587
Views
3
CrossRef citations to date
0
Altmetric
Point of View

Mfd as a central partner of transcription coupled repair

, , &
Pages 109-113 | Received 02 Apr 2013, Accepted 03 May 2013, Published online: 16 May 2013

References

  • Kamileri I, Karakasilioti I, Garinis GA. Nucleotide excision repair: new tricks with old bricks. Trends Genet 2012; 28:566 - 73; http://dx.doi.org/10.1016/j.tig.2012.06.004; PMID: 22824526
  • Savery N. Prioritizing the repair of DNA damage that is encountered by RNA polymerase. Transcription 2011; 2:168 - 72; http://dx.doi.org/10.4161/trns.2.4.16146; PMID: 21922058
  • Yang W. Structure and mechanism for DNA lesion recognition. Cell Res 2008; 18:184 - 97; http://dx.doi.org/10.1038/cr.2007.116; PMID: 18157156
  • Van Houten B, Croteau DL, DellaVecchia MJ, Wang H, Kisker C. ‘Close-fitting sleeves’: DNA damage recognition by the UvrABC nuclease system. Mutat Res 2005; 577:92 - 117; http://dx.doi.org/10.1016/j.mrfmmm.2005.03.013; PMID: 15927210
  • Theis K, Chen PJ, Skorvaga M, Van Houten B, Kisker C. Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair. EMBO J 1999; 18:6899 - 907; http://dx.doi.org/10.1093/emboj/18.24.6899; PMID: 10601012
  • Pakotiprapha D, Samuels M, Shen K, Hu JH, Jeruzalmi D. Structure and mechanism of the UvrA-UvrB DNA damage sensor. Nat Struct Mol Biol 2012; 19:291 - 8; http://dx.doi.org/10.1038/nsmb.2240; PMID: 22307053
  • Savery NJ. The molecular mechanism of transcription-coupled DNA repair. Trends Microbiol 2007; 15:326 - 33; http://dx.doi.org/10.1016/j.tim.2007.05.005; PMID: 17572090
  • Kad NM, Van Houten B. Dynamics of lesion processing by bacterial nucleotide excision repair proteins. Prog Mol Biol Transl Sci 2012; 110:1 - 24; http://dx.doi.org/10.1016/B978-0-12-387665-2.00001-8; PMID: 22749140
  • Atkinson J, Guy CP, Cadman CJ, Moolenaar GF, Goosen N, McGlynn P. Stimulation of UvrD helicase by UvrAB. J Biol Chem 2009; 284:9612 - 23; http://dx.doi.org/10.1074/jbc.M808030200; PMID: 19208629
  • Grossman L, Yeung AT. The UvrABC endonuclease system of Escherichia coli--a view from Baltimore. Mutat Res 1990; 236:213 - 21; http://dx.doi.org/10.1016/0921-8777(90)90006-Q; PMID: 2144612
  • Deaconescu AM, Savery N, Darst SA. The bacterial transcription repair coupling factor. Curr Opin Struct Biol 2007; 17:96 - 102; http://dx.doi.org/10.1016/j.sbi.2007.01.005; PMID: 17239578
  • Westblade LF, Campbell EA, Pukhrambam C, Padovan JC, Nickels BE, Lamour V, et al. Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction. Nucleic Acids Res 2010; 38:8357 - 69; http://dx.doi.org/10.1093/nar/gkq692; PMID: 20702425
  • Deaconescu AM, Chambers AL, Smith AJ, Nickels BE, Hochschild A, Savery NJ, et al. Structural basis for bacterial transcription-coupled DNA repair. Cell 2006; 124:507 - 20; http://dx.doi.org/10.1016/j.cell.2005.11.045; PMID: 16469698
  • Davenport RJ, Wuite GJ, Landick R, Bustamante C. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 2000; 287:2497 - 500; http://dx.doi.org/10.1126/science.287.5462.2497; PMID: 10741971
  • Landick R. The regulatory roles and mechanism of transcriptional pausing. Biochem Soc Trans 2006; 34:1062 - 6; http://dx.doi.org/10.1042/BST0341062; PMID: 17073751
  • Trautinger BW, Jaktaji RP, Rusakova E, Lloyd RG. RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol Cell 2005; 19:247 - 58; http://dx.doi.org/10.1016/j.molcel.2005.06.004; PMID: 16039593
  • Selby CP, Sancar A. Gene- and strand-specific repair in vitro: partial purification of a transcription-repair coupling factor. Proc Natl Acad Sci U S A 1991; 88:8232 - 6; http://dx.doi.org/10.1073/pnas.88.18.8232; PMID: 1896474
  • Selby CP, Sancar A. Molecular mechanism of transcription-repair coupling. Science 1993; 260:53 - 8; http://dx.doi.org/10.1126/science.8465200; PMID: 8465200
  • Selby CP, Sancar A. Characterization of transcription-repair coupling factors in E. coli and humans. Methods Enzymol 2003; 371:300 - 24; http://dx.doi.org/10.1016/S0076-6879(03)71023-4; PMID: 14712710
  • Selby CP, Witkin EM, Sancar A. Escherichia coli mfd mutant deficient in “mutation frequency decline” lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc Natl Acad Sci U S A 1991; 88:11574 - 8; http://dx.doi.org/10.1073/pnas.88.24.11574; PMID: 1763073
  • Park JS, Marr MT, Roberts JWE. E. coli Transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 2002; 109:757 - 67; http://dx.doi.org/10.1016/S0092-8674(02)00769-9; PMID: 12086674
  • Witkin EM. Time, temperature, and protein synthesis: a study of ultraviolet-induced mutation in bacteria. Cold Spring Harb Symp Quant Biol 1956; 21:123 - 40; http://dx.doi.org/10.1101/SQB.1956.021.01.011; PMID: 13433586
  • Mellon I, Hanawalt PC. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature 1989; 342:95 - 8; http://dx.doi.org/10.1038/342095a0; PMID: 2554145
  • Nudler E. RNA polymerase backtracking in gene regulation and genome instability. Cell 2012; 149:1438 - 45; http://dx.doi.org/10.1016/j.cell.2012.06.003; PMID: 22726433
  • Epshtein V, Nudler E. Cooperation between RNA polymerase molecules in transcription elongation. Science 2003; 300:801 - 5; http://dx.doi.org/10.1126/science.1083219; PMID: 12730602
  • Epshtein V, Toulmé F, Rahmouni AR, Borukhov S, Nudler E. Transcription through the roadblocks: the role of RNA polymerase cooperation. EMBO J 2003; 22:4719 - 27; http://dx.doi.org/10.1093/emboj/cdg452; PMID: 12970184
  • Czaja W, Mao P, Smerdon MJ. The Emerging Roles of ATP-Dependent Chromatin Remodeling Enzymes in Nucleotide Excision Repair. Int J Mol Sci 2012; 13:11954 - 73; http://dx.doi.org/10.3390/ijms130911954; PMID: 23109894
  • Lake RJ, Fan HY. Structure, function and regulation of CSB: A multi-talented gymnast. Mech Ageing Dev 2013; http://dx.doi.org/10.1016/j.mad.2013.02.004; PMID: 23422418
  • Hanawalt PC, Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 2008; 9:958 - 70; http://dx.doi.org/10.1038/nrm2549; PMID: 19023283
  • Schalow BJ, Courcelle CT, Courcelle J. Mfd is required for rapid recovery of transcription following UV-induced DNA damage but not oxidative DNA damage in Escherichia coli. J Bacteriol 2012; 194:2637 - 45; http://dx.doi.org/10.1128/JB.06725-11; PMID: 22427630
  • Cohen SE, Walker GC. New discoveries linking transcription to DNA repair and damage tolerance pathways. Transcription 2011; 2:37 - 40; http://dx.doi.org/10.4161/trns.2.1.14228; PMID: 21326909
  • Chemla YR, Moffitt JR, Bustamante C. Exact solutions for kinetic models of macromolecular dynamics. J Phys Chem B 2008; 112:6025 - 44; http://dx.doi.org/10.1021/jp076153r; PMID: 18373360
  • Zhou J, Ha KS, La Porta A, Landick R, Block SM. Applied force provides insight into transcriptional pausing and its modulation by transcription factor NusA. Mol Cell 2011; 44:635 - 46; http://dx.doi.org/10.1016/j.molcel.2011.09.018; PMID: 22099310
  • Uphoff S, Reyes-Lamothe R, Garza de Leon F, Sherratt DJ, Kapanidis AN. Single-molecule DNA repair in live bacteria. Proceedings of the National Academy of Sciences of the United States of America 2013.
  • Howan K, Smith AJ, Westblade LF, Joly N, Grange W, Zorman S, et al. Initiation of transcription-coupled repair characterized at single-molecule resolution. Nature 2012; 490:431 - 4; http://dx.doi.org/10.1038/nature11430; PMID: 22960746
  • Deaconescu AM, Sevostyanova A, Artsimovitch I, Grigorieff N. Nucleotide excision repair (NER) machinery recruitment by the transcription-repair coupling factor involves unmasking of a conserved intramolecular interface. Proc Natl Acad Sci U S A 2012; 109:3353 - 8; http://dx.doi.org/10.1073/pnas.1115105109; PMID: 22331906
  • Manelyte L, Kim YI, Smith AJ, Smith RM, Savery NJ. Regulation and rate enhancement during transcription-coupled DNA repair. Mol Cell 2010; 40:714 - 24; http://dx.doi.org/10.1016/j.molcel.2010.11.012; PMID: 21145481
  • Long X, Parks JW, Bagshaw CR, Stone MD. Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy. Nucleic Acids Res 2013; 41:2746 - 55; http://dx.doi.org/10.1093/nar/gks1341; PMID: 23303789
  • Sunney Xie X. Single-molecule approach to dispersed kinetics and dynamic disorder: Probing conformational fluctuation and enzymatic dynamics. J Chem Phys 2002; 117:11024 - 32; http://dx.doi.org/10.1063/1.1521159
  • Kou SC, Cherayil BJ, Min W, English BP, Xie XS. Single-molecule Michaelis-Menten equations. J Phys Chem B 2005; 109:19068 - 81; http://dx.doi.org/10.1021/jp051490q; PMID: 16853459

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.