965
Views
17
CrossRef citations to date
0
Altmetric
Point of View

The cell cycle rallies the transcription cycle

Cdc28/Cdk1 is a cell cycle-regulated transcriptional CDK

&
Pages 3-6 | Received 03 Sep 2012, Accepted 04 Oct 2012, Published online: 06 Nov 2012

References

  • Buratowski S. Progression through the RNA polymerase II CTD cycle. Mol Cell 2009; 36:541 - 6; http://dx.doi.org/10.1016/j.molcel.2009.10.019; PMID: 19941815
  • Bartkowiak B, Liu P, Phatnani HP, Fuda NJ, Cooper JJ, Price DH, et al. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev 2010; 24:2303 - 16; http://dx.doi.org/10.1101/gad.1968210; PMID: 20952539
  • Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 2000; 14:2551 - 69; http://dx.doi.org/10.1101/gad.831000; PMID: 11040209
  • Simmons Kovacs LA, Mayhew MB, Orlando DA, Jin Y, Li Q, Huang C, et al. Cyclin-dependent kinases are regulators and effectors of oscillations driven by a transcription factor network. Mol Cell 2012; 45:669 - 79; http://dx.doi.org/10.1016/j.molcel.2011.12.033; PMID: 22306294
  • Enserink JM, Kolodner RD. An overview of Cdk1-controlled targets and processes. Cell Div 2010; 5:11; http://dx.doi.org/10.1186/1747-1028-5-11; PMID: 20465793
  • Wittenberg C, Reed SI. Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene 2005; 24:2746 - 55; http://dx.doi.org/10.1038/sj.onc.1208606; PMID: 15838511
  • Chymkowitch P, Eldholm V, Lorenz S, Zimmermann C, Lindvall JM, Bjørås M, et al. Cdc28 kinase activity regulates the basal transcription machinery at a subset of genes. Proc Natl Acad Sci U S A 2012; 109:10450 - 5; http://dx.doi.org/10.1073/pnas.1200067109; PMID: 22689984
  • Hintermair C, Heidemann M, Koch F, Descostes N, Gut M, Gut I, et al. Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO J 2012; 31:2784 - 97; http://dx.doi.org/10.1038/emboj.2012.123; PMID: 22549466
  • Mayer A, Heidemann M, Lidschreiber M, Schreieck A, Sun M, Hintermair C, et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 2012; 336:1723 - 5; http://dx.doi.org/10.1126/science.1219651; PMID: 22745433
  • Rodriguez CR, Cho EJ, Keogh MC, Moore CL, Greenleaf AL, Buratowski S. Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II. Mol Cell Biol 2000; 20:104 - 12; http://dx.doi.org/10.1128/MCB.20.1.104-112.2000; PMID: 10594013
  • García A, Rosonina E, Manley JL, Calvo O. Sub1 globally regulates RNA polymerase II C-terminal domain phosphorylation. Mol Cell Biol 2010; 30:5180 - 93; http://dx.doi.org/10.1128/MCB.00819-10; PMID: 20823273
  • Meinhart A, Kamenski T, Hoeppner S, Baumli S, Cramer P. A structural perspective of CTD function. Genes Dev 2005; 19:1401 - 15; http://dx.doi.org/10.1101/gad.1318105; PMID: 15964991
  • Chapman RD, Heidemann M, Albert TK, Mailhammer R, Flatley A, Meisterernst M, et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 2007; 318:1780 - 2; http://dx.doi.org/10.1126/science.1145977; PMID: 18079404
  • Akhtar MS, Heidemann M, Tietjen JR, Zhang DW, Chapman RD, Eick D, et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol Cell 2009; 34:387 - 93; http://dx.doi.org/10.1016/j.molcel.2009.04.016; PMID: 19450536
  • Egloff S, O’Reilly D, Chapman RD, Taylor A, Tanzhaus K, Pitts L, et al. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 2007; 318:1777 - 9; http://dx.doi.org/10.1126/science.1145989; PMID: 18079403
  • Baskaran R, Escobar SR, Wang JY. Nuclear c-Abl is a COOH-terminal repeated domain (CTD)-tyrosine (CTD)-tyrosine kinase-specific for the mammalian RNA polymerase II: possible role in transcription elongation. Cell Growth Differ 1999; 10:387 - 96; PMID: 10392900
  • Bartkowiak B, Greenleaf AL. Phosphorylation of RNAPII: To P-TEFb or not to P-TEFb?. Transcription 2011; 2:115 - 9; http://dx.doi.org/10.4161/trns.2.3.15004; PMID: 21826281
  • Cisek LJ, Corden JL. Phosphorylation of RNA polymerase by the murine homologue of the cell-cycle control protein cdc2. Nature 1989; 339:679 - 84; http://dx.doi.org/10.1038/339679a0; PMID: 2662013
  • Cosma MP, Panizza S, Nasmyth K. Cdk1 triggers association of RNA polymerase to cell cycle promoters only after recruitment of the mediator by SBF. Mol Cell 2001; 7:1213 - 20; http://dx.doi.org/10.1016/S1097-2765(01)00266-0; PMID: 11430824
  • Arvai AS, Bourne Y, Hickey MJ, Tainer JA. Crystal structure of the human cell cycle protein CksHs1: single domain fold with similarity to kinase N-lobe domain. J Mol Biol 1995; 249:835 - 42; http://dx.doi.org/10.1006/jmbi.1995.0341; PMID: 7791211
  • Morris MC, Kaiser P, Rudyak S, Baskerville C, Watson MH, Reed SI. Cks1-dependent proteasome recruitment and activation of CDC20 transcription in budding yeast. Nature 2003; 423:1009 - 13; http://dx.doi.org/10.1038/nature01720; PMID: 12827207
  • Chaves S, Baskerville C, Yu V, Reed SI. Cks1, Cdk1, and the 19S proteasome collaborate to regulate gene induction-dependent nucleosome eviction in yeast. Mol Cell Biol 2010; 30:5284 - 94; http://dx.doi.org/10.1128/MCB.00952-10; PMID: 20855529
  • Yu VP, Baskerville C, Grünenfelder B, Reed SI. A kinase-independent function of Cks1 and Cdk1 in regulation of transcription. Mol Cell 2005; 17:145 - 51; http://dx.doi.org/10.1016/j.molcel.2004.11.020; PMID: 15629725
  • Bishop AC, Ubersax JA, Petsch DT, Matheos DP, Gray NS, Blethrow J, et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 2000; 407:395 - 401; http://dx.doi.org/10.1038/35030148; PMID: 11014197
  • Zhang J, Corden JL. Identification of phosphorylation sites in the repetitive carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J Biol Chem 1991; 266:2290 - 6; PMID: 1899239
  • Qiu H, Hu C, Hinnebusch AG. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol Cell 2009; 33:752 - 62; http://dx.doi.org/10.1016/j.molcel.2009.02.018; PMID: 19328068
  • Kõivomägi M, Valk E, Venta R, Iofik A, Lepiku M, Balog ER, et al. Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase. Nature 2011; 480:128 - 31; http://dx.doi.org/10.1038/nature10560; PMID: 21993622

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.