4,043
Views
169
CrossRef citations to date
0
Altmetric
Review

Claudins in intestines

Distribution and functional significance in health and diseases

, , &
Article: e24978 | Received 18 Feb 2013, Accepted 08 May 2013, Published online: 30 May 2013

References

  • Niessen CM. Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 2007; 127:2525 - 32; http://dx.doi.org/10.1038/sj.jid.5700865; PMID: 17934504
  • Van Itallie CM, Anderson JM. The molecular physiology of tight junction pores. Physiology (Bethesda) 2004; 19:331 - 8; http://dx.doi.org/10.1152/physiol.00027.2004; PMID: 15546850
  • Krug SM, Günzel D, Conrad MP, Lee IF, Amasheh S, Fromm M, et al. Charge-selective claudin channels. Ann N Y Acad Sci 2012; 1257:20 - 8; http://dx.doi.org/10.1111/j.1749-6632.2012.06555.x; PMID: 22671585
  • González-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol 2003; 81:1 - 44; http://dx.doi.org/10.1016/S0079-6107(02)00037-8; PMID: 12475568
  • Lameris AL, Huybers S, Kaukinen K, Mäkelä TH, Bindels RJ, Hoenderop JG, et al. Expression profiling of claudins in the human gastrointestinal tract in health and during inflammatory bowel disease. Scand J Gastroenterol 2013; 48:58 - 69; http://dx.doi.org/10.3109/00365521.2012.741616; PMID: 23205909
  • Bertiaux-Vandaële N, Youmba SB, Belmonte L, Lecleire S, Antonietti M, Gourcerol G, et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol 2011; 106:2165 - 73; http://dx.doi.org/10.1038/ajg.2011.257; PMID: 22008894
  • Yang JJ, Ma YL, Zhang P, Chen HQ, Liu ZH, Qin HL. Histidine decarboxylase is identified as a potential biomarker of intestinal mucosal injury in patients with acute intestinal obstruction. Mol Med 2011; 17:1323 - 37; http://dx.doi.org/10.2119/molmed.2011.00107; PMID: 21915437
  • Oshima T, Miwa H, Joh T. Changes in the expression of claudins in active ulcerative colitis. J Gastroenterol Hepatol 2008; 23:Suppl 2 S146 - 50; http://dx.doi.org/10.1111/j.1440-1746.2008.05405.x; PMID: 19120888
  • Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM. Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns 2006; 6:581 - 8; http://dx.doi.org/10.1016/j.modgep.2005.12.001; PMID: 16458081
  • Wang Y, Liu Y, Sidhu A, Ma Z, McClain C, Feng W. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol 2012; 303:G32 - 41; http://dx.doi.org/10.1152/ajpgi.00024.2012; PMID: 22538402
  • Ding L, Lu Z, Foreman O, Tatum R, Lu Q, Renegar R, et al. Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology 2012; 142:305 - 15; http://dx.doi.org/10.1053/j.gastro.2011.10.025; PMID: 22044670
  • Fujita H, Chiba H, Yokozaki H, Sakai N, Sugimoto K, Wada T, et al. Differential expression and subcellular localization of claudin-7, -8, -12, -13, and -15 along the mouse intestine. J Histochem Cytochem 2006; 54:933 - 44; http://dx.doi.org/10.1369/jhc.6A6944.2006; PMID: 16651389
  • Wada M, Tamura A, Takahashi N, Tsukita S. Loss of Claudins 2 and 15 From Mice Causes Defects in Paracellular Na(+) Flow and Nutrient Transport in Gut and Leads to Death from Malnutrition. Gastroenterology 2012.
  • Clark MA, Hirst BH. Expression of junction-associated proteins differentiates mouse intestinal M cells from enterocytes. Histochem Cell Biol 2002; 118:137 - 47; PMID: 12189517
  • Tamagawa H, Takahashi I, Furuse M, Yoshitake-Kitano Y, Tsukita S, Ito T, et al. Characteristics of claudin expression in follicle-associated epithelium of Peyer’s patches: preferential localization of claudin-4 at the apex of the dome region. Lab Invest 2003; 83:1045 - 53; http://dx.doi.org/10.1097/01.LAB.0000078741.55670.6E; PMID: 12861044
  • Patel RM, Myers LS, Kurundkar AR, Maheshwari A, Nusrat A, Lin PW. Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function. Am J Pathol 2012; 180:626 - 35; http://dx.doi.org/10.1016/j.ajpath.2011.10.025; PMID: 22155109
  • Markov AG, Veshnyakova A, Fromm M, Amasheh M, Amasheh S. Segmental expression of claudin proteins correlates with tight junction barrier properties in rat intestine. J Comp Physiol B 2010; 180:591 - 8; http://dx.doi.org/10.1007/s00360-009-0440-7; PMID: 20049600
  • Karaki S, Kaji I, Otomo Y, Tazoe H, Kuwahara A. The tight junction component protein, claudin-4, is expressed by enteric neurons in the rat distal colon. Neurosci Lett 2007; 428:88 - 92; http://dx.doi.org/10.1016/j.neulet.2007.09.059; PMID: 17964719
  • Rahner C, Mitic LL, Anderson JM. Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology 2001; 120:411 - 22; http://dx.doi.org/10.1053/gast.2001.21736; PMID: 11159882
  • Ohta H, Yamaguchi T, Rajapakshage BK, Murakami M, Sasaki N, Nakamura K, et al. Expression and subcellular localization of apical junction proteins in canine duodenal and colonic mucosa. Am J Vet Res 2011; 72:1046 - 51; http://dx.doi.org/10.2460/ajvr.72.8.1046; PMID: 21801061
  • Amasheh S, Milatz S, Krug SM, Bergs M, Amasheh M, Schulzke JD, et al. Na+ absorption defends from paracellular back-leakage by claudin-8 upregulation. Biochem Biophys Res Commun 2009; 378:45 - 50; http://dx.doi.org/10.1016/j.bbrc.2008.10.164; PMID: 19000657
  • Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, et al. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell 2008; 19:1912 - 21; http://dx.doi.org/10.1091/mbc.E07-09-0973; PMID: 18287530
  • Christakos S, Dhawan P, Ajibade D, Benn BS, Feng J, Joshi SS. Mechanisms involved in vitamin D mediated intestinal calcium absorption and in non-classical actions of vitamin D. J Steroid Biochem Mol Biol 2010; 121:183 - 7; http://dx.doi.org/10.1016/j.jsbmb.2010.03.005; PMID: 20214989
  • Tamura A, Kitano Y, Hata M, Katsuno T, Moriwaki K, Sasaki H, et al. Megaintestine in claudin-15-deficient mice. Gastroenterology 2008; 134:523 - 34; http://dx.doi.org/10.1053/j.gastro.2007.11.040; PMID: 18242218
  • Tamura A, Hayashi H, Imasato M, Yamazaki Y, Hagiwara A, Wada M, et al. Loss of claudin-15, but not claudin-2, causes Na+ deficiency and glucose malabsorption in mouse small intestine. Gastroenterology 2011; 140:913 - 23; http://dx.doi.org/10.1053/j.gastro.2010.08.006; PMID: 20727355
  • Vezzoli G, Soldati L, Gambaro G. Update on primary hypercalciuria from a genetic perspective. J Urol 2008; 179:1676 - 82; http://dx.doi.org/10.1016/j.juro.2008.01.011; PMID: 18343451
  • Boudreau F, Lussier CR, Mongrain S, Darsigny M, Drouin JL, Doyon G, et al. Loss of cathepsin L activity promotes claudin-1 overexpression and intestinal neoplasia. FASEB J 2007; 21:3853 - 65; http://dx.doi.org/10.1096/fj.07-8113com; PMID: 17622569
  • Miwa N, Furuse M, Tsukita S, Niikawa N, Nakamura Y, Furukawa Y. Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res 2001; 12:469 - 76; PMID: 11939410
  • Meyer zum Büschenfelde D, Tauber R, Huber O. TFF3-peptide increases transepithelial resistance in epithelial cells by modulating claudin-1 and -2 expression. Peptides 2006; 27:3383 - 90; http://dx.doi.org/10.1016/j.peptides.2006.08.020; PMID: 17018241
  • Sakaguchi T, Gu X, Golden HM, Suh E, Rhoads DB, Reinecker HC. Cloning of the human claudin-2 5′-flanking region revealed a TATA-less promoter with conserved binding sites in mouse and human for caudal-related homeodomain proteins and hepatocyte nuclear factor-1alpha. J Biol Chem 2002; 277:21361 - 70; http://dx.doi.org/10.1074/jbc.M110261200; PMID: 11934881
  • Escaffit F, Boudreau F, Beaulieu JF. Differential expression of claudin-2 along the human intestine: Implication of GATA-4 in the maintenance of claudin-2 in differentiating cells. J Cell Physiol 2005; 203:15 - 26; http://dx.doi.org/10.1002/jcp.20189; PMID: 15389642
  • Lei Z, Maeda T, Tamura A, Nakamura T, Yamazaki Y, Shiratori H, et al. EpCAM contributes to formation of functional tight junction in the intestinal epithelium by recruiting claudin proteins. Dev Biol 2012; 371:136 - 45; http://dx.doi.org/10.1016/j.ydbio.2012.07.005; PMID: 22819673
  • Moeser AJ, Nighot PK, Ryan KA, Simpson JE, Clarke LL, Blikslager AT. Mice lacking the Na+/H+ exchanger 2 have impaired recovery of intestinal barrier function. Am J Physiol Gastrointest Liver Physiol 2008; 295:G791 - 7; http://dx.doi.org/10.1152/ajpgi.00538.2007; PMID: 18719001
  • Pan W, Borovac J, Spicer Z, Hoenderop JG, Bindels RJ, Shull GE, et al. The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium (re)absorption. Am J Physiol Renal Physiol 2012; 302:F943 - 56; http://dx.doi.org/10.1152/ajprenal.00504.2010; PMID: 21937605
  • Zhang W, Xu Y, Chen Z, Xu Z, Xu H. Knockdown of aquaporin 3 is involved in intestinal barrier integrity impairment. FEBS Lett 2011; 585:3113 - 9; http://dx.doi.org/10.1016/j.febslet.2011.08.045; PMID: 21907710
  • McCole DF. Regulation of epithelial barrier function by the inflammatory bowel disease candidate gene, PTPN2. Ann N Y Acad Sci 2012; 1257:108 - 14; http://dx.doi.org/10.1111/j.1749-6632.2012.06522.x; PMID: 22671596
  • Gibson DL, Ma C, Rosenberger CM, Bergstrom KS, Valdez Y, Huang JT, et al. Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cell Microbiol 2008; 10:388 - 403; PMID: 17910742
  • Chen HQ, Yang J, Zhang M, Zhou YK, Shen TY, Chu ZX, et al. Lactobacillus plantarum ameliorates colonic epithelial barrier dysfunction by modulating the apical junctional complex and PepT1 in IL-10 knockout mice. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1287 - 97; http://dx.doi.org/10.1152/ajpgi.00196.2010; PMID: 20884889
  • Zhou W, Cao Q, Peng Y, Zhang QJ, Castrillon DH, DePinho RA, et al. FoxO4 inhibits NF-kappaB and protects mice against colonic injury and inflammation. Gastroenterology 2009; 137:1403 - 14; http://dx.doi.org/10.1053/j.gastro.2009.06.049; PMID: 19560465
  • Han X, Mann E, Gilbert S, Guan Y, Steinbrecher KA, Montrose MH, et al. Loss of guanylyl cyclase C (GCC) signaling leads to dysfunctional intestinal barrier. PLoS One 2011; 6:e16139; http://dx.doi.org/10.1371/journal.pone.0016139; PMID: 21305056
  • Lin JE, Snook AE, Li P, Stoecker BA, Kim GW, Magee MS, et al. GUCY2C opposes systemic genotoxic tumorigenesis by regulating AKT-dependent intestinal barrier integrity. PLoS One 2012; 7:e31686; http://dx.doi.org/10.1371/journal.pone.0031686; PMID: 22384056
  • Banan A, Zhang LJ, Shaikh M, Fields JZ, Choudhary S, Forsyth CB, et al. theta Isoform of protein kinase C alters barrier function in intestinal epithelium through modulation of distinct claudin isotypes: a novel mechanism for regulation of permeability. J Pharmacol Exp Ther 2005; 313:962 - 82; http://dx.doi.org/10.1124/jpet.105.083428; PMID: 15900076
  • Allaire JM, Darsigny M, Marcoux SS, Roy SA, Schmouth JF, Umans L, et al. Loss of Smad5 leads to the disassembly of the apical junctional complex and increased susceptibility to experimental colitis. Am J Physiol Gastrointest Liver Physiol 2011; 300:G586 - 97; http://dx.doi.org/10.1152/ajpgi.00041.2010; PMID: 21212325
  • Scharl M, Paul G, Weber A, Jung BC, Docherty MJ, Hausmann M, et al. Protection of epithelial barrier function by the Crohn’s disease associated gene protein tyrosine phosphatase n2. Gastroenterology 2009; 137:2030 - 40, e5; http://dx.doi.org/10.1053/j.gastro.2009.07.078; PMID: 19818778
  • Langlois MJ, Bergeron S, Bernatchez G, Boudreau F, Saucier C, Perreault N, et al. The PTEN phosphatase controls intestinal epithelial cell polarity and barrier function: role in colorectal cancer progression. PLoS One 2010; 5:e15742; http://dx.doi.org/10.1371/journal.pone.0015742; PMID: 21203412
  • Petit CS, Barreau F, Besnier L, Gandille P, Riveau B, Chateau D, et al. Requirement of cellular prion protein for intestinal barrier function and mislocalization in patients with inflammatory bowel disease. Gastroenterology 2012; 143:122 - , e15; http://dx.doi.org/10.1053/j.gastro.2012.03.029; PMID: 22446194
  • Vetrano S, Ploplis VA, Sala E, Sandoval-Cooper M, Donahue DL, Correale C, et al. Unexpected role of anticoagulant protein C in controlling epithelial barrier integrity and intestinal inflammation. Proc Natl Acad Sci U S A 2011; 108:19830 - 5; http://dx.doi.org/10.1073/pnas.1107140108; PMID: 22109555
  • Fredenburgh LE, Velandia MM, Ma J, Olszak T, Cernadas M, Englert JA, et al. Cyclooxygenase-2 deficiency leads to intestinal barrier dysfunction and increased mortality during polymicrobial sepsis. J Immunol 2011; 187:5255 - 67; http://dx.doi.org/10.4049/jimmunol.1101186; PMID: 21967897
  • Lu P, Burger-van Paassen N, van der Sluis M, Witte-Bouma J, Kerckaert JP, van Goudoever JB, et al. Colonic gene expression patterns of mucin Muc2 knockout mice reveal various phases in colitis development. Inflamm Bowel Dis 2011; 17:2047 - 57; http://dx.doi.org/10.1002/ibd.21592; PMID: 21910166
  • Schlegel N, Meir M, Heupel WM, Holthöfer B, Leube RE, Waschke J. Desmoglein 2-mediated adhesion is required for intestinal epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 2010; 298:G774 - 83; http://dx.doi.org/10.1152/ajpgi.00239.2009; PMID: 20224006
  • Buzza MS, Netzel-Arnett S, Shea-Donohue T, Zhao A, Lin CY, List K, et al. Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine. Proc Natl Acad Sci U S A 2010; 107:4200 - 5; http://dx.doi.org/10.1073/pnas.0903923107; PMID: 20142489
  • Morita H, Katsuno T, Hoshimoto A, Hirano N, Saito Y, Suzuki Y. Connexin 26-mediated gap junctional intercellular communication suppresses paracellular permeability of human intestinal epithelial cell monolayers. Exp Cell Res 2004; 298:1 - 8; http://dx.doi.org/10.1016/j.yexcr.2004.03.046; PMID: 15242756
  • Netzel-Arnett S, Buzza MS, Shea-Donohue T, Désilets A, Leduc R, Fasano A, et al. Matriptase protects against experimental colitis and promotes intestinal barrier recovery. Inflamm Bowel Dis 2012; 18:1303 - 14; http://dx.doi.org/10.1002/ibd.21930; PMID: 22081509
  • Laukoetter MG, Nava P, Lee WY, Severson EA, Capaldo CT, Babbin BA, et al. JAM-A regulates permeability and inflammation in the intestine in vivo. J Exp Med 2007; 204:3067 - 76; http://dx.doi.org/10.1084/jem.20071416; PMID: 18039951
  • Hossain Z, Hirata T. Molecular mechanism of intestinal permeability: interaction at tight junctions. Mol Biosyst 2008; 4:1181 - 5; http://dx.doi.org/10.1039/b800402a; PMID: 19396381
  • Ivanov AI, Nusrat A, Parkos CA. The epithelium in inflammatory bowel disease: potential role of endocytosis of junctional proteins in barrier disruption. Novartis Foundation symposium 2004; 263:115-24; discussion 24-32, 211-8.
  • Kucharzik T, Walsh SV, Chen J, Parkos CA, Nusrat A. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol 2001; 159:2001 - 9; http://dx.doi.org/10.1016/S0002-9440(10)63051-9; PMID: 11733350
  • Prasad S, Mingrino R, Kaukinen K, Hayes KL, Powell RM, MacDonald TT, et al. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest 2005; 85:1139 - 62; http://dx.doi.org/10.1038/labinvest.3700316; PMID: 16007110
  • Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 2007; 56:61 - 72; http://dx.doi.org/10.1136/gut.2006.094375; PMID: 16822808
  • Bürgel N, Bojarski C, Mankertz J, Zeitz M, Fromm M, Schulzke JD. Mechanisms of diarrhea in collagenous colitis. Gastroenterology 2002; 123:433 - 43; http://dx.doi.org/10.1053/gast.2002.34784; PMID: 12145796
  • Amasheh S, Dullat S, Fromm M, Schulzke JD, Buhr HJ, Kroesen AJ. Inflamed pouch mucosa possesses altered tight junctions indicating recurrence of inflammatory bowel disease. Int J Colorectal Dis 2009; 24:1149 - 56; http://dx.doi.org/10.1007/s00384-009-0737-8; PMID: 19488769
  • Tang Y, Clayburgh DR, Mittal N, Goretsky T, Dirisina R, Zhang Z, et al. Epithelial NF-kappaB enhances transmucosal fluid movement by altering tight junction protein composition after T cell activation. Am J Pathol 2010; 176:158 - 67; http://dx.doi.org/10.2353/ajpath.2010.090548; PMID: 20008138
  • Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 2005; 129:550 - 64; PMID: 16083712
  • Mennigen R, Nolte K, Rijcken E, Utech M, Loeffler B, Senninger N, et al. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1140 - 9; http://dx.doi.org/10.1152/ajpgi.90534.2008; PMID: 19221015
  • Thuijls G, Derikx JP, de Haan JJ, Grootjans J, de Bruïne A, Masclee AA, et al. Urine-based detection of intestinal tight junction loss. J Clin Gastroenterol 2010; 44:e14 - 9; http://dx.doi.org/10.1097/MCG.0b013e31819f5652; PMID: 19525861
  • Suzuki T, Yoshinaga N, Tanabe S. Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem 2011; 286:31263 - 71; http://dx.doi.org/10.1074/jbc.M111.238147; PMID: 21771795
  • Mankertz J, Schulzke JD. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol 2007; 23:379 - 83; http://dx.doi.org/10.1097/MOG.0b013e32816aa392; PMID: 17545772
  • Hering NA, Schulzke JD. Therapeutic options to modulate barrier defects in inflammatory bowel disease. Dig Dis 2009; 27:450 - 4; http://dx.doi.org/10.1159/000233283; PMID: 19897959
  • Rosen MJ, Frey MR, Washington MK, Chaturvedi R, Kuhnhein LA, Matta P, et al. STAT6 activation in ulcerative colitis: a new target for prevention of IL-13-induced colon epithelial cell dysfunction. Inflamm Bowel Dis 2011; 17:2224 - 34; http://dx.doi.org/10.1002/ibd.21628; PMID: 21308881
  • Weber CR, Raleigh DR, Su L, Shen L, Sullivan EA, Wang Y, et al. Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity. J Biol Chem 2010; 285:12037 - 46; http://dx.doi.org/10.1074/jbc.M109.064808; PMID: 20177070
  • Utech M, Brüwer M, Nusrat A. Tight junctions and cell-cell interactions. Methods Mol Biol 2006; 341:185 - 95; PMID: 16799199
  • Schulzke JD, Ploeger S, Amasheh M, Fromm A, Zeissig S, Troeger H, et al. Epithelial tight junctions in intestinal inflammation. Ann N Y Acad Sci 2009; 1165:294 - 300; http://dx.doi.org/10.1111/j.1749-6632.2009.04062.x; PMID: 19538319
  • Das P, Goswami P, Das TK, Nag T, Sreenivas V, Ahuja V, et al. Comparative tight junction protein expressions in colonic Crohn’s disease, ulcerative colitis, and tuberculosis: a new perspective. Virchows Arch 2012; 460:261 - 70; http://dx.doi.org/10.1007/s00428-012-1195-1; PMID: 22297703
  • Poritz LS, Harris LR 3rd, Kelly AA, Koltun WA. Increase in the tight junction protein claudin-1 in intestinal inflammation. Dig Dis Sci 2011; 56:2802 - 9; http://dx.doi.org/10.1007/s10620-011-1688-9; PMID: 21748286
  • Fries W, Muja C, Crisafulli C, Cuzzocrea S, Mazzon E. Dynamics of enterocyte tight junctions: effect of experimental colitis and two different anti-TNF strategies. Am J Physiol Gastrointest Liver Physiol 2008; 294:G938 - 47; http://dx.doi.org/10.1152/ajpgi.00469.2007; PMID: 18258792
  • Li Q, Zhang Q, Zhang M, Wang C, Zhu Z, Li N, et al. Effect of n-3 polyunsaturated fatty acids on membrane microdomain localization of tight junction proteins in experimental colitis. FEBS J 2008; 275:411 - 20; http://dx.doi.org/10.1111/j.1742-4658.2007.06210.x; PMID: 18167140
  • Xia XM, Wang FY, Zhou J, Hu KF, Li SW, Zou BB. CXCR4 antagonist AMD3100 modulates claudin expression and intestinal barrier function in experimental colitis. PLoS One 2011; 6:e27282; http://dx.doi.org/10.1371/journal.pone.0027282; PMID: 22073304
  • Reuter BK, Pizarro TT. Mechanisms of tight junction dysregulation in the SAMP1/YitFc model of Crohn’s disease-like ileitis. Ann N Y Acad Sci 2009; 1165:301 - 7; http://dx.doi.org/10.1111/j.1749-6632.2009.04035.x; PMID: 19538320
  • Sapone A, Lammers KM, Casolaro V, Cammarota M, Giuliano MT, De Rosa M, et al. Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity. BMC Med 2011; 9:23; http://dx.doi.org/10.1186/1741-7015-9-23; PMID: 21392369
  • Szakál DN, Gyorffy H, Arató A, Cseh A, Molnár K, Papp M, et al. Mucosal expression of claudins 2, 3 and 4 in proximal and distal part of duodenum in children with coeliac disease. Virchows Arch 2010; 456:245 - 50; http://dx.doi.org/10.1007/s00428-009-0879-7; PMID: 20143085
  • Schumann M, Günzel D, Buergel N, Richter JF, Troeger H, May C, et al. Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease. Gut 2012; 61:220 - 8; http://dx.doi.org/10.1136/gutjnl-2011-300123; PMID: 21865402
  • Schumann M, Kamel S, Pahlitzsch ML, Lebenheim L, May C, Krauss M, et al. Defective tight junctions in refractory celiac disease. Ann N Y Acad Sci 2012; 1258:43 - 51; http://dx.doi.org/10.1111/j.1749-6632.2012.06565.x; PMID: 22731714
  • Wei J, Hemmings GP. Gene, gut and schizophrenia: the meeting point for the gene-environment interaction in developing schizophrenia. Med Hypotheses 2005; 64:547 - 52; http://dx.doi.org/10.1016/j.mehy.2004.08.011; PMID: 15617864
  • Pizzuti D, Senzolo M, Buda A, Chiarelli S, Giacomelli L, Mazzon E, et al. In vitro model for IgE mediated food allergy. Scand J Gastroenterol 2011; 46:177 - 87; http://dx.doi.org/10.3109/00365521.2010.525716; PMID: 21028948
  • Rimpiläinen R, Vakkala M, Rimpiläinen E, Jensen H, Rimpiläinen J, Erkinaro T, et al. Minimized and conventional cardiopulmonary bypass damage intestinal mucosal integrity. Scand Cardiovasc J 2011; 45:236 - 46; http://dx.doi.org/10.3109/14017431.2011.572996; PMID: 21495910
  • Vaziri ND, Yuan J, Rahimi A, Ni Z, Said H, Subramanian VS. Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation. Nephrol Dial Transplant 2012; 27:2686 - 93; http://dx.doi.org/10.1093/ndt/gfr624; PMID: 22131233
  • Assimakopoulos SF, Tsamandas AC, Tsiaoussis GI, Karatza E, Triantos C, Vagianos CE, et al. Altered intestinal tight junctions’ expression in patients with liver cirrhosis: a pathogenetic mechanism of intestinal hyperpermeability. Eur J Clin Invest 2012; 42:439 - 46; http://dx.doi.org/10.1111/j.1365-2362.2011.02609.x; PMID: 22023490
  • Natoli M, Felsani A, Ferruzza S, Sambuy Y, Canali R, Scarino ML. Mechanisms of defence from Fe(II) toxicity in human intestinal Caco-2 cells. Toxicol In Vitro 2009; 23:1510 - 5; http://dx.doi.org/10.1016/j.tiv.2009.06.016; PMID: 19540330
  • Collins JF. Gene chip analyses reveal differential genetic responses to iron deficiency in rat duodenum and jejunum. Biol Res 2006; 39:25 - 37; PMID: 16629162
  • Suzuki T, Hara H. Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats. Nutr Metab (Lond) 2010; 7:19; http://dx.doi.org/10.1186/1743-7075-7-19; PMID: 20222989
  • Wang N, Yu H, Ma J, Wu W, Zhao D, Shi X, et al. Evidence for tight junction protein disruption in intestinal mucosa of malignant obstructive jaundice patients. Scand J Gastroenterol 2010; 45:191 - 9; http://dx.doi.org/10.3109/00365520903406701; PMID: 20095884
  • Charoenphandhu N, Wongdee K, Tudpor K, Pandaranandaka J, Krishnamra N. Chronic metabolic acidosis upregulated claudin mRNA expression in the duodenal enterocytes of female rats. Life Sci 2007; 80:1729 - 37; http://dx.doi.org/10.1016/j.lfs.2007.01.063; PMID: 17383680
  • Charoenphandhu N, Tudpor K, Pulsook N, Krishnamra N. Chronic metabolic acidosis stimulated transcellular and solvent drag-induced calcium transport in the duodenum of female rats. Am J Physiol Gastrointest Liver Physiol 2006; 291:G446 - 55; http://dx.doi.org/10.1152/ajpgi.00108.2006; PMID: 16675746
  • Thuijls G, de Haan JJ, Derikx JP, Daissormont I, Hadfoune M, Heineman E, et al. Intestinal cytoskeleton degradation precedes tight junction loss following hemorrhagic shock. Shock 2009; 31:164 - 9; http://dx.doi.org/10.1097/SHK.0b013e31817fc310; PMID: 18650780
  • Beutheu Youmba S, Belmonte L, Galas L, Boukhettala N, Bôle-Feysot C, Déchelotte P, et al. Methotrexate modulates tight junctions through NF-κB, MEK, and JNK pathways. J Pediatr Gastroenterol Nutr 2012; 54:463 - 70; http://dx.doi.org/10.1097/MPG.0b013e318247240d; PMID: 22197938
  • Wang H, Zhao JX, Hu N, Ren J, Du M, Zhu MJ. Side-stream smoking reduces intestinal inflammation and increases expression of tight junction proteins. World J Gastroenterol 2012; 18:2180 - 7; http://dx.doi.org/10.3748/wjg.v18.i18.2180; PMID: 22611310
  • Deitch EA. Bacterial translocation or lymphatic drainage of toxic products from the gut: what is important in human beings?. Surgery 2002; 131:241 - 4; http://dx.doi.org/10.1067/msy.2002.116408; PMID: 11894026
  • Magnotti LJ, Deitch EA. Burns, bacterial translocation, gut barrier function, and failure. J Burn Care Rehabil 2005; 26:383 - 91; http://dx.doi.org/10.1097/01.bcr.0000176878.79267.e8; PMID: 16151282
  • Vreemann A, Qu H, Mayer K, Andersen LB, Stefana MI, Wehner S, et al. Cathepsin B release from rodent intestine mucosa due to mechanical injury results in extracellular matrix damage in early post-traumatic phases. Biol Chem 2009; 390:481 - 92; http://dx.doi.org/10.1515/BC.2009.055; PMID: 19335208
  • Li Q, Zhang Q, Wang C, Liu X, Qu L, Gu L, et al. Altered distribution of tight junction proteins after intestinal ischaemia/reperfusion injury in rats. J Cell Mol Med 2009; 13:9B 4061 - 76; http://dx.doi.org/10.1111/j.1582-4934.2009.00975.x; PMID: 19929946
  • Takizawa Y, Kishimoto H, Kitazato T, Tomita M, Hayashi M. Changes in protein and mRNA expression levels of claudin family after mucosal lesion by intestinal ischemia/reperfusion. Int J Pharm 2012; 426:82 - 9; http://dx.doi.org/10.1016/j.ijpharm.2012.01.023; PMID: 22285474
  • Takizawa Y, Kishimoto H, Kitazato T, Tomita M, Hayashi M. Effects of nitric oxide on mucosal barrier dysfunction during early phase of intestinal ischemia/reperfusion. Eur J Pharm Sci 2011; 42:246 - 52; http://dx.doi.org/10.1016/j.ejps.2010.11.016; PMID: 21134443
  • Chen C, Wang P, Su Q, Wang S, Wang F. Myosin light chain kinase mediates intestinal barrier disruption following burn injury. PLoS One 2012; 7:e34946; http://dx.doi.org/10.1371/journal.pone.0034946; PMID: 22529961
  • Li X, Akhtar S, Choudhry MA. Alteration in intestine tight junction protein phosphorylation and apoptosis is associated with increase in IL-18 levels following alcohol intoxication and burn injury. Biochim Biophys Acta 2012; 1822:196 - 203; http://dx.doi.org/10.1016/j.bbadis.2011.09.019; PMID: 22001439
  • Huo Q, Kinugasa T, Wang L, Huang J, Zhao J, Shibaguchi H, et al. Claudin-1 protein is a major factor involved in the tumorigenesis of colorectal cancer. Anticancer Res 2009; 29:851 - 7; PMID: 19414319
  • Aung PP, Mitani Y, Sanada Y, Nakayama H, Matsusaki K, Yasui W. Differential expression of claudin-2 in normal human tissues and gastrointestinal carcinomas. Virchows Arch 2006; 448:428 - 34; http://dx.doi.org/10.1007/s00428-005-0120-2; PMID: 16328347
  • Tatum R, Zhang Y, Salleng K, Lu Z, Lin JJ, Lu Q, et al. Renal salt wasting and chronic dehydration in claudin-7-deficient mice. Am J Physiol Renal Physiol 2010; 298:F24 - 34; http://dx.doi.org/10.1152/ajprenal.00450.2009; PMID: 19759267
  • Mees ST, Mennigen R, Spieker T, Rijcken E, Senninger N, Haier J, et al. Expression of tight and adherens junction proteins in ulcerative colitis associated colorectal carcinoma: upregulation of claudin-1, claudin-3, claudin-4, and beta-catenin. Int J Colorectal Dis 2009; 24:361 - 8; http://dx.doi.org/10.1007/s00384-009-0653-y; PMID: 19184060
  • Darido C, Buchert M, Pannequin J, Bastide P, Zalzali H, Mantamadiotis T, et al. Defective claudin-7 regulation by Tcf-4 and Sox-9 disrupts the polarity and increases the tumorigenicity of colorectal cancer cells. Cancer Res 2008; 68:4258 - 68; http://dx.doi.org/10.1158/0008-5472.CAN-07-5805; PMID: 18519685
  • Galamb O, Spisák S, Sipos F, Tóth K, Solymosi N, Wichmann B, et al. Reversal of gene expression changes in the colorectal normal-adenoma pathway by NS398 selective COX2 inhibitor. Br J Cancer 2010; 102:765 - 73; http://dx.doi.org/10.1038/sj.bjc.6605515; PMID: 20087348
  • Derikx JP, van Waardenburg DA, Thuijls G, Willigers HM, Koenraads M, van Bijnen AA, et al. New Insight in Loss of Gut Barrier during Major Non-Abdominal Surgery. PLoS One 2008; 3:e3954; http://dx.doi.org/10.1371/journal.pone.0003954; PMID: 19088854
  • Wilmore DW, Smith RJ, O’Dwyer ST, Jacobs DO, Ziegler TR, Wang XD. The gut: a central organ after surgical stress. Surgery 1988; 104:917 - 23; PMID: 3055397
  • Leaphart CL, Tepas JJ 3rd. The gut is a motor of organ system dysfunction. Surgery 2007; 141:563 - 9; http://dx.doi.org/10.1016/j.surg.2007.01.021; PMID: 17462455
  • Zhang Q, Li Q, Wang C, Li N, Li J. Redistribution of tight junction proteins during EPEC infection in vivo. Inflammation 2012; 35:23 - 32; http://dx.doi.org/10.1007/s10753-010-9285-1; PMID: 21170673
  • Liu Z, Ma Y, Yang J, Zhang P, Moyer MP, Qin H. Expression of the Lactobacillus plantarum surface layer MIMP protein protected NCM460 epithelial cells from enteroinvasive Escherichia coli infection. Cell Physiol Biochem 2011; 27:99 - 108; PMID: 21325827
  • Muza-Moons MM, Schneeberger EE, Hecht GA. Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cell Microbiol 2004; 6:783 - 93; http://dx.doi.org/10.1111/j.1462-5822.2004.00404.x; PMID: 15236645
  • Strauman MC, Harper JM, Harrington SM, Boll EJ, Nataro JP. Enteroaggregative Escherichia coli disrupts epithelial cell tight junctions. Infect Immun 2010; 78:4958 - 64; http://dx.doi.org/10.1128/IAI.00580-10; PMID: 20823198
  • Roxas JL, Koutsouris A, Bellmeyer A, Tesfay S, Royan S, Falzari K, et al. Enterohemorrhagic E. coli alters murine intestinal epithelial tight junction protein expression and barrier function in a Shiga toxin independent manner. Lab Invest 2010; 90:1152 - 68; http://dx.doi.org/10.1038/labinvest.2010.91; PMID: 20479715
  • Hering NA, Richter JF, Krug SM, Günzel D, Fromm A, Bohn E, et al. Yersinia enterocolitica induces epithelial barrier dysfunction through regional tight junction changes in colonic HT-29/B6 cell monolayers. Lab Invest 2011; 91:310 - 24; http://dx.doi.org/10.1038/labinvest.2010.180; PMID: 20956974
  • Nusrat A, Parkos CA, Verkade P, Foley CS, Liang TW, Innis-Whitehouse W, et al. Tight junctions are membrane microdomains. J Cell Sci 2000; 113:1771 - 81; PMID: 10769208
  • Chen ML, Ge Z, Fox JG, Schauer DB. Disruption of tight junctions and induction of proinflammatory cytokine responses in colonic epithelial cells by Campylobacter jejuni. Infect Immun 2006; 74:6581 - 9; http://dx.doi.org/10.1128/IAI.00958-06; PMID: 17015453
  • Nielsen HL, Nielsen H, Ejlertsen T, Engberg J, Günzel D, Zeitz M, et al. Oral and fecal Campylobacter concisus strains perturb barrier function by apoptosis induction in HT-29/B6 intestinal epithelial cells. PLoS One 2011; 6:e23858; http://dx.doi.org/10.1371/journal.pone.0023858; PMID: 21887334
  • Humen MA, Pérez PF, Liévin-Le Moal V. Lipid raft-dependent adhesion of Giardia intestinalis trophozoites to a cultured human enterocyte-like Caco-2/TC7 cell monolayer leads to cytoskeleton-dependent functional injuries. Cell Microbiol 2011; 13:1683 - 702; http://dx.doi.org/10.1111/j.1462-5822.2011.01647.x; PMID: 21790940
  • Lejeune M, Moreau F, Chadee K. Prostaglandin E2 produced by Entamoeba histolytica signals via EP4 receptor and alters claudin-4 to increase ion permeability of tight junctions. Am J Pathol 2011; 179:807 - 18; http://dx.doi.org/10.1016/j.ajpath.2011.05.001; PMID: 21683675
  • Khailova L, Dvorak K, Arganbright KM, Halpern MD, Kinouchi T, Yajima M, et al. Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2009; 297:G940 - 9; http://dx.doi.org/10.1152/ajpgi.00141.2009; PMID: 20501441
  • Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J, et al. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1025 - 34; http://dx.doi.org/10.1152/ajpgi.90227.2008; PMID: 18787064
  • Zhou Y, Qin H, Zhang M, Shen T, Chen H, Ma Y, et al. Lactobacillus plantarum inhibits intestinal epithelial barrier dysfunction induced by unconjugated bilirubin. Br J Nutr 2010; 104:390 - 401; http://dx.doi.org/10.1017/S0007114510000474; PMID: 20412608
  • Qin H, Zhang Z, Hang X, Jiang YL. L. plantarum prevents enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells. BMC Microbiol 2009; 9:63; http://dx.doi.org/10.1186/1471-2180-9-63; PMID: 19331693
  • Köhler H, Sakaguchi T, Hurley BP, Kase BA, Reinecker HC, McCormick BA. Salmonella enterica serovar Typhimurium regulates intercellular junction proteins and facilitates transepithelial neutrophil and bacterial passage. Am J Physiol Gastrointest Liver Physiol 2007; 293:G178 - 87; http://dx.doi.org/10.1152/ajpgi.00535.2006; PMID: 17615177
  • Troeger H, Epple HJ, Schneider T, Wahnschaffe U, Ullrich R, Burchard GD, et al. Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut 2007; 56:328 - 35; http://dx.doi.org/10.1136/gut.2006.100198; PMID: 16935925
  • Sakaguchi T, Köhler H, Gu X, McCormick BA, Reinecker HC. Shigella flexneri regulates tight junction-associated proteins in human intestinal epithelial cells. Cell Microbiol 2002; 4:367 - 81; http://dx.doi.org/10.1046/j.1462-5822.2002.00197.x; PMID: 12067320
  • Li Q, Zhang Q, Wang C, Liu X, Li N, Li J. Disruption of tight junctions during polymicrobial sepsis in vivo. J Pathol 2009; 218:210 - 21; http://dx.doi.org/10.1002/path.2525; PMID: 19235836
  • Zhang Y, Li J. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-κβ and myosin light-chain kinase pathways. Biochem Biophys Res Commun 2012; 428:321 - 6; http://dx.doi.org/10.1016/j.bbrc.2012.10.056; PMID: 23098909
  • Dickman KG, Hempson SJ, Anderson J, Lippe S, Zhao L, Burakoff R, et al. Rotavirus alters paracellular permeability and energy metabolism in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 2000; 279:G757 - 66; PMID: 11005763
  • Troeger H, Loddenkemper C, Schneider T, Schreier E, Epple HJ, Zeitz M, et al. Structural and functional changes of the duodenum in human norovirus infection. Gut 2009; 58:1070 - 7; http://dx.doi.org/10.1136/gut.2008.160150; PMID: 19036950
  • Epple HJ, Schneider T, Troeger H, Kunkel D, Allers K, Moos V, et al. Impairment of the intestinal barrier is evident in untreated but absent in suppressively treated HIV-infected patients. Gut 2009; 58:220 - 7; http://dx.doi.org/10.1136/gut.2008.150425; PMID: 18936106
  • Xu LF, Teng X, Guo J, Sun M. Protective effect of intestinal trefoil factor on injury of intestinal epithelial tight junction induced by platelet activating factor. Inflammation 2012; 35:308 - 15; http://dx.doi.org/10.1007/s10753-011-9320-x; PMID: 21452036
  • McLaughlin J, Padfield PJ, Burt JP, O’Neill CA. Ochratoxin A increases permeability through tight junctions by removal of specific claudin isoforms. Am J Physiol Cell Physiol 2004; 287:C1412 - 7; http://dx.doi.org/10.1152/ajpcell.00007.2004; PMID: 15229101
  • Diesing AK, Nossol C, Dänicke S, Walk N, Post A, Kahlert S, et al. Vulnerability of polarised intestinal porcine epithelial cells to mycotoxin deoxynivalenol depends on the route of application. PLoS One 2011; 6:e17472; http://dx.doi.org/10.1371/journal.pone.0017472; PMID: 21364771
  • Pinton P, Braicu C, Nougayrede JP, Laffitte J, Taranu I, Oswald IP. Deoxynivalenol impairs porcine intestinal barrier function and decreases the protein expression of claudin-4 through a mitogen-activated protein kinase-dependent mechanism. J Nutr 2010; 140:1956 - 62; http://dx.doi.org/10.3945/jn.110.123919; PMID: 20861219
  • De Walle JV, Sergent T, Piront N, Toussaint O, Schneider YJ, Larondelle Y. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis. Toxicol Appl Pharmacol 2010; 245:291 - 8; http://dx.doi.org/10.1016/j.taap.2010.03.012; PMID: 20362602
  • Nakao T, Kurita N, Komatsu M, Yoshikawa K, Iwata T, Utusnomiya T, et al. Irinotecan injures tight junction and causes bacterial translocation in rat. J Surg Res 2012; 173:341 - 7; http://dx.doi.org/10.1016/j.jss.2010.10.003; PMID: 21176921
  • Alhamoruni A, Lee AC, Wright KL, Larvin M, O’Sullivan SE. Pharmacological effects of cannabinoids on the Caco-2 cell culture model of intestinal permeability. J Pharmacol Exp Ther 2010; 335:92 - 102; http://dx.doi.org/10.1124/jpet.110.168237; PMID: 20592049
  • McCall IC, Betanzos A, Weber DA, Nava P, Miller GW, Parkos CA. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization. Toxicol Appl Pharmacol 2009; 241:61 - 70; http://dx.doi.org/10.1016/j.taap.2009.08.002; PMID: 19679145
  • Charoenphandhu N, Nakkrasae LI, Kraidith K, Teerapornpuntakit J, Thongchote K, Thongon N, et al. Two-step stimulation of intestinal Ca(2+) absorption during lactation by long-term prolactin exposure and suckling-induced prolactin surge. Am J Physiol Endocrinol Metab 2009; 297:E609 - 19; http://dx.doi.org/10.1152/ajpendo.00347.2009; PMID: 19567804
  • Teerapornpuntakit J, Wongdee K, Thongbunchoo J, Krishnamra N, Charoenphandhu N. Proliferation and mRNA expression of absorptive villous cell markers and mineral transporters in prolactin-exposed IEC-6 intestinal crypt cells. Cell Biochem Funct 2012; 30:320 - 7; http://dx.doi.org/10.1002/cbf.2807; PMID: 22281785
  • Nagumo Y, Han J, Bellila A, Isoda H, Tanaka T. Cofilin mediates tight-junction opening by redistributing actin and tight-junction proteins. Biochem Biophys Res Commun 2008; 377:921 - 5; http://dx.doi.org/10.1016/j.bbrc.2008.10.071; PMID: 18952063
  • Pannequin J, Delaunay N, Darido C, Maurice T, Crespy P, Frohman MA, et al. Phosphatidylethanol accumulation promotes intestinal hyperplasia by inducing ZONAB-mediated cell density increase in response to chronic ethanol exposure. Mol Cancer Res 2007; 5:1147 - 57; http://dx.doi.org/10.1158/1541-7786.MCR-07-0198; PMID: 18025260
  • Oshima T, Sasaki M, Kataoka H, Miwa H, Takeuchi T, Joh T. Wip1 protects hydrogen peroxide-induced colonic epithelial barrier dysfunction. Cell Mol Life Sci 2007; 64:3139 - 47; http://dx.doi.org/10.1007/s00018-007-7268-7; PMID: 17965834
  • Wisner DM, Harris LR 3rd, Green CL, Poritz LS. Opposing regulation of the tight junction protein claudin-2 by interferon-gamma and interleukin-4. J Surg Res 2008; 144:1 - 7; http://dx.doi.org/10.1016/j.jss.2007.03.059; PMID: 17640674
  • Sander GR, Cummins AG, Henshall T, Powell BC. Rapid disruption of intestinal barrier function by gliadin involves altered expression of apical junctional proteins. FEBS Lett 2005; 579:4851 - 5; http://dx.doi.org/10.1016/j.febslet.2005.07.066; PMID: 16099460
  • Yeh TH, Hsu LW, Tseng MT, Lee PL, Sonjae K, Ho YC, et al. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 2011; 32:6164 - 73; PMID: 21641031
  • Uskoković V, Lee PP, Walsh LA, Fischer KE, Desai TA. PEGylated silicon nanowire coated silica microparticles for drug delivery across intestinal epithelium. Biomaterials 2012; 33:1663 - 72; http://dx.doi.org/10.1016/j.biomaterials.2011.11.010; PMID: 22116000
  • Kutuzova GD, Deluca HF. Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D(3) stimulated calcium absorption and clarify its immunomodulatory properties. Arch Biochem Biophys 2004; 432:152 - 66; http://dx.doi.org/10.1016/j.abb.2004.09.004; PMID: 15542054
  • Menez C, Buyse M, Chacun H, Farinotti R, Barratt G. Modulation of intestinal barrier properties by miltefosine. Biochem Pharmacol 2006; 71:486 - 96; http://dx.doi.org/10.1016/j.bcp.2005.11.008; PMID: 16337152
  • Li N, Neu J. Glutamine deprivation alters intestinal tight junctions via a PI3-K/Akt mediated pathway in Caco-2 cells. J Nutr 2009; 139:710 - 4; http://dx.doi.org/10.3945/jn.108.101485; PMID: 19211824
  • Shrestha A, McClane BA. Human claudin-8 and -14 are receptors capable of conveying the cytotoxic effects of Clostridium perfringens enterotoxin. MBio 2013; 4; http://dx.doi.org/10.1128/mBio.00594-12; PMID: 23322640
  • Uchida H, Kondoh M, Hanada T, Takahashi A, Hamakubo T, Yagi K. A claudin-4 modulator enhances the mucosal absorption of a biologically active peptide. Biochem Pharmacol 2010; 79:1437 - 44; http://dx.doi.org/10.1016/j.bcp.2010.01.010; PMID: 20096266
  • Matsuhisa K, Kondoh M, Suzuki H, Yagi K. Comparison of mucosal absorption-enhancing activity between a claudin-3/-4 binder and a broadly specific claudin binder. Biochem Biophys Res Commun 2012; 423:229 - 33; http://dx.doi.org/10.1016/j.bbrc.2012.05.060; PMID: 22659740
  • Smedley JG 3rd, Saputo J, Parker JC, Fernandez-Miyakawa ME, Robertson SL, McClane BA, et al. Noncytotoxic Clostridium perfringens enterotoxin (CPE) variants localize CPE intestinal binding and demonstrate a relationship between CPE-induced cytotoxicity and enterotoxicity. Infect Immun 2008; 76:3793 - 800; http://dx.doi.org/10.1128/IAI.00460-08; PMID: 18505809
  • Katahira J, Sugiyama H, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N. Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo. J Biol Chem 1997; 272:26652 - 8; http://dx.doi.org/10.1074/jbc.272.42.26652; PMID: 9334247
  • Katahira J, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N. Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J Cell Biol 1997; 136:1239 - 47; http://dx.doi.org/10.1083/jcb.136.6.1239; PMID: 9087440
  • Takahashi A, Komiya E, Kakutani H, Yoshida T, Fujii M, Horiguchi Y, et al. Domain mapping of a claudin-4 modulator, the C-terminal region of C-terminal fragment of Clostridium perfringens enterotoxin, by site-directed mutagenesis. Biochem Pharmacol 2008; 75:1639 - 48; http://dx.doi.org/10.1016/j.bcp.2007.12.016; PMID: 18342294
  • Ebihara C, Kondoh M, Harada M, Fujii M, Mizuguchi H, Tsunoda S, et al. Role of Tyr306 in the C-terminal fragment of Clostridium perfringens enterotoxin for modulation of tight junction. Biochem Pharmacol 2007; 73:824 - 30; http://dx.doi.org/10.1016/j.bcp.2006.11.013; PMID: 17169334
  • Takahashi A, Kondoh M, Uchida H, Kakamu Y, Hamakubo T, Yagi K. Mutated C-terminal fragments of Clostridium perfringens enterotoxin have increased affinity to claudin-4 and reversibly modulate tight junctions in vitro. Biochem Biophys Res Commun 2011; 410:466 - 70; http://dx.doi.org/10.1016/j.bbrc.2011.05.161; PMID: 21672529
  • Shi Y, Bao CH, Wu HG, Ma XP, Yu LQ, Zhang R, et al. [Effect of moxibustion on colonic TNF-alpha content and influence of colonic supernatant of crohn’s disease rats undergoing moxibustion on expression of occludin, claudin-1 and zonula occludens-1 proteins and genes in cultured colonic epithelial cells]. Zhen Ci Yan Jiu 2011; 36:235 - 41; PMID: 21942174
  • Liu Y, Chen F, Odle J, Lin X, Jacobi SK, Zhu H, et al. Fish oil enhances intestinal integrity and inhibits TLR4 and NOD2 signaling pathways in weaned pigs after LPS challenge. J Nutr 2012; 142:2017 - 24; http://dx.doi.org/10.3945/jn.112.164947; PMID: 23014495
  • Corridoni D, Pastorelli L, Mattioli B, Locovei S, Ishikawa D, Arseneau KO, et al. Probiotic bacteria regulate intestinal epithelial permeability in experimental ileitis by a TNF-dependent mechanism. PLoS One 2012; 7:e42067; http://dx.doi.org/10.1371/journal.pone.0042067; PMID: 22848704
  • Plöger S, Stumpff F, Penner GB, Schulzke JD, Gäbel G, Martens H, et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci 2012; 1258:52 - 9; http://dx.doi.org/10.1111/j.1749-6632.2012.06553.x; PMID: 22731715
  • Rentea RM, Liedel JL, Welak SR, Cassidy LD, Mayer AN, Pritchard KA Jr., et al. Intestinal alkaline phosphatase administration in newborns is protective of gut barrier function in a neonatal necrotizing enterocolitis rat model. J Pediatr Surg 2012; 47:1135 - 42; http://dx.doi.org/10.1016/j.jpedsurg.2012.03.018; PMID: 22703783
  • Bao CH, Wu LY, Shi Y, Wu HG, Liu HR, Zhang R, et al. Moxibustion down-regulates colonic epithelial cell apoptosis and repairs tight junctions in rats with Crohn’s disease. World J Gastroenterol 2011; 17:4960 - 70; http://dx.doi.org/10.3748/wjg.v17.i45.4960; PMID: 22174545
  • Moran GW, O’Neill C, McLaughlin JT. GLP-2 enhances barrier formation and attenuates TNFα-induced changes in a Caco-2 cell model of the intestinal barrier. Regul Pept 2012; 178:95 - 101; http://dx.doi.org/10.1016/j.regpep.2012.07.002; PMID: 22809889
  • Hering NA, Andres S, Fromm A, van Tol EA, Amasheh M, Mankertz J, et al. Transforming growth factor-β, a whey protein component, strengthens the intestinal barrier by upregulating claudin-4 in HT-29/B6 cells. J Nutr 2011; 141:783 - 9; http://dx.doi.org/10.3945/jn.110.137588; PMID: 21430244
  • McGilligan VE, Wallace JM, Heavey PM, Ridley DL, Rowland IR. The effect of nicotine in vitro on the integrity of tight junctions in Caco-2 cell monolayers. Food Chem Toxicol 2007; 45:1593 - 8; http://dx.doi.org/10.1016/j.fct.2007.02.021; PMID: 17399881
  • Suzuki T, Tanabe S, Hara H. Kaempferol enhances intestinal barrier function through the cytoskeletal association and expression of tight junction proteins in Caco-2 cells. J Nutr 2011; 141:87 - 94; http://dx.doi.org/10.3945/jn.110.125633; PMID: 21068182
  • Amasheh M, Schlichter S, Amasheh S, Mankertz J, Zeitz M, Fromm M, et al. Quercetin enhances epithelial barrier function and increases claudin-4 expression in Caco-2 cells. J Nutr 2008; 138:1067 - 73; PMID: 18492835
  • Ramalingam A, Wang X, Gabello M, Valenzano MC, Soler AP, Ko A, et al. Dietary methionine restriction improves colon tight junction barrier function and alters claudin expression pattern. Am J Physiol Cell Physiol 2010; 299:C1028 - 35; http://dx.doi.org/10.1152/ajpcell.00482.2009; PMID: 20739626
  • Nishiyama R, Sakaguchi T, Kinugasa T, Gu X, MacDermott RP, Podolsky DK, et al. Interleukin-2 receptor beta subunit-dependent and -independent regulation of intestinal epithelial tight junctions. J Biol Chem 2001; 276:35571 - 80; http://dx.doi.org/10.1074/jbc.M106013200; PMID: 11466322
  • Kinugasa T, Sakaguchi T, Gu X, Reinecker HC. Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology 2000; 118:1001 - 11; http://dx.doi.org/10.1016/S0016-5085(00)70351-9; PMID: 10833473