21,595
Views
370
CrossRef citations to date
0
Altmetric
Methods Commentary

Inhibiting eukaryotic transcription. Which compound to choose? How to evaluate its activity?

Which compound to choose? How to evaluate its activity?

Pages 103-108 | Received 12 Apr 2011, Accepted 28 Apr 2011, Published online: 01 May 2011

References

  • Sugaya K, Sasanuma S, Cook PR, Mita K. A mutation in the largest (catalytic) subunit of RNA polymerase II and its relation to the arrest of the cell cycle in G(1) phase. Gene 2001; 274:77 - 81
  • Jackman J, Alamo IJ, Fornace AJJ. Genotoxic stress confers preferential and coordinate messenger RNA stability on the five gadd genes. Cancer Res 1994; 54:5656 - 5662
  • Lam LT, Pickeral OK, Peng AC, Rosenwald A, Hurt EM, Giltnane JM, et al. Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol 2001; 2:41
  • Lü X, Burgan WE, Cerra MA, Chuang EY, Tsai MH, Tofilon PJ, et al. Transcriptional signature of flavopiridol-induced tumor cell death. Mol Cancer Ther 2004; 3:861 - 872
  • Chen Q, Cao M, Xiang WL, Sun Q, Zhang J, Hou RT, et al. Study on genes with altered expression in alpha-amanitin poisoned mice and evaluation on antagonistic effects of traditional Chinese medicines against toxicity of alpha-amanitin. Acta Biol Hung 2009; 60:281 - 291
  • White CM, Heidenreich O, Nordheim A, Beerman TA. Evaluation of the effectiveness of DNA-binding drugs to inhibit transcription using the c-fos serum response element as a target. Biochemistry 2000; 39:12262 - 12273
  • Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci 2003; 116:2833 - 2838
  • Femino AM, Fay FS, Fogarty K, Singer RH. Visualization of single RNA transcripts in situ. Science 1998; 280:585 - 590
  • Gossen M, Bonin AL, Freundlieb S, Bujard H. Inducible gene expression systems for higher eukaryotic cells. Curr Opin Biotechnol 1994; 5:516 - 520
  • Loew R, Heinz N, Hampf M, Bujard H, Gossen M. Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol 2010; 10:81
  • Cassé C, Giannoni F, Nguyen VT, Dubois MF, Bensaude O. The transcriptional inhibitors, actinomycin D and α-amanitin, activate the HIV-1 promoter and favor phosphorylation of the RNA polymerase II C-terminal domain. J Biol Chem 1999; 274:16097 - 16106
  • Imamichi T, Conrads TP, Zhou M, Liu X, Adelsberger JW, Veenstra TD, et al. A transcription inhibitor, actinomycin D, enhances HIV-1 replication through an interleukin-6-dependent pathway. J Acquir Defic Syndr 2005; 40:388 - 397
  • Zhou Q, Yik JH. The Yin and Yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol Mol Biol Rev 2006; 70:646 - 659
  • Barrandon C, Spiluttini B, Bensaude O. Non-coding RNAs regulating the transcriptional machinery. Biol Cell 2008; 100:83 - 95
  • Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 2002; 3:195 - 205
  • Hogg JR, Collins K. RNA-based affinity purification reveals 7SK RNPs with distinct composition and regulation. RNA 2007; 13:868 - 880
  • Van Herreweghe E, Egloff S, Goiffon I, Jady BE, Froment C, Monsarrat B, et al. Dynamic remodelling of human 7SK snRNP controls the nuclear level of active P-TEFb. EMBO J 2007; 26:3570 - 3580
  • Barrandon C, Bonnet F, Nguyen VT, Labas V, Bensaude O. The transcription-dependent dissociation of P-TEFb.HEXIM1.7SK RNA relies upon formation of hnRNP.7SK RNA complexes. Mol Cell Biol 2007; 27:6996 - 7006
  • Gomes NP, Bjerke G, Llorente B, Szostek SA, Emerson BM, Espinosa JM. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev 2006; 20:601 - 612
  • Choong ML, Yang H, Lee MA, Lane DP. Specific activation of the p53 pathway by low dose actinomycin D: a new route to p53 based cyclotherapy. Cell Cycle 2009; 8:2810 - 2818
  • Beckerman R, Prives C. Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2011; 2:935
  • Galluzzi L, Morselli E, Kepp O, Vitale I, Pinti M, Kroemer G. Mitochondrial liaisons of p53. Antioxid Redox Signal 2011; In press
  • Mosner J, Mummenbrauer T, Bauer C, Sczakiel G, Grosse F, Deppert W. Negative feedback regulation of wild-type p53 biosynthesis. EMBO J 1995; 14:4442 - 4449
  • An WG, Chuman Y, Fojo T, Blagosklonny MV. Inhibitors of transcription, proteasome inhibitors and DNA-damaging drugs differentially affect feedback of p53 degradation. Exp Cell Res 1998; 244:54 - 60
  • Demidenko ZN, Blagosklonny MV. Flavopiridol induces p53 via initial inhibition of Mdm2 and p21 and, independently of p53, sensitizes apoptosis-reluctant cells to tumor necrosis factor. Cancer Res 2004; 64:3653 - 3660
  • Ljungman M. The transcription stress response. Cell Cycle 2007; 6:2252 - 2257
  • Radhakrishnan SK, Bhat UG, Halasi M, Gartel AL. P-TEFb inhibitors interfere with activation of p53 by DNA-damaging agents. Oncogene 2008; 27:1306 - 1309
  • Hölzel M, Orban M, Hochstatter J, Rohrmoser M, Harasim T, Malamoussi A, et al. Defects in 18 S or 28 S rRNA processing activate the p53 pathway. J Biol Chem 2010; 285:6364 - 6370
  • Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell 2009; 137:413 - 431
  • Zhang Y, Wang J, Yuan Y, Zhang W, Guan W, Wu Z, et al. Negative regulation of HDM2 to attenuate p53 degradation by ribosomal protein L26. Nucleic Acids Res 2010; 38:6544 - 6554
  • Takagi M, Absalon MJ, McLure KG, Kastan MB. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 2005; 123:49 - 63
  • Chen J, Kastan MB. 5′-3′-UTR interactions regulate p53 mRNA translation and provide a target for modulating p53 induction after DNA damage. Genes Dev 2010; 24:2146
  • Davie JR, Murphy LC. Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription. Biochemistry 1990; 29:4752 - 4757
  • Chadee DN, David Allis C, Wright JA, Davie JR. Histone H1b phosphorylation is dependent upon ongoing transcription and replication in normal and ras-transformed mouse fibroblasts. J Biol Chem 1997; 272:8113 - 8116
  • Piñol-Roma S, Dreyfuss G. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 1992; 355:730 - 732
  • Christian KJ, Lang MA, Raffalli-Mathieu F. Interaction of heterogeneous nuclear ribonucleoprotein C1/C2 with a novel cis-regulatory element within p53 mRNA as a response to cytostatic drug treatment. Mol Pharmacol 2008; 73:1558 - 1567
  • Biglione S, Byers SA, Price JP, Nguyen VT, Bensaude O, Price DH, et al. Inhibition of HIV-1 replication by P-TEFb inhibitors DRB, seliciclib and flavopiridol correlates with release of free P-TEFb from the large, inactive form of the complex. Retrovirology 2007; 4:47
  • Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI. The nucleolus under stress. Mol Cell 2010; 40:216 - 227
  • Burger K, Mühl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M, et al. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem 2010; 285:12416 - 12425
  • Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG, et al. Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 2005; 16:2395 - 2413
  • Pollock C, Huang S. The perinucleolar compartment. J Cell Biochem 2009; 107:189 - 193
  • Carmo-Fonseca M, Pepperkok R, Carvalho MT, Lamond AI. Transcription-dependent colocalization of the U1, U2, U4/U6 and U5 snRNPs in coiled bodies. J Cell Biol 1992; 117:1 - 14
  • Bushnell DA, Cramer P, Kornberg RD. RNA polymerase II cocrystal at 2.8 A resolution. Proc Natl Acad Sci USA 2002; 99:1218 - 1222
  • Kaplan CD, Larsson KM, Kornberg RD. The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Mol Cell 2008; 30:547 - 556
  • Brueckner F, Cramer P. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. Nat Struct Mol Biol 2008; 15:811 - 818
  • Kedinger C, Nuret P, Chambon P. Structural evidence for two alpha-amanitin sensitive RNA polymerases in calf thymus. FEBS Lett 1971; 15:169 - 174
  • Weinmann R, Raskas HJ, Roeder RG. Role of DNA-dependent RNA polymerases II and III in transcription of the adenovirus genome late in productive infection. Proc Natl Acad Sci USA 1974; 71:3426 - 3439
  • Listerman I, Bledau AS, Grishina I, Neugebauer KM. Extragenic accumulation of RNA polymerase II enhances transcription by RNA polymerase III. PLoS Genet 2007; 3:212
  • Raha D, Wang Z, Moqtaderi Z, Wu L, Zhong G, Gerstein M, et al. Close association of RNA polymerase II and many transcription factors with Pol III genes. Proc Natl Acad Sci USA 2010; 107:3639 - 3644
  • Letschert K, Faulstich H, Keller D, Keppler D. Molecular characterization and inhibition of amanitin uptake into human hepatocytes. Toxicol Sci 2006; 91:140 - 149
  • Nguyen VT, Giannoni F, Dubois MF, Seo SJ, Vigneron M, Kédinger C, et al. In vivo degradation of RNA polymerase II largest subunit triggered by α-amanitin. Nucleic Acids Res 1996; 24:2924 - 2929
  • Lee KB, Sharp PA. Transcription-dependent polyubiquitination of RNA polymerase II requires lysine 63 of ubiquitin. Biochemistry 2004; 43:15223 - 15229
  • Jung Y, Lippard SJ. RNA polymerase II blockage by Cisplatin-damaged DNA. Stability and polyubiquitylation of stalled polymerase. J Biol Chem 2006; 281:1361 - 1370
  • Bartolomei MS, Corden JL. Clustered alpha-amanitin resistance mutations in mouse. Mol Gen Genet 1995; 246:778 - 782
  • Chen Y, Chafin D, Price DH, Greenleaf A. Drosophila RNA polymerase II mutants that affect transcription elongation. J Biol Chem 1996; 271:5993 - 5999
  • Liu Q. Triptolide and its expanding multiple pharmacological functions. Int Immunopharmacol 2011; 11:377 - 383
  • Leuenroth SJ, Crews CM. Triptolide-induced transcriptional arrest is associated with changes in nuclear substructure. Cancer Res 2008; 68:5257 - 5266
  • Titov DV, Gilman B, He QL, Bhat S, Low WK, Dang Y, et al. XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat Chem Biol 2011; 7:182 - 188
  • Vispé S, DeVries L, Créancier L, Besse J, Bréand S, Hobson DJ, et al. Triptolide is an inhibitor of RNA polymerase I and II-dependent transcription leading predominantly to downregulation of short-lived mRNA. Mol Cancer Ther 2009; 8:2780 - 2790
  • Leuenroth SJ, Okuhara D, Shotwell JD, Markowitz GS, Yu Z, Somlo S, et al. Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc Natl Acad Sci USA 2007; 104:4389 - 4394
  • Nechaev S, Adelman K. Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation. Biochim Biophys Acta 2011; 1809:34 - 45
  • Medlin J, Scurry A, Taylor A, Zhang F, Peterlin BM, Murphy S. P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes. EMBO J 2005; 24:4154 - 4165
  • Pirngruber J, Shchebet A, Schreiber L, Shema E, Minsky N, Chapman RD, et al. CDK9 directs H2B monoubiquitination and controls replication-dependent histone mRNA 3′-end processing. EMBO Rep 2009; 10:894 - 900
  • Dubois MF, Bellier S, Seo SJ, Bensaude O. Phosphorylation of the RNA polymerase II largest subunit during heat-shock and inhibition of transcription in HeLa cells. J Cell Physiol 1994; 158:417 - 426
  • Lavoie SB, Albert AL, Handa H, Vincent M, Bensaude O. The peptidyl-prolyl isomerase Pin1 interacts with hSpt5 phosphorylated by Cdk9. J Mol Biol 2001; 312:675 - 685
  • Ip JY, Schmidt D, Pan Q, Ramani AK, Fraser AG, Odom DT, et al. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res 2011; 21:390 - 401
  • Wang LM, Ren D. Flavopiridol, the first cyclin-dependent kinase inhibitor: recent advances in combination chemotherapy. Mini Rev Med Chem 2010; 10:1058 - 1070
  • Abou-Nassar K, Brown J. Novel agents for the treatment of chronic lymphocytic leukemia. Clin Adv Hematol Oncol 2010; 8:886 - 895
  • Marshall NF, Peng J, Xie Z, Price DH. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem 1996; 271:27176 - 27183
  • Chen R, Wierda WG, Chubb S, Hawtin RE, Fox JA, Keating MJ, et al. Mechanism of action of SNS-032, a novel cyclin-dependent kinase inhibitor, in chronic lymphocytic leukemia. Blood 2009; 113:4637 - 4645
  • Knight ZA, Shokat KM. Features of Selective Kinase Inhibitors. Chem Biol 2005; 12:621 - 637
  • Mancebo HS, Lee G, Flygare J, Tomassini J, Luu P, Zhu Y, et al. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 1997; 11:2633 - 2644
  • Chao SH, Price DH. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in Vivo. J Biol Chem 2001; 276:31793 - 31799
  • Conroy A, Stockett DE, Walker D, Arkin MR, Hoch U, Fox JA, et al. SNS-032 is a potent and selective CDK 2, 7 and 9 inhibitor that drives target modulation in patient samples. Cancer Chemother Pharmacol 2009; 64:723 - 732
  • Wang S, Griffiths G, Midgley CA, Barnett AL, Cooper M, Grabarek J, et al. Discovery and characterization of 2-anilino-4-(thiazol-5-yl)pyrimidine transcriptional CDK inhibitors as anticancer agents. Chem Biol 2010; 17:1111 - 1121
  • Bishop AC, Buzko O, Shokat KM. Magic bullets for protein kinases. Trends Cell Biol 2001; 11:167 - 172
  • Tietjen JR, Zhang DW, Rodríguez-Molina JB, White BE, Akhtar MS, Heidemann M, et al. Chemical-genomic dissection of the CTD code. Nat Struct Mol Biol 2010; 17:1154 - 1161
  • Sehgal PB, Derman E, Molloy GR, Tamm I, Darnell JE. 5,6-Dichloro-1-ß-D-ribofuranosylbenzimidazole inhibits initiation of nuclear heterogeneous RNA chains in HeLa cells. Science 1976; 194:431 - 433
  • Fraser NW, Sehgal PB, Darnell JE. DRB-induced premature termination of late adenovirus transcription. Nature 1978; 272:590 - 593
  • Zhu Y, Pe'ery T, Peng J, Ramanathan Y, Marshall N, Marshall T, et al. Transcription elongation factor P-TEFb is required for HIV-1 Tat transactivation in vitro. Genes Dev 1997; 11:2622 - 2632
  • Baumli S, Endicott JA, Johnson L. Halogen bonds form the basis for selective P-TEFb inhibition by DRB. Chem Biol 2010; 17:931 - 936
  • Singh J, Padgett RA. Rates of in situ transcription and splicing in large human genes. Nat Struct Mol Biol 2009; 16:1128 - 1133
  • Chao SC, Fujinaga K, Marion JE, Taube R, Sausville EA, Senderowicz AM, et al. Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 2000; 275:28345 - 28348
  • Baumli S, Lolli G, Lowe ED, Troiani SLR, Bullock AN, et al. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J 2008; 27:1907 - 1918
  • Schmerwitz UK, Sass G, Khandoga AG, Joore J, Mayer BA, Berberich N, et al. Flavopiridol protects against inflammation by attenuating leukocyte-endothelial interaction via inhibition of cyclin-dependent kinase 9. Arterioscler Thromb Vasc Biol 2011; 31:280 - 288
  • Zylber E, Vesco C, Penman S. Selective inhibition of the synthesis of mitochondria-associated RNA by ethidium bromide. J Mol Biol 1969; 44:195 - 204
  • Perry RP, Kelley DE. Inhibition of RNA synthesis by actinomycin D: characteristc dose-response of different RNA species. J Cell Physiol 1970; 76:127 - 140
  • Trask DK, Muller MT. Stabilization of type I topoisomerase-DNA covalent complexes by actinomycin D. Proc Natl Acad Sci USA 1988; 85:1417 - 1421
  • Mischo HE, Hemmerich P, Grosse F, Zhang S. Actinomycin D induces histone gamma-H2AX foci and complex formation of gamma-H2AX with Ku70 and nuclear DNA helicase II. J Biol Chem 2005; 280:9586 - 9594
  • Schluederberg A, Hendel RC, Chavanich S. Actinomycin D: renewed RNA synthesis after removal from mammalian cells. Science 1971; 172:577 - 579
  • Hadjiolova KV, Hadjiolov AA, Bachellerie JP. Actinomycin D stimulates the transcription of rRNA minigenes transfected into mouse cells. Eur J Biochem 1995; 228:605 - 615
  • Nguyen VT, Kiss T, Michels AA, Bensaude O. 7SK snRNA binds to and inhibits the activity of Cdk9/cyclin T complexes. Nature 2001; 414:322 - 325
  • Ang WH, Myint M, Lippard SJ. Transcription inhibition by platinum-DNA cross-links in live mammalian cells. J Am Chem Soc 2010; 132:7429 - 7435
  • Aune GJ, Takagi K, Sordet O, Guirouilh-Barbat J, Antony S, Bohr VA, et al. Von Hippel-Lindau-coupled and transcription-coupled nucleotide excision repair-dependent degradation of RNA polymerase II in response to trabectedin. Clin Cancer Res 2008; 14:6449 - 6455
  • Terada TM, Epner E, Nudel U, Salmon J, Fibach E, Rifkind RA, et al. Induction of murine erythroleukemia differentiation by actinomycin D. Proc Natl Acad Sci USA 1978; 75:2795 - 2799
  • Hensold J, Barth D, Stratton CA. RNA polymerase II inhibitor, 5,6-dichloro-1-ß-D-Ribofuranosylbenzimidazole (DRB) causes erythroleukemic differentiation and transcriptional activation of erythroid genes. J Cell Physiol 1996; 168:105 - 113