1,073
Views
19
CrossRef citations to date
0
Altmetric
Research Paper

Topoisomerase II plays a role in dosage compensation in Drosophila

, , , , &
Pages 238-250 | Received 19 Jul 2013, Accepted 16 Aug 2013, Published online: 23 Aug 2013

References

  • Lee CG, Chang KA, Kuroda MI, Hurwitz J. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation. EMBO J 1997; 16:2671 - 81; http://dx.doi.org/10.1093/emboj/16.10.2671; PMID: 9184214
  • Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 1997; 16:2054 - 60; http://dx.doi.org/10.1093/emboj/16.8.2054; PMID: 9155031
  • Wu L, Zee BM, Wang Y, Garcia BA, Dou Y. The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation. Mol Cell 2011; 43:132 - 44; http://dx.doi.org/10.1016/j.molcel.2011.05.015; PMID: 21726816
  • Gupta V, Parisi M, Sturgill D, Nuttall R, Doctolero M, Dudko OK, Malley JD, Eastman PS, Oliver B. Global analysis of X-chromosome dosage compensation. J Biol 2006; 5:3; http://dx.doi.org/10.1186/jbiol30; PMID: 16507155
  • Conrad T, Akhtar A. Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat Rev Genet 2011; 13:123 - 34; http://dx.doi.org/10.1038/nrg3124; PMID: 22251873
  • Gelbart ME, Larschan E, Peng S, Park PJ, Kuroda MI. Drosophila MSL complex globally acetylates H4K16 on the male X chromosome for dosage compensation. Nat Struct Mol Biol 2009; 16:825 - 32; http://dx.doi.org/10.1038/nsmb.1644; PMID: 19648925
  • Straub T, Becker PB. Transcription modulation chromosome-wide: universal features and principles of dosage compensation in worms and flies. Curr Opin Genet Dev 2011; 21:147 - 53; http://dx.doi.org/10.1016/j.gde.2011.01.012; PMID: 21316939
  • Deuring R, Fanti L, Armstrong JA, Sarte M, Papoulas O, Prestel M, Daubresse G, Verardo M, Moseley SL, Berloco M, et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol Cell 2000; 5:355 - 65; http://dx.doi.org/10.1016/S1097-2765(00)80430-X; PMID: 10882076
  • Lucchesi JC. The structure-function link of compensated chromatin in Drosophila. Curr Opin Genet Dev 2009; 19:550 - 6; http://dx.doi.org/10.1016/j.gde.2009.10.004; PMID: 19880310
  • Furuhashi H, Nakajima M, Hirose S. DNA supercoiling factor contributes to dosage compensation in Drosophila. Development 2006; 133:4475 - 83; http://dx.doi.org/10.1242/dev.02620; PMID: 17035293
  • Kobayashi M, Aita N, Hayashi S, Okada K, Ohta T, Hirose S. DNA supercoiling factor localizes to puffs on polytene chromosomes in Drosophila melanogaster. Mol Cell Biol 1998; 18:6737 - 44; PMID: 9774687
  • Ohta T, Hirose S. Purification of a DNA supercoiling factor from the posterior silk gland of Bombyx mori. Proc Natl Acad Sci U S A 1990; 87:5307 - 11; http://dx.doi.org/10.1073/pnas.87.14.5307; PMID: 2164676
  • Yokoyama R, Pannuti A, Ling H, Smith ER, Lucchesi JC. A plasmid model system shows that Drosophila dosage compensation depends on the global acetylation of histone H4 at lysine 16 and is not affected by depletion of common transcription elongation chromatin marks. Mol Cell Biol 2007; 27:7865 - 70; http://dx.doi.org/10.1128/MCB.00397-07; PMID: 17875941
  • Dunlap D, Yokoyama R, Ling H, Sun HY, McGill K, Cugusi S, Lucchesi JC. Distinct contributions of MSL complex subunits to the transcriptional enhancement responsible for dosage compensation in Drosophila. Nucleic Acids Res 2012; 40:11281 - 91; http://dx.doi.org/10.1093/nar/gks890; PMID: 23047951
  • Bushey AM, Ramos E, Corces VG. Three subclasses of a Drosophila insulator show distinct and cell type-specific genomic distributions. Genes Dev 2009; 23:1338 - 50; http://dx.doi.org/10.1101/gad.1798209; PMID: 19443682
  • Ramos E, Torre EA, Bushey AM, Gurudatta BV, Corces VG. DNA topoisomerase II modulates insulator function in Drosophila. PLoS One 2011; 6:e16562; http://dx.doi.org/10.1371/journal.pone.0016562; PMID: 21304601
  • Larschan E, Bishop EP, Kharchenko PV, Core LJ, Lis JT, Park PJ, Kuroda MI. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 2011; 471:115 - 8; http://dx.doi.org/10.1038/nature09757; PMID: 21368835
  • Zhang Y, Malone JH, Powell SK, Periwal V, Spana E, Macalpine DM, Oliver B. Expression in aneuploid Drosophila S2 cells. PLoS Biol 2010; 8:e1000320; http://dx.doi.org/10.1371/journal.pbio.1000320; PMID: 20186269
  • Alekseyenko AA, Peng S, Larschan E, Gorchakov AA, Lee OK, Kharchenko P, McGrath SD, Wang CI, Mardis ER, Park PJ, et al. A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 2008; 134:599 - 609; http://dx.doi.org/10.1016/j.cell.2008.06.033; PMID: 18724933
  • Straub T, Grimaud C, Gilfillan GD, Mitterweger A, Becker PB. The chromosomal high-affinity binding sites for the Drosophila dosage compensation complex. PLoS Genet 2008; 4:e1000302; http://dx.doi.org/10.1371/journal.pgen.1000302; PMID: 19079572
  • Morse RH. Analysis of DNA topology in yeast chromatin. Methods Mol Biol 2009; 523:93 - 108; http://dx.doi.org/10.1007/978-1-59745-190-1_7; PMID: 19381919
  • Sinden RR, Bat O, Kramer PR. Psoralen cross-linking as probe of torsional tension and topological domain size in vivo. Methods 1999; 17:112 - 24; http://dx.doi.org/10.1006/meth.1998.0723; PMID: 10075890
  • Hohl AM, Thompson M, Soshnev AA, Wu J, Morris J, Hsieh TS, Wu CT, Geyer PK. Restoration of topoisomerase 2 function by complementation of defective monomers in Drosophila. Genetics 2012; 192:843 - 56; http://dx.doi.org/10.1534/genetics.112.144006; PMID: 22923380
  • Amrein H, Axel R. Genes expressed in neurons of adult male Drosophila. Cell 1997; 88:459 - 69; http://dx.doi.org/10.1016/S0092-8674(00)81886-3; PMID: 9038337
  • Meller VH, Wu KH, Roman G, Kuroda MI, Davis RL. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 1997; 88:445 - 57; http://dx.doi.org/10.1016/S0092-8674(00)81885-1; PMID: 9038336
  • Bai X, Alekseyenko AA, Kuroda MI. Sequence-specific targeting of MSL complex regulates transcription of the roX RNA genes. EMBO J 2004; 23:2853 - 61; http://dx.doi.org/10.1038/sj.emboj.7600299; PMID: 15229655
  • Zhou K, Choe KT, Zaidi Z, Wang Q, Mathews MB, Lee CG. RNA helicase A interacts with dsDNA and topoisomerase IIalpha. Nucleic Acids Res 2003; 31:2253 - 60; http://dx.doi.org/10.1093/nar/gkg328; PMID: 12711669
  • Richter L, Bone JR, Kuroda MI. RNA-dependent association of the Drosophila maleless protein with the male X chromosome. Genes Cells 1996; 1:325 - 36; http://dx.doi.org/10.1046/j.1365-2443.1996.26027.x; PMID: 9133666
  • Morales V, Regnard C, Izzo A, Vetter I, Becker PB. The MRG domain mediates the functional integration of MSL3 into the dosage compensation complex. Mol Cell Biol 2005; 25:5947 - 54; http://dx.doi.org/10.1128/MCB.25.14.5947-5954.2005; PMID: 15988010
  • Lyman LM, Copps K, Rastelli L, Kelley RL, Kuroda MI. Drosophila male-specific lethal-2 protein: structure/function analysis and dependence on MSL-1 for chromosome association. Genetics 1997; 147:1743 - 53; PMID: 9409833
  • Deng X, Meller VH. roX RNAs are required for increased expression of X-linked genes in Drosophila melanogaster males. Genetics 2006; 174:1859 - 66; http://dx.doi.org/10.1534/genetics.106.064568; PMID: 17028315
  • Menon DU, Meller VH. A role for siRNA in X-chromosome dosage compensation in Drosophila melanogaster. Genetics 2012; 191:1023 - 8; http://dx.doi.org/10.1534/genetics.112.140236; PMID: 22554892
  • Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 1992; 89:5547 - 51; http://dx.doi.org/10.1073/pnas.89.12.5547; PMID: 1319065
  • Kringstein AM, Rossi FM, Hofmann A, Blau HM. Graded transcriptional response to different concentrations of a single transactivator. Proc Natl Acad Sci U S A 1998; 95:13670 - 5; http://dx.doi.org/10.1073/pnas.95.23.13670; PMID: 9811858
  • Lee TH, Maheshri N. A regulatory role for repeated decoy transcription factor binding sites in target gene expression. Mol Syst Biol 2012; 8:576; http://dx.doi.org/10.1038/msb.2012.7; PMID: 22453733
  • Park Y, Mengus G, Bai X, Kageyama Y, Meller VH, Becker PB, Kuroda MI. Sequence-specific targeting of Drosophila roX genes by the MSL dosage compensation complex. Mol Cell 2003; 11:977 - 86; http://dx.doi.org/10.1016/S1097-2765(03)00147-3; PMID: 12718883
  • Soruco MM, Chery J, Bishop EP, Siggers T, Tolstorukov MY, Leydon AR, Sugden AU, Goebel K, Feng J, Xia P, et al. The CLAMP protein links the MSL complex to the X chromosome during Drosophila dosage compensation. Genes Dev 2013; 27:1551 - 6; http://dx.doi.org/10.1101/gad.214585.113; PMID: 23873939
  • Havas K, Flaus A, Phelan M, Kingston R, Wade PA, Lilley DM, Owen-Hughes T. Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell 2000; 103:1133 - 42; http://dx.doi.org/10.1016/S0092-8674(00)00215-4; PMID: 11163188
  • Maenner S, Müller M, Fröhlich J, Langer D, Becker PB. ATP-Dependent roX RNA Remodeling by the Helicase maleless Enables Specific Association of MSL Proteins. Mol Cell 2013; 51:174 - 84; http://dx.doi.org/10.1016/j.molcel.2013.06.011; PMID: 23870143
  • Ilik IA, Quinn JJ, Georgiev P, Tavares-Cadete F, Maticzka D, Toscano S, Wan Y, Spitale RC, Luscombe N, Backofen R, et al. Tandem Stem-Loops in roX RNAs Act Together to Mediate X Chromosome Dosage Compensation in Drosophila. Mol Cell 2013; 51:156 - 73; http://dx.doi.org/10.1016/j.molcel.2013.07.001; PMID: 23870142
  • Salceda J, Fernández X, Roca J. Topoisomerase II, not topoisomerase I, is the proficient relaxase of nucleosomal DNA. EMBO J 2006; 25:2575 - 83; http://dx.doi.org/10.1038/sj.emboj.7601142; PMID: 16710299
  • Ogasawara Y, Furuhashi H, Hirose S. DNA supercoiling factor positively regulates expression of the homeotic gene Abdominal-B in Drosophila melanogaster. Genes Cells 2007; 12:1347 - 55; http://dx.doi.org/10.1111/j.1365-2443.2007.01140.x; PMID: 18076572
  • Wang CI, Alekseyenko AA, LeRoy G, Elia AE, Gorchakov AA, Britton LM, Elledge SJ, Kharchenko PV, Garcia BA, Kuroda MI. Chromatin proteins captured by ChIP-mass spectrometry are linked to dosage compensation in Drosophila. Nat Struct Mol Biol 2013; 20:202 - 9; http://dx.doi.org/10.1038/nsmb.2477; PMID: 23295261
  • Park SW, Parrott AM, Fritz DT, Park Y, Mathews MB, Lee CG. Regulation of the catalytic function of topoisomerase II alpha through association with RNA. Nucleic Acids Res 2008; 36:6080 - 90; http://dx.doi.org/10.1093/nar/gkn614; PMID: 18820297
  • Larschan E, Alekseyenko AA, Gortchakov AA, Peng S, Li B, Yang P, Workman JL, Park PJ, Kuroda MI. MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. Mol Cell 2007; 28:121 - 33; http://dx.doi.org/10.1016/j.molcel.2007.08.011; PMID: 17936709
  • Straub T, Zabel A, Gilfillan GD, Feller C, Becker PB. Different chromatin interfaces of the Drosophila dosage compensation complex revealed by high-shear ChIP-seq. Genome Res 2013; 23:473 - 85; http://dx.doi.org/10.1101/gr.146407.112; PMID: 23233545
  • Smith ER, Allis CD, Lucchesi JC. Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J Biol Chem 2001; 276:31483 - 6; http://dx.doi.org/10.1074/jbc.C100351200; PMID: 11445559
  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 2006; 311:844 - 7; http://dx.doi.org/10.1126/science.1124000; PMID: 16469925
  • Robinson PJ, An W, Routh A, Martino F, Chapman L, Roeder RG, Rhodes D. 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. J Mol Biol 2008; 381:816 - 25; http://dx.doi.org/10.1016/j.jmb.2008.04.050; PMID: 18653199
  • Liu Y, Lu C, Yang Y, Fan Y, Yang R, Liu CF, Korolev N, Nordenskiöld L. Influence of histone tails and H4 tail acetylations on nucleosome-nucleosome interactions. J Mol Biol 2011; 414:749 - 64; http://dx.doi.org/10.1016/j.jmb.2011.10.031; PMID: 22051513
  • Bell O, Schwaiger M, Oakeley EJ, Lienert F, Beisel C, Stadler MB, Schübeler D. Accessibility of the Drosophila genome discriminates PcG repression, H4K16 acetylation and replication timing. Nat Struct Mol Biol 2010; 17:894 - 900; http://dx.doi.org/10.1038/nsmb.1825; PMID: 20562853
  • Conrad T, Cavalli FM, Vaquerizas JM, Luscombe NM, Akhtar A. Drosophila dosage compensation involves enhanced Pol II recruitment to male X-linked promoters. Science 2012; 337:742 - 6; http://dx.doi.org/10.1126/science.1221428; PMID: 22821985