854
Views
12
CrossRef citations to date
0
Altmetric
Research Paper

Influence of translation factor activities on start site selection in six different mRNAs

, , &
Article: e24419 | Received 11 Jan 2013, Accepted 22 Mar 2013, Published online: 01 Apr 2013

References

  • Kozak M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 1987; 196:947 - 50; http://dx.doi.org/10.1016/0022-2836(87)90418-9; PMID: 3681984
  • Kozak M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol Cell Biol 1989; 9:5134 - 42; PMID: 2601712
  • Kozak M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc Natl Acad Sci U S A 1990; 87:8301 - 5; http://dx.doi.org/10.1073/pnas.87.21.8301; PMID: 2236042
  • Castilho-Valavicius B, Yoon H, Donahue TF. Genetic characterization of the Saccharomyces cerevisiae translational initiation suppressors sui1, sui2 and SUI3 and their effects on HIS4 expression. Genetics 1990; 124:483 - 95; PMID: 2179049
  • Yoon HJ, Donahue TF. The suil suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNA(iMet) recognition of the start codon. Mol Cell Biol 1992; 12:248 - 60; PMID: 1729602
  • Huang HK, Yoon H, Hannig EM, Donahue TF. GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae. Genes Dev 1997; 11:2396 - 413; http://dx.doi.org/10.1101/gad.11.18.2396; PMID: 9308967
  • Fletcher CM, Pestova TV, Hellen CU, Wagner G. Structure and interactions of the translation initiation factor eIF1. EMBO J 1999; 18:2631 - 7; http://dx.doi.org/10.1093/emboj/18.9.2631; PMID: 10228174
  • Battiste JL, Pestova TV, Hellen CU, Wagner G. The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol Cell 2000; 5:109 - 19; http://dx.doi.org/10.1016/S1097-2765(00)80407-4; PMID: 10678173
  • Taylor JT, Devkota B, Huang AD, Topf M. Narayanan, E Sali, A Harvey SC Frank J. Comprehensive molecular structure of the eukaryotic ribosome. Cell Structure 2009; 17:1591 - 604; http://dx.doi.org/10.1016/j.str.2009.09.015
  • Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 2011; 331:730 - 6; http://dx.doi.org/10.1126/science.1198308; PMID: 21205638
  • Zheng A, Yamamoto R, Sokabe M, Tanaka I, Yao M. Crystallization and preliminary X-ray crystallographic analysis of eIF5BΔN and the eIF5BΔN-eIF1AΔN complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:730 - 3; http://dx.doi.org/10.1107/S1744309111015910; PMID: 21636924
  • Luna RE, Arthanari H, Hiraishi H, Nanda J, Martin-Marcos P, Markus MA, et al. The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β. Cell Rep 2012; 1:689 - 702; http://dx.doi.org/10.1016/j.celrep.2012.04.007; PMID: 22813744
  • Pestova TV, Borukhov SI, Hellen CU. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 1998; 394:854 - 9; http://dx.doi.org/10.1038/29703; PMID: 9732867
  • Algire MA, Maag D, Lorsch JR. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol Cell 2005; 20:251 - 62; http://dx.doi.org/10.1016/j.molcel.2005.09.008; PMID: 16246727
  • Pisarev AV, Kolupaeva VG, Pisareva VP, Merrick WC, Hellen CU, Pestova TV. Specific functional interactions of nucleotides at key -3 and +4 positions flanking the initiation codon with components of the mammalian 48S translation initiation complex. Genes Dev 2006; 20:624 - 36; http://dx.doi.org/10.1101/gad.1397906; PMID: 16510876
  • Acker MG, Shin BS, Nanda JS, Saini AK, Dever TE, Lorsch JR. Kinetic analysis of late steps of eukaryotic translation initiation. J Mol Biol 2009; 385:491 - 506; http://dx.doi.org/10.1016/j.jmb.2008.10.029; PMID: 18976658
  • Unbehaun A, Borukhov SI, Hellen CU, Pestova TV. Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP. Genes Dev 2004; 18:3078 - 93; http://dx.doi.org/10.1101/gad.1255704; PMID: 15601822
  • Cheung Y-N, Maag D, Mitchell SF, Fekete CA, Algire MA, Takacs JE, et al. Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo.. Genes Dev 2007; 21:1217 - 30; http://dx.doi.org/10.1101/gad.1528307; PMID: 17504939
  • Alone PV, Cao C, Dever TE. Translation initiation factor 2γ mutant alters start codon selection independent of Met-tRNA binding. Mol Cell Biol 2008; 28:6877 - 88; http://dx.doi.org/10.1128/MCB.01147-08; PMID: 18794367
  • Takacs JE, Neary TB, Ingolia NT, Saini AK, Martin-Marcos P, Pelletier J, et al. Identification of compounds that decrease the fidelity of start codon recognition by the eukaryotic translational machinery. RNA 2011; 17:439 - 52; http://dx.doi.org/10.1261/rna.2475211; PMID: 21220547
  • Loughran G, Sachs MS, Atkins JF, Ivanov IP. Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5. Nucleic Acids Res 2012; 40:2898 - 906; http://dx.doi.org/10.1093/nar/gkr1192; PMID: 22156057
  • ElAntak L, Wagner S, Herrmannova A, Karaskova M, Rutkai E. Lukavsky Valasek L. The indispensable N-terminal half of eIF3j/HCR1 cooperates with is structurally conserved binding partner eIF3b/PRT1-RRM and with eIF1A in stringent AUG selection. J Mol Biol 2010; 396:1097 - 116; http://dx.doi.org/10.1016/j.jmb.2009.12.047; PMID: 20060839
  • Martin-Marcos P, Cheung YN, Hinnebusch AG. Functional elements in initiation factors 1, 1A, and 2β discriminate against poor AUG context and non-AUG start codons. Mol Cell Biol 2011; 31:4814 - 31; http://dx.doi.org/10.1128/MCB.05819-11; PMID: 21930786
  • Saini AK, Nanda JS, Lorsch JR, Hinnebusch AG. Regulatory elements in eIF1A control the fidelity of start codon selection by modulating tRNAiMet binding to the ribosome. Genes Dev 2012; 24:97 - 110; http://dx.doi.org/10.1101/gad.1871910
  • Hinnebusch AG. Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol Mol Biol Rev 2011; 75:434 - 67; http://dx.doi.org/10.1128/MMBR.00008-11; PMID: 21885680
  • Asano K, Sachs MS. Translation factor control of ribosome conformation during start codon selection. Genes Dev 2007; 21:1280 - 7; http://dx.doi.org/10.1101/gad.1562707; PMID: 17545463
  • Hinnebusch AG. Dever TE Asano K. Mechanism of translation initiation in the yeast Saccharomyces cerevisiae. In Translational Control in Biology and Medicine (ed. M. B. Mathews, N. Sonenberg and J. H. B. Hershey), Cold Spring Harbor, NY:Cold Spring Harbor Laboratory Press, 2007:225-268.
  • Aitken CE, Lorsch JR. A mechanistic overview of translation initiation in eukaryotes. Nat Struct Mol Biol 2012; 19:568 - 76; http://dx.doi.org/10.1038/nsmb.2303; PMID: 22664984
  • Asano K, Clayton J, Shalev A, Hinnebusch AG. A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev 2000; 14:2534 - 46; http://dx.doi.org/10.1101/gad.831800; PMID: 11018020
  • Merrick WC. Initiation of protein biosynthesis in eukaryotes. Bioc. Mol. Biol. Ed. 2003; 31:378-385.
  • Tahara SM, Dietlin TA, Dever TE, Merrick WC, Worrilow LM. Effect of eukaryotic initiation factor 4F on AUG selection in a bicistronic mRNA. J Biol Chem 1991; 266:3594 - 601; PMID: 1995620
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680 - 5; http://dx.doi.org/10.1038/227680a0; PMID: 5432063
  • Hui DJ, Terenzi F, Merrick WC, Sen GC. Mouse p56 blocks a distinct function of eukaryotic initiation factor 3 in translation initiation. J Biol Chem 2005; 280:3433 - 40; http://dx.doi.org/10.1074/jbc.M406700200; PMID: 15561726
  • Hui DJ, Bhasker CR, Merrick WC, Sen GC. Viral stress-inducible protein p56 inhibits translation by blocking the interaction of eIF3 with the ternary complex eIF2.GTP.Met-tRNAi. J Biol Chem 2003; 278:39477 - 82; http://dx.doi.org/10.1074/jbc.M305038200; PMID: 12885778
  • Yang H-S, Jansen AP, Komar AA, Zheng X, Merrick WC, Costes S, et al. The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol 2003; 23:26 - 37; http://dx.doi.org/10.1128/MCB.23.1.26-37.2003; PMID: 12482958
  • Latorre P, Kolakofsky D, Curran J. Sendai virus Y proteins are initiated by a ribosomal shunt. Mol Cell Biol 1998; 18:5021 - 31; PMID: 9710586
  • Saris CJ, Domen J, Berns A. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J 1991; 10:655 - 64; PMID: 1825810
  • Nanbru C, Lafon I, Audigier S, Gensac MC, Vagner S, Huez G, et al. Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J Biol Chem 1997; 272:32061 - 6; http://dx.doi.org/10.1074/jbc.272.51.32061; PMID: 9405401
  • Byrd MP, Zamora M, Lloyd RE. Translation of eukaryotic translation initiation factor 4GI (eIF4GI) proceeds from multiple mRNAs containing a novel cap-dependent internal ribosome entry site (IRES) that is active during poliovirus infection. J Biol Chem 2005; 280:18610 - 22; http://dx.doi.org/10.1074/jbc.M414014200; PMID: 15755734
  • Adams SL, Safer B, Anderson WF, Merrick WC. Eukaryotic initiation complex formation. Evidence for two distinct pathways. J Biol Chem 1975; 250:9083 - 9; PMID: 1194278
  • Merrick WC. Evidence that a single GTP is used in the formation of 80 S initiation complexes. J Biol Chem 1979; 254:3708 - 11; PMID: 438155
  • Peterson DT, Safer B, Merrick WC. Role of eukaryotic initiation factor 5 in the formation of 80 S initiation complexes. J Biol Chem 1979; 254:7730 - 5; PMID: 468782
  • Ivanov IP, Loughran G, Sachs MS, Atkins JF. Initiation context modulates autoregulation of eukaryotic translation initiation factor 1 (eIF1). Proc Natl Acad Sci U S A 2010; 107:18056 - 60; http://dx.doi.org/10.1073/pnas.1009269107; PMID: 20921384
  • Elfakess R, Sinvani H, Haimov O, Svitkin Y, Sonenberg N, Dikstein R. Unique translation initiation of mRNAs-containing TISU element. Nucleic Acids Res 2011; 39:7598 - 609; http://dx.doi.org/10.1093/nar/gkr484; PMID: 21705780
  • Das S, Ghosh R, Maitra U. Eukaryotic translation initiation factor 5 functions as a GTPase-activating protein. J Biol Chem 2001; 276:6720 - 6; http://dx.doi.org/10.1074/jbc.M008863200; PMID: 11092890
  • Komar AA, Mazumder B. Merrick WC. A new framework for understanding IRES-mediated translation. Gene 2012; 10:75 - 86; http://dx.doi.org/10.1016/j.gene.2012.04.039
  • Raught B. Gingas A-C. Signaling to translation initiation. In Translational Control in Biology and Medicine (ed. M. B. Mathews, N. Sonenberg and J. H. B. Hershey), Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press, 2007:369-400.
  • van der Lugt NMT, Domen J, Verhoeven E, Linders K, van der Gulden H, Allen J, et al. Proviral tagging in E mu-myc transgenic mice lacking the Pim-1 proto-oncogene leads to compensatory activation of Pim-2. EMBO J 1995; 14:2536 - 44; PMID: 7781606
  • Benne R, Brown-Luedi ML, Hershey JW. Purification and characterization of protein synthesis initiation factors eIF-1, eIF-4C, eIF-4D, and eIF-5 from rabbit reticulocytes. J Biol Chem 1978; 253:3070 - 7; PMID: 641055
  • Thomas A, Goumans H, Amesz H, Benne R, Voorma HO. A comparison of the initiation factors of eukaryotic protein synthesis from ribosomes and from the postribosomal supernatant. Eur J Biochem 1979; 98:329 - 37; http://dx.doi.org/10.1111/j.1432-1033.1979.tb13192.x; PMID: 488105
  • Trachsel H, Erni B, Schreier MH, Staehelin T. Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors. J Mol Biol 1977; 116:755 - 67; http://dx.doi.org/10.1016/0022-2836(77)90269-8; PMID: 592399
  • Pestova TV, Lomakin IB, Lee JH, Choi SK, Dever TE, Hellen CU. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 2000; 403:332 - 5; http://dx.doi.org/10.1038/35002118; PMID: 10659855
  • Staehelin T, Erni B, Schreier MH. Purification and characterization of seven initiation factors for mammalian protein synthesis. Methods Enzymol 1979; 60:136 - 65; http://dx.doi.org/10.1016/S0076-6879(79)60013-7; PMID: 459895
  • Safer B, Anderson WF, Merrick WC. Purification and physical properties of homogeneous initiation factor MP from rabbit reticulocytes. J Biol Chem 1975; 250:9067 - 75; PMID: 1194277
  • Merrick WC, Kemper WM, Anderson WF. Purification and characterization of homogeneous initiation factor M2A from rabbit reticulocytes. J Biol Chem 1975; 250:5556 - 62; PMID: 1095581
  • Merrick WC, Anderson WF. Purification and characterization of homogeneous protein synthesis initiation factor M1 from rabbit reticulocytes. J Biol Chem 1975; 250:1197 - 206; PMID: 1112800
  • Kemper WM, Berry KW, Merrick WC. Purification and properties of rabbit reticulocyte initiation factor M2Bα and M2Bβ. J Biol Chem 1976; 251:5551 - 7; PMID: 965377
  • Safer B, Adams SL, Kemper WM, Berry KW, Lloyd M, Merrick WC. Purification and characterization of two initiation factors required for maximal activity of a highly fractionated globin mRNA translation system. Proc Natl Acad Sci U S A 1976; 73:2584 - 8; http://dx.doi.org/10.1073/pnas.73.8.2584; PMID: 1066667
  • Grifo JA, Tahara SM, Leis JP, Morgan MA, Shatkin AJ, Merrick WC. Characterization of eukaryotic initiation factor 4A, a protein involved in ATP-dependent binding of globin mRNA. J Biol Chem 1982; 257:5246 - 52; PMID: 7068683
  • Grifo JA, Tahara SM, Morgan MA, Shatkin AJ, Merrick WC. New initiation factor activity required for globin mRNA translation. J Biol Chem 1983; 258:5804 - 10; PMID: 6853548
  • Merrick WC. Assays for eukaryotic protein synthesis. Methods Enzymol 1979; 60:108 - 23; http://dx.doi.org/10.1016/S0076-6879(79)60011-3; PMID: 459892
  • Merrick WC, Barth-Baus D. Use of reticulocyte lysates for mechanistic studies of eukaryotic translation initiation. Methods Enzymol 2007; 429:1 - 21; http://dx.doi.org/10.1016/S0076-6879(07)29001-9; PMID: 17913616