydrogenase A expression in porcine cultured Sertoli cells: mechanisms of action. Endocrinology 1999; 140:3054 - 62; http://dx.doi.org/10.1210/en.140.7.3054; PMID: 10385397
  • De Cesaris P, Starace D, Riccioli A, Padula F, Filippini A, Ziparo E. Tumor necrosis factor-α induces interleukin-6 production and integrin ligand expression by distinct transduction pathways. J Biol Chem 1998; 273:7566 - 71; http://dx.doi.org/10.1074/jbc.273.13.7566; PMID: 9516459
  • Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007; 8:221 - 33; http://dx.doi.org/10.1038/nrm2125; PMID: 17318226
  • Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003; 92:827 - 39; http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D; PMID: 12730128
  • Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2:161 - 74; http://dx.doi.org/10.1038/nrc745; PMID: 11990853
  • Murphy G. Tissue inhibitors of metalloproteinases. Genome Biol 2011; 12:233; http://dx.doi.org/10.1186/gb-2011-12-11-233; PMID: 22078297
  • Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994; 370:61 - 5; http://dx.doi.org/10.1038/370061a0; PMID: 8015608
  • Poincloux R, Lizárraga F, Chavrier P. Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci 2009; 122:3015 - 24; http://dx.doi.org/10.1242/jcs.034561; PMID: 19692588
  • Toth M, Hernandez-Barrantes S, Osenkowski P, Bernardo MM, Gervasi DC, Shimura Y, et al. Complex pattern of membrane type 1 matrix metalloproteinase shedding. Regulation by autocatalytic cells surface inactivation of active enzyme. J Biol Chem 2002; 277:26340 - 50; http://dx.doi.org/10.1074/jbc.M200655200; PMID: 12004057
  • Lehti K, Valtanen H, Wickström SA, Lohi J, Keski-Oja J. Regulation of membrane-type-1 matrix metalloproteinase activity by its cytoplasmic domain. J Biol Chem 2000; 275:15006 - 13; http://dx.doi.org/10.1074/jbc.M910220199; PMID: 10748199
  • Lohi J, Lehti K, Westermarck J, Kähäri VM, Keski-Oja J. Regulation of membrane-type matrix metalloproteinase-1 expression by growth factors and phorbol 12-myristate 13-acetate. Eur J Biochem 1996; 239:239 - 47; http://dx.doi.org/10.1111/j.1432-1033.1996.0239u.x; PMID: 8706726
  • Cho JA, Osenkowski P, Zhao H, Kim S, Toth M, Cole K, et al. The inactive 44-kDa processed form of membrane type 1 matrix metalloproteinase (MT1-MMP) enhances proteolytic activity via regulation of endocytosis of active MT1-MMP. J Biol Chem 2008; 283:17391 - 405; http://dx.doi.org/10.1074/jbc.M708943200; PMID: 18413312
  • Muller WA. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 2003; 24:327 - 34; http://dx.doi.org/10.1016/S1471-4906(03)00117-0; PMID: 12810109
  • Muller WA. Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol 2011; 6:323 - 44; http://dx.doi.org/10.1146/annurev-pathol-011110-130224; PMID: 21073340
  • Fiore E, Fusco C, Romero P, Stamenkovic I. Matrix metalloproteinase 9 (MMP-9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicity. Oncogene 2002; 21:5213 - 23; http://dx.doi.org/10.1038/sj.onc.1205684; PMID: 12149643
  • Sultan S, Gosling M, Nagase H, Powell JT. Shear stress-induced shedding of soluble intercellular adhesion molecule-1 from saphenous vein endothelium. FEBS Lett 2004; 564:161 - 5; http://dx.doi.org/10.1016/S0014-5793(04)00337-0; PMID: 15094060
  • Tilghman RW, Hoover RL. The Src-cortactin pathway is required for clustering of E-selectin and ICAM-1 in endothelial cells. FASEB J 2002; 16:1257 - 9; PMID: 12060669
  • Clark ES, Weaver AM. A new role for cortactin in invadopodia: regulation of protease secretion. Eur J Cell Biol 2008; 87:581 - 90; http://dx.doi.org/10.1016/j.ejcb.2008.01.008; PMID: 18342393
  • Clark ES, Whigham AS, Yarbrough WG, Weaver AM. Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res 2007; 67:4227 - 35; http://dx.doi.org/10.1158/0008-5472.CAN-06-3928; PMID: 17483334