525
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

Translocation and fidelity of Escherichia coli RNA polymerase

&
Pages 136-143 | Received 09 May 2013, Accepted 25 Jun 2013, Published online: 11 Jul 2013

References

  • Malinen AM, Turtola M, Parthiban M, Vainonen L, Johnson MS, Belogurov GA. Active site opening and closure control translocation of multisubunit RNA polymerase. Nucleic Acids Res 2012; 40:7442 - 51; http://dx.doi.org/10.1093/nar/gks383; PMID: 22570421
  • Nedialkov YA, Nudler E, Burton ZF. RNA polymerase stalls in a post-translocated register and can hyper-translocate. Transcr 2012; •••:3
  • Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 2006; 127:941 - 54; http://dx.doi.org/10.1016/j.cell.2006.11.023; PMID: 17129781
  • Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH, Artsimovitch I. Structural basis for transcription elongation by bacterial RNA polymerase. Nature 2007; 448:157 - 62; http://dx.doi.org/10.1038/nature05932; PMID: 17581590
  • Vassylyev DG, Vassylyeva MN, Zhang J, Palangat M, Artsimovitch I, Landick R. Structural basis for substrate loading in bacterial RNA polymerase. Nature 2007; 448:163 - 8; http://dx.doi.org/10.1038/nature05931; PMID: 17581591
  • Brueckner F, Armache KJ, Cheung A, Damsma GE, Kettenberger H, Lehmann E, et al. Structure-function studies of the RNA polymerase II elongation complex. Acta Crystallogr D Biol Crystallogr 2009; 65:112 - 20; http://dx.doi.org/10.1107/S0907444908039875; PMID: 19171965
  • Brueckner F, Cramer P. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. Nat Struct Mol Biol 2008; 15:811 - 8; http://dx.doi.org/10.1038/nsmb.1458; PMID: 18552824
  • Cheung AC, Sainsbury S, Cramer P. Structural basis of initial RNA polymerase II transcription. EMBO J 2011; 30:4755 - 63; http://dx.doi.org/10.1038/emboj.2011.396; PMID: 22056778
  • Castro C, Smidansky E, Maksimchuk KR, Arnold JJ, Korneeva VS, Götte M, et al. Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polymerases. Proc Natl Acad Sci U S A 2007; 104:4267 - 72; http://dx.doi.org/10.1073/pnas.0608952104; PMID: 17360513
  • Castro C, Smidansky ED, Arnold JJ, Maksimchuk KR, Moustafa I, Uchida A, et al. Nucleic acid polymerases use a general acid for nucleotidyl transfer. Nat Struct Mol Biol 2009; 16:212 - 8; http://dx.doi.org/10.1038/nsmb.1540; PMID: 19151724
  • Carvalho ATP, Fernandes PA, Ramos MJ. The Catalytic Mechanism of RNA Polymerase II. J Chem Theory Comput 2011; 7:1177 - 88; http://dx.doi.org/10.1021/ct100579w
  • Zhang J, Palangat M, Landick R. Role of the RNA polymerase trigger loop in catalysis and pausing. Nat Struct Mol Biol 2010; 17:99 - 104; http://dx.doi.org/10.1038/nsmb.1732; PMID: 19966797
  • Yuzenkova Y, Bochkareva A, Tadigotla VR, Roghanian M, Zorov S, Severinov K, et al. Stepwise mechanism for transcription fidelity. BMC Biol 2010; 8:54; http://dx.doi.org/10.1186/1741-7007-8-54; PMID: 20459653
  • Kaplan CD, Larsson KM, Kornberg RD. The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Mol Cell 2008; 30:547 - 56; http://dx.doi.org/10.1016/j.molcel.2008.04.023; PMID: 18538653
  • Andrecka J, Treutlein B, Arcusa MA, Muschielok A, Lewis R, Cheung AC, et al. Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex. Nucleic Acids Res 2009; 37:5803 - 9; http://dx.doi.org/10.1093/nar/gkp601; PMID: 19620213
  • Revyakin A, Ebright RH, Strick TR. Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation. Proc Natl Acad Sci U S A 2004; 101:4776 - 80; http://dx.doi.org/10.1073/pnas.0307241101; PMID: 15037753
  • Kireeva ML, Nedialkov YA, Cremona GH, Purtov YA, Lubkowska L, Malagon F, et al. Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. Mol Cell 2008; 30:557 - 66; http://dx.doi.org/10.1016/j.molcel.2008.04.017; PMID: 18538654
  • Hein PP, Palangat M, Landick R. RNA transcript 3′-proximal sequence affects translocation bias of RNA polymerase. Biochemistry 2011; 50:7002 - 14; http://dx.doi.org/10.1021/bi200437q; PMID: 21739957
  • Toulokhonov I, Zhang J, Palangat M, Landick R. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol Cell 2007; 27:406 - 19; http://dx.doi.org/10.1016/j.molcel.2007.06.008; PMID: 17679091
  • Nedialkov YA, Opron K, Assaf F, Artsimovitch I, Kireeva ML, Kashlev M, et al. The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation. Biochim Biophys Acta 2013; 1829:187 - 98; http://dx.doi.org/10.1016/j.bbagrm.2012.11.005; PMID: 23202476
  • Bochkareva A, Yuzenkova Y, Tadigotla VR, Zenkin N. Factor-independent transcription pausing caused by recognition of the RNA-DNA hybrid sequence. EMBO J 2012; 31:630 - 9; http://dx.doi.org/10.1038/emboj.2011.432; PMID: 22124324
  • Baran KL, Chimenti MS, Schlessman JL, Fitch CA, Herbst KJ, Garcia-Moreno BE. Electrostatic effects in a network of polar and ionizable groups in staphylococcal nuclease. J Mol Biol 2008; 379:1045 - 62; http://dx.doi.org/10.1016/j.jmb.2008.04.021; PMID: 18499123
  • Svetlov V, Nudler E. Basic mechanism of transcription by RNA polymerase II. Biochim Biophys Acta 2013; 1829:20 - 8; http://dx.doi.org/10.1016/j.bbagrm.2012.08.009; PMID: 22982365
  • Burton ZF, Feig M, Gong XQ, Zhang C, Nedialkov YA, Xiong Y. NTP-driven translocation and regulation of downstream template opening by multi-subunit RNA polymerases. Biochem Cell Biol 2005; 83:486 - 96; http://dx.doi.org/10.1139/o05-059; PMID: 16094452
  • Nedialkov YA, Gong XQ, Hovde SL, Yamaguchi Y, Handa H, Geiger JH, et al. NTP-driven translocation by human RNA polymerase II. J Biol Chem 2003; 278:18303 - 12; http://dx.doi.org/10.1074/jbc.M301103200; PMID: 12637520
  • Gong XQ, Zhang C, Feig M, Burton ZF. Dynamic error correction and regulation of downstream bubble opening by human RNA polymerase II. Mol Cell 2005; 18:461 - 70; http://dx.doi.org/10.1016/j.molcel.2005.04.011; PMID: 15893729
  • Xiong Y, Burton ZF. A tunable ratchet driving human RNA polymerase II translocation adjusted by accurately templated nucleoside triphosphates loaded at downstream sites and by elongation factors. J Biol Chem 2007; 282:36582 - 92; http://dx.doi.org/10.1074/jbc.M707014200; PMID: 17875640
  • Foster JE, Holmes SF, Erie DA. Allosteric binding of nucleoside triphosphates to RNA polymerase regulates transcription elongation. Cell 2001; 106:243 - 52; http://dx.doi.org/10.1016/S0092-8674(01)00420-2; PMID: 11511351
  • Holmes SF, Erie DA. Downstream DNA sequence effects on transcription elongation. Allosteric binding of nucleoside triphosphates facilitates translocation via a ratchet motion. J Biol Chem 2003; 278:35597 - 608; http://dx.doi.org/10.1074/jbc.M304496200; PMID: 12813036
  • Kennedy SR, Erie DA. Templated nucleoside triphosphate binding to a noncatalytic site on RNA polymerase regulates transcription. Proc Natl Acad Sci U S A 2011; 108:6079 - 84; http://dx.doi.org/10.1073/pnas.1011274108; PMID: 21447716
  • Johnson RS, Strausbauch M, Carraway JK. Rapid pyrophosphate release from transcriptional elongation complexes appears to be coupled to a nucleotide-induced conformational change in E. coli core polymerase. J Mol Biol 2011; 412:849 - 61; http://dx.doi.org/10.1016/j.jmb.2011.05.023; PMID: 21624374
  • Johnson RS, Strausbauch M, Cooper R, Register JK. Rapid kinetic analysis of transcription elongation by Escherichia coli RNA polymerase. J Mol Biol 2008; 381:1106 - 13; http://dx.doi.org/10.1016/j.jmb.2008.06.089; PMID: 18638485
  • Eliseo T, Sánchez IE, Nadra AD, Dellarole M, Paci M, de Prat Gay G, et al. Indirect DNA readout on the protein side: coupling between histidine protonation, global structural cooperativity, dynamics, and DNA binding of the human papillomavirus type 16 E2C domain. J Mol Biol 2009; 388:327 - 44; http://dx.doi.org/10.1016/j.jmb.2009.03.013; PMID: 19285507
  • Lundbäck T, van Den Berg S, Härd T. Sequence-specific DNA binding by the glucocorticoid receptor DNA-binding domain is linked to a salt-dependent histidine protonation. Biochemistry 2000; 39:8909 - 16; http://dx.doi.org/10.1021/bi000231i; PMID: 10913303
  • Harms MJ, Schlessman JL, Sue GR, García-Moreno B. Arginine residues at internal positions in a protein are always charged. Proc Natl Acad Sci U S A 2011; 108:18954 - 9; http://dx.doi.org/10.1073/pnas.1104808108; PMID: 22080604
  • Harms MJ, Schlessman JL, Chimenti MS, Sue GR, Damjanović A, García-Moreno B. A buried lysine that titrates with a normal pKa: role of conformational flexibility at the protein-water interface as a determinant of pKa values. Protein Sci 2008; 17:833 - 45; http://dx.doi.org/10.1110/ps.073397708; PMID: 18369193
  • Isom DG, Castañeda CA, Cannon BR, García-Moreno B. Large shifts in pKa values of lysine residues buried inside a protein. Proc Natl Acad Sci U S A 2011; 108:5260 - 5; http://dx.doi.org/10.1073/pnas.1010750108; PMID: 21389271
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996; 14:33 - 8, 27-8; http://dx.doi.org/10.1016/0263-7855(96)00018-5; PMID: 8744570