1,531
Views
59
CrossRef citations to date
0
Altmetric
Review

Skeletal myogenesis and Myf5 activation

&
Pages 109-114 | Received 15 Mar 2011, Accepted 13 Apr 2011, Published online: 01 May 2011

References

  • Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 1993; 75:1351 - 1359
  • Rawls A, Morris JH, Rudnicki M, Braun T, Arnold HH, Klein WH, et al. Myogenin's functions do not overlap with those of MyoD or Myf-5 during mouse embryogenesis. Dev Biol 1995; 172:37 - 50
  • Braun T, Arnold HH. Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. EMBO J 1995; 14:1176 - 1186
  • Patapoutian A, Yoon JK, Miner JH, Wang S, Stark K, Wold B. Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development 1995; 121:3347 - 3358
  • Zhang W, Behringer RR, Olson EN. Inactivation of the myogenic bHLH gene MRF4 results in upregulation of myogenin and rib anomalies. Genes Dev 1995; 9:1388 - 1399
  • Rawls A, Valdez MR, Zhang W, Richardson J, Klein WH, Olson EN. Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development 1998; 125:2349 - 2358
  • Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V, et al. MRF4 determines skeletal muscle identity in Myf5:Myod double-mutant. Nature 2004; 431:466 - 471
  • Ott MO, Bober E, Lyons G, Arnold H, Buckingham M. Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 1991; 111:1097 - 1107
  • Carvajal JJ, Cox D, Summerbell D, Rigby PW. A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development. Development 2001; 128:1857 - 1868
  • Carvajal JJ, Keith A, Rigby PWJ. Global transcriptional regulation of the locus encoding the skeletal muscle determination genes Mrf4 and Myf5. Genes Dev 2008; 22:265 - 276
  • Haldar M, Karan G, Tvrdik P, Capecchi MR. Two cell lineages, myf5 and myf5-independent, participate in mouse skeletal myogenesis. Dev Cell 2008; 14:437 - 445
  • Gensch N, Borchardt T, Schneider A, Riethmacher D, Braun T. Different autonomous myogenic cell populations revealed by ablation of Myf5-expressing cells during mouse embryogenesis. Development 2008; 135:1597 - 1604
  • Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci USA 2007; 104:4401 - 4406
  • Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454:961 - 967
  • Tajbakhsh S, Vivarelli E, Cusella-de Angelis G, Rocancourt D, Buckingham M, Cossu G. A population of myogenic cells derived from the mouse neural tube. Neuron 1994; 13:813 - 821
  • Tajbakhsh S, Buckingham ME. Lineage restriction of the myogenic conversion factor myf-5 in the brain. Development 1995; 121:4077 - 4083
  • Christ B, Brand-Saberi B, Grim M, Wilting J. Local signalling in dermomyotomal cell type specification. Anat Embryol 1992; 186:505 - 510
  • Borycki AG, Noden DM, Marcucio R, Emerson CP. Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis. Dev Dyn 1999; 216:96 - 112
  • Dequéant ML, Pourquié O. Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet 2008; 9:370 - 382
  • Christ B, Ordahl CP. Early stages of chick somite development. Anat Embryol 1995; 191:381 - 396
  • Kahane N, Cinnamon Y, Kalcheim C. The roles of cell migration and myofiber intercalation in patterning formation of the postmitotic myotome. Development 2002; 129:2675 - 2687
  • Vasyutina E, Birchmeier C. The development of migrating muscle precursor cells. Anat Embryol 2006; 211:37 - 41
  • Mackenzie S, Graham A, Walsh FS. Migration of hypoglossal myoblast precursors. Dev Dyn 1998; 213:349 - 358
  • Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 1997; 89:127 - 138
  • Sassoon D, Lyons G, Wright WE, Lin V, Lassar A, Weintraub H, et al. Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature 1989; 341:303 - 307
  • Bober E, Lyons GE, Braun T, Cossu G, Arnold HH, Buckingham M. The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol 1991; 113:1255 - 1265
  • Tajbakhsh S, Buckingham ME. Mouse limb muscle is determined in the absence of the earliest myogenic factor myf-5. Proc Natl Acad Sci USA 1994; 91:747 - 751
  • Rudnicki MA, Braun T, Hinuma S, Jaenisch R. Inactivation of MyoD in mice leads to upregulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 1992; 71:383 - 390
  • Braun T, Rudnicki MA, Arnold HH, Jaenisch R. Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 1992; 71:369 - 382
  • Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, et al. Muscle deficiency and neonatal death in mice with targeted mutation in the myogenin gene. Nature 1993; 364:501 - 506
  • Venuti JM, Morris JH, Vivian JL, Olson EN, Klein WH. Myogenin is required for late but not early aspects of myogenesis during mouse development. J Cell Biol 1995; 128:563 - 576
  • Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 1993; 364:532 - 535
  • Olson EN, Arnold HH, Rigby PW, Wold BJ. Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 1996; 85:1 - 4
  • Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996; 383:407 - 413
  • Gustafsson MK, Pan H, Pinney DF, Liu Y, Lewandowski A, Epstein DJ, et al. Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev 2002; 16:114 - 126
  • Borycki AG, Brunk B, Tajbakhsh S, Buckingham M, Chiang C, Emerson CP. Sonic hedgehog controls epaxial muscle determination through Myf5 activation. Development 1999; 126:4053 - 4063
  • McDermott A, Gustafsson M, Elsam T, Hui CC, Emerson CP, Borycki AG. Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation. Development 2005; 132:345 - 357
  • Tajbakhsh S, Borello U, Vivarelli E, Kelly R, Papkoff J, Duprez D, et al. Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 1998; 125:4155 - 4162
  • Borello U, Berarducci B, Murphy P, Bajard L, Buffa V, Piccolo S, et al. The Wnt/beta-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development 2006; 133:3723 - 3732
  • Hirsinger E, Duprez D, Jouve C, Malapert P, Cooke J, Pourquie O. Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning. Development 1997; 124:4605 - 4614
  • Amthor H, Christ B, Weil M, Patel K. The importance of timing differentiation during limb muscle development. Curr Biol 1998; 8:642 - 652
  • Grifone R, Demignon J, Giordani J, Niro C, Souil E, Bertin F, et al. Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev Biol 2007; 302:602 - 616
  • Franz T, Kothary R, Surani MAH, Halata Z, Grim M. The Splotch mutation interferes with muscle development in the limbs. Anat Embryol 1993; 198:153 - 160
  • Daston G, Lamar E, Olivier M, Goulding M. Pax-3 is necessary for migration but not differentiation of limb muscle precursors in the mouse. Development 1996; 122:1017 - 1027
  • Tremblay P, Dietrich S, Mericskay M, Schubert FR, Li Z, Paulin D. A crucial role for Pax3 in the development of the hypaxial musculature and the long-range migration of muscle precursors. Development 1998; 203:49 - 61
  • Borycki AG, Li J, Jin F, Emerson CP, Epstein JA. Pax3 functions in cell survival and in pax7 regulation. Development 1999; 126:1665 - 1674
  • Mennerich D, Schafer K, Braun T. Pax-3 is necessary but not sufficient for lbx1 expression in myogenic precursor cells of the limb. Mech Dev 1998; 73:147 - 158
  • Bajard L, Relaix F, Lagha M, Rocancourt D, Daubas P, Buckingham ME. A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb. Genes Dev 2006; 20:2450 - 2464
  • Sato T, Rocancourt D, Marques L, Thorsteinsdóttir S, Buckingham M. A Pax3/Dmrt2/Myf5 regulatory cascade functions at the onset of myogenesis. PLoS Genet 2010; 6:1000897
  • Hu P, Geles KG, Paik JH, DePinho RA, Tjian R. Codependent activators direct myoblast-specific MyoD transcription. Dev Cell 2008; 15:534 - 546
  • Oustanina S, Hause G, Braun T. Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 2004; 23:3430 - 3439
  • Relaix F, Rocancourt D, Mansouri A, Buckingham M. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 2005; 435:948 - 953
  • Laclef C, Hamard G, Demignon J, Souil E, Houbron C, Maire P. Altered myogenesis in Six1-deficient mice. Development 2003; 130:2239 - 2252
  • Grifone R, Demignon J, Houbron C, Souil E, Niro C, Seller M, et al. Six1 and Six4 homeoproteins are required for Pax3 and MRF expression during myogenesis in the mouse embryo. Development 2005; 132:2235 - 2249
  • Giordani J, Bajard L, Demignon J, Daubas P, Buckingham M, Maire P. Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs. Proc Natl Acad Sci USA 2007; 104:11310 - 11315
  • Spitz F, Demignon J, Porteu A, Kahn A, Concordet JP, Daeglen D, et al. Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins throuh MEF3 binding site. Proc Natl Acad Sci USA 1998; 95:14220 - 14225
  • Hadchouel J, Tajbakhsh S, Primig M, Chang TH, Daubas P, Rocancourt D, et al. Modular long-range regulation of Myf5 reveals unexpected heterogeneity between skeletal muscles in the mouse embryo. Development 2000; 127:4455 - 4467
  • Saitoh O, Fujisawa-Sehara A, Nabeshima Y, Periasamy M. Expression of myogenic factors in denervated chicken breast muscle: isolation of the chicken Myf5 gene. Nucleic Acids Res 1993; 21:2503 - 2509
  • Patapoutian A, Miner JH, Lyons GE, Wold B. Isolated sequences from the linked Myf-5 and MRF4 genes drive distinct patterns of muscle-specific expression in transgenic mice. Development 1993; 118:61 - 69
  • Braun T, Bober E, Winter B, Rosenthal N, Arnold HH. Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J 1990; 9:821 - 831
  • Zweigerdt R, Braun T, Arnold HH. Faithful expression of the Myf-5 gene during mouse myogenesis requires distant control regions: a transgene approach using yeast arti cial chromosomes. Dev Biol 1997; 192:172 - 180
  • Hadchouel J, Carvajal JJ, Daubas P, Bajard L, Chang T, Rocancourt D, et al. Analysis of a key regulatory region upstream of the Myf5 gene reveals multiple phases of myogenesis, orchestrated at each site by a combination of elements dispersed throughout the locus. Development 2003; 130:3415 - 3426
  • Summerbell D, Ashby PR, Coutelle O, Cox D, Yee SP, Rigby PWJ. The expression of Myf5 in the developing mouse embryo is controlled by discrete and dispersed enhancers specific for particular populations of skeletal muscle precursors. Development 2000; 127:3745 - 3757
  • Teboul L, Hadchouel J, Daubas P, Summerbell D, Buckingham M, Rigby PWJ. The early epaxial enhancer is essential for the initial expression of the skeletal muscle determination gene Myf5 but not for subsequent, multiple phases of somitic myogenesis. Development 2002; 129:4571 - 4580
  • Zammit PS, Carvajal JJ, Golding JP, Morgan JE, Summerbell D, Zolnerciks J, et al. Myf5 expression in satellite cells and spindles in adult muscle is controlled by separate genetic elements. Dev Biol 2004; 273:454 - 465
  • Buchberger A, Nomokonova N, Arnold HH. Myf5 expression in somites and limb buds of mouse embryos is controlled by two distinct distal enhancer activities. Development 2003; 130:3297 - 3307
  • Teboul L, Summerbell D, Rigby PWJ. The initial somitic phase of Myf5 expression requires neither Shh signaling nor Gli regulation. Genes Dev 2003; 17:2870 - 2874
  • Denetclaw WF, Ordahl CP. The growth of the dermomyotome and formation of early myotome lineages in thoracolumbar somites of chicken embryos. Development 2000; 127:893 - 905
  • Ordahl CP, Le Douarin N. Two myogenic lineages within the developing somite. Development 1992; 114:339 - 353
  • Carvajal JJ, Cox D, Summerbell D, Rigby PWJ. Control of the expression of the Mrf4 and Myf5 genes: a BAC transgenic approach. Int J Dev Biol 2001; 45:139 - 140
  • Pin CL, Ludolph DC, Cooper ST, Klocke BJ, Merlie JP, Konieczny SF. Distal regulatory elements control MRF4 gene expressison in early and late myogenic populations. Dev Dyn 1997; 208:299 - 312
  • Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufort D, Joyner AL, et al. β-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev Biol 2006; 296:164 - 176
  • Daubas P, Tajbakhsh S, Hadchouel J, Primig M, Buckingham M. Myf5 is a novel early axonal marker in the mouse brain and is subjected to post-transcriptional regulation in neurons. Development 2000; 127:319 - 331
  • Daubas P, Crist CG, Bajard L, Relaix F, Pecnard E, Rocancourt D, et al. The regulatory mechanisms that underlie inappropriate transcription of the myogenic determination gene Myf5 in central nervous system. Dev Biol 2009; 327:71 - 82
  • Braun T, Arnold HH. Myf-5 and myod genes are activated in distinct mesenchymal stem cells and determine different skeletal muscle cell lineages. EMBO J 1996; 15:310 - 318
  • Ozaki H, Watanabe Y, Takahashi K, Kitamura KEN, Tanaka A, Urase K, et al. Six4, a putative myogenin gene regulator, is not essential for mouse embryonal development. Mol Cell Biol 2001; 21:3343 - 3350