799
Views
14
CrossRef citations to date
0
Altmetric
Research Paper

Molecular basis of transcription initiation in Archaea

Pages 103-111 | Published online: 01 Sep 2010

References

  • Ebright RH. RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J Mol Biol 2000; 304:687 - 698
  • Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 1999; 98:811 - 824
  • Murakami KS, Masuda S, Campbell EA, Muzzin O, Darst SA. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 2002; 296:1285 - 1290
  • Vassylyev DG, Sekine S, Laptenko O, Lee J, Vassylyeva MN, Borukhov S, et al. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 2002; 417:712 - 719
  • Armache KJ, Kettenberger H, Cramer P. Architecture of initiation-competent 12-subunit RNA polymerase II. PNAS 2003; 100:6964 - 6968
  • Bushnell DA, Westover KD, Davis RE, Kornberg RD. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science 2004; 303:983 - 988
  • Cramer P, Bushnell DA, Kornberg RD. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 2001; 292:1863 - 1876
  • Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 2006; 127:941 - 954
  • Kusser AG, Bertero MG, Naji S, Becker T, Thomm M, Beckman R, et al. Structure of an archaeal RNA polymerase. J Mol Biol 2008; 376:303 - 307
  • Hirata A, Klein BJ, Murakami KS. The X-ray crystal structure of RNA polymerase from Archaea. Nature 2008; 451:851 - 854
  • Korkhin Y, Unligil UM, Littlefield O, Nelson PJ, Stuart DI, Sigler PB, et al. Evolution of complex RNA polymerases: the complete Archaeal RNA polymerase structure. PLoS Biology 2009; 7:1000102
  • deHaseth PL, Zupancic ML, Record MT Jr. RNA polymerase-promoter interactions: the comings and goings of RNA polymerase. J Bacteriol 1998; 180:3019 - 3025
  • Hahn S. Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 2004; 11:394 - 403
  • Taatjes DJ. The human Mediator complex: a versatile, genome-wide regulator of transcription. Trends Biochem Sci 2010; 35:315 - 322
  • Thomas MC, Chiang CM. The general transcription machinery and general cofactors. Crit Rev Biochem Mol 2006; 41:105 - 178
  • Geiduschek EP, Ouhammouch M. Archaeal transcription and its regulators. Mol Microbiol 2005; 56:1397 - 1407
  • Bartlett MS. Determinants of transcription initiation by archaeal RNA polymerase. Curr Opin Microbiol 2005; 8:677 - 684
  • Bell SD. Archaeal transcriptional regulation—variation on a bacterial theme?. Trends Microbiol 2005; 13:262 - 265
  • Tsonis P. Anatomy of gene regulation: A three-dimensional structural analysis, 1 edn 2003; Cambridge Cambridge University Press
  • Chen HT, Hahn S. Mapping the location of TFIIB within the RNA polymerase II transcription preinitiation complex: a model for the structure of the PIC. Cell 2004; 119:169 - 180
  • Chen HT, Warfield L, Hahn S. The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex. Nat Struct Mol Biol 2007; 14:696 - 703
  • Kostrewa D, Zeller ME, Armache KJ, Seizl M, Leike K, Thomm M, et al. RNA-polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 2009; 462:292 - 293
  • Liu X, Bushnell DA, Wang D, Calero G, Kornberg R. Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanism. Science 2010; 327:206 - 209
  • Hirata A, Kanai T, Santangelo TJ, Tajiri M, Reeve JN, Imanaka T, et al. Archaeal RNA polymerase subunits E and F are not required for transcription in vitro, but a Thermococcus kodakarensis mutant lacking subunit F is temperature-sensitive. Mol Microbiol 2008; 70:623 - 633
  • Adrian M, Dubochet J, Lepault J, McDowall AW. Cryo-electron microscopy of viruses. Nature 1984; 308:32 - 36
  • Ludtke SJ, Jakana J, Song JL, Chuang DT, Chiu W. A 11.5 Å single particle reconstruction of GroEL using EMAN. J Mol Biol 2001; 314:253 - 262
  • Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, et al. SPIDER and WEB: processing and visualization of images in 3-D electron microscopy and related fields. J Struct Biol 1995; 116:190 - 199
  • Penczek P, Grassucci RA, Frank J. The ribosome at improved resolution: New techniques for merging and orientation refinement in 3D cryoelectron microscopy of biological particles. Ultramicroscopy 1994; 53:251 - 270
  • Radermacher M, Wagenknecht T, Verschoor A, Frank J. Three-dimensional reconstruction from a singleexposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J Microsc 1987; 146:113 - 116
  • Kostek SA, Grob P, De Carlo S, Lipscomb JS, Garczarek F, Nogales E. Molecular architecture and conformational flexibility of human RNA polymerase II. Structure 2006; 14:1691 - 1700
  • Sousa D, Grigorieff N. Ab initio resolution measurement for single particle structures. J Struct Biol 2007; 157:201 - 210
  • Goddard TD, Huang CC, Ferrin TE. Visualizing density maps with UCSF Chimera. J Struct Biol 2007; 157:281 - 287
  • Navaza J, Lepault J, Rey FA, Alvarez-Rua C, Borge J. On the fitting of model electron densities into EM reconstructions: a reciprocal-space formulation. Acta Cryst 2002; 58:1820 - 1825
  • Castellano E, Oliva G, Navaza J. Fast rigid-body refinement for molecular replacement techniques. J Appl Cryst 1992; 25:281 - 284
  • Darst SA, Kubalek EW, Kornberg RD. Three-dimensional structure of Escherichia coli RNA polymerase holoenzyme determined by electron crystallography. Nature 1989; 340:730 - 732
  • De Carlo S, Carles C, Riva M, Schultz P. Cryo-negative staining reveals conformational flexibility within yeast RNA polymerase I. J Mol Biol 2003; 329:891 - 902
  • Fernéndez-Tornero C, Bottcher B, Riva M, Carles C, Steuerwald U, Ruigrok RW, et al. Insights into transcription initiation and termination from the electron microscopy structure of yeast RNA polymerase III. Mol Cell 2007; 25:813 - 823
  • Qureshi SA, Jackson SP. Sequence-specific DNA binding by the S. shibatae TFIIB homolog, TFB and its effect on promoter strength. Mol Cell 1998; 1:389 - 400
  • Qureshi SA, Bell SD, Jackson SP. Factor requirements for transcription in the Archaeon Sulfolobus shibatae. EMBO J 1997; 16:2927 - 2936
  • Kosa PF, Ghosh G, DeDecker BS, Sigler PB. The 2.1 Å crystal structure of an archaeal pre-initiation complex: TATA-box binding protein/transcription factor (II) B core/TATA-box. PNAS 1997; 94:6042 - 6047
  • Leschziner AE, Nogales E. Visualizing flexibility at molecular resolution: analysis of heterogeneity in single- particle electron microscopy reconstructions. Annu Rev Biophys Biomol Struct 2007; 36:43 - 62
  • Armache KJ, Mitterweger S, Meinhart A, Cramer P. Structures of complete RNA polymerase II and its subcomplex, Rpb4/7. J Biol Chem 2005; 280:7131 - 7134
  • Kornberg RD. The molecular basis of eukaryotic transcription. PNAS 2007; 104:12955 - 12961
  • Bell SD, Jaxel C, Nadal M, Kosa PF, Jackson SP. Temperature, template topology and factor requirements of archaeal transcription. PNAS 1998; 95:15218 - 15222
  • Goede B, Naji S, von Kampen O, Ilg K, Thomm M. Protein-protein interactions in the Archaeal transcriptional machinery: binding studies of isolated RNA polymerase subunits and transcription factors. J Biol Chem 2006; 281:30581 - 30592
  • Magill CP, Jackson SP, Bell SD. Identification of a conserved Archaeal RNA polymerase subunit contacted by the basal transcription factor TFB. J Biol Chem 2001; 276:46693 - 46696
  • Miller G, Hahn S. A DNA-tethered cleavage probe reveals the path for promoter DNA in the yeast preinitiation complex. Nat Struct Mol Biol 2006; 13:603 - 610