2,259
Views
28
CrossRef citations to date
0
Altmetric
Review

The RNA polymerase II preinitiation complex

Through what pathway is the complex assembled?

Article: e27050 | Received 26 Sep 2013, Accepted 02 Nov 2013, Published online: 15 Nov 2013

References

  • Orphanides G, Lagrange T, Reinberg D. The general transcription factors of RNA polymerase II. Genes Dev 1996; 10:2657 - 83; http://dx.doi.org/10.1101/gad.10.21.2657; PMID: 8946909
  • Roeder RG. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci 1996; 21:327 - 35; PMID: 8870495
  • Hahn S. Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 2004; 11:394 - 403; http://dx.doi.org/10.1038/nsmb763; PMID: 15114340
  • Vannini A, Cramer P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell 2012; 45:439 - 46; http://dx.doi.org/10.1016/j.molcel.2012.01.023; PMID: 22365827
  • Murakami K, Calero G, Brown CR, Liu X, Davis RE, Boeger H, Kornberg RD. Formation and fate of a complete 31-protein RNA polymerase II transcription preinitiation complex. J Biol Chem 2013; 288:6325 - 32; http://dx.doi.org/10.1074/jbc.M112.433623; PMID: 23303183
  • He Y, Fang J, Taatjes DJ, Nogales E. Structural visualization of key steps in human transcription initiation. Nature 2013; 495:481 - 6; http://dx.doi.org/10.1038/nature11991; PMID: 23446344
  • Nechaev S, Adelman K. Promoter-proximal Pol II: when stalling speeds things up. Cell Cycle 2008; 7:1539 - 44; http://dx.doi.org/10.4161/cc.7.11.6006; PMID: 18469524
  • Gilmour DS. Promoter proximal pausing on genes in metazoans. Chromosoma 2009; 118:1 - 10; http://dx.doi.org/10.1007/s00412-008-0182-4; PMID: 18830703
  • Zhou Q, Li T, Price DH. RNA polymerase II elongation control. Annu Rev Biochem 2012; 81:119 - 43; http://dx.doi.org/10.1146/annurev-biochem-052610-095910; PMID: 22404626
  • Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 2007; 8:424 - 36; http://dx.doi.org/10.1038/nrg2026; PMID: 17486122
  • Juven-Gershon T, Hsu J-Y, Theisen JWM, Kadonaga JT. The RNA polymerase II core promoter - the gateway to transcription. Curr Opin Cell Biol 2008; 20:253 - 9; http://dx.doi.org/10.1016/j.ceb.2008.03.003; PMID: 18436437
  • Ponjavic J, Lenhard B, Kai C, Kawai J, Carninci P, Hayashizaki Y, Sandelin A. Transcriptional and structural impact of TATA-initiation site spacing in mammalian core promoters. Genome Biol 2006; 7:R78; http://dx.doi.org/10.1186/gb-2006-7-8-r78; PMID: 16916456
  • Dikstein R. The unexpected traits associated with core promoter elements. Transcription 2011; 2:201 - 6; http://dx.doi.org/10.4161/trns.2.5.17271; PMID: 22231114
  • Venters BJ, Pugh BF. Genomic organization of human transcription initiation complexes. Nature 2013; 502:53 - 8; PMID: 24048476
  • Kim JL, Nikolov DB, Burley SK. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 1993; 365:520 - 7; http://dx.doi.org/10.1038/365520a0; PMID: 8413605
  • Lagrange T, Kapanidis AN, Tang H, Reinberg D, Ebright RH. New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev 1998; 12:34 - 44; http://dx.doi.org/10.1101/gad.12.1.34; PMID: 9420329
  • Deng W, Roberts SGE. A core promoter element downstream of the TATA box that is recognized by TFIIB. Genes Dev 2005; 19:2418 - 23; http://dx.doi.org/10.1101/gad.342405; PMID: 16230532
  • Sainsbury S, Niesser J, Cramer P. Structure and function of the initially transcribing RNA polymerase II-TFIIB complex. Nature 2013; 493:437 - 40; http://dx.doi.org/10.1038/nature11715; PMID: 23151482
  • Pinto I, Wu W-H, Na JG, Hampsey M. Characterization of sua7 mutations defines a domain of TFIIB involved in transcription start site selection in yeast. J Biol Chem 1994; 269:30569 - 73; PMID: 7982976
  • Pardee TS, Bangur CS, Ponticelli AS. The N-terminal region of yeast TFIIB contains two adjacent functional domains involved in stable RNA polymerase II binding and transcription start site selection. J Biol Chem 1998; 273:17859 - 64; http://dx.doi.org/10.1074/jbc.273.28.17859; PMID: 9651390
  • Hawkes NA, Roberts SG. The role of human TFIIB in transcription start site selection in vitro and in vivo.. J Biol Chem 1999; 274:14337 - 43; http://dx.doi.org/10.1074/jbc.274.20.14337; PMID: 10318856
  • Cho EJ, Buratowski S. Evidence that transcription factor IIB is required for a post-assembly step in transcription initiation. J Biol Chem 1999; 274:25807 - 13; http://dx.doi.org/10.1074/jbc.274.36.25807; PMID: 10464320
  • Yang C, Ponticelli AS. Evidence that RNA polymerase II and not TFIIB is responsible for the difference in transcription initiation patterns between Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res 2012; 40:6495 - 507; http://dx.doi.org/10.1093/nar/gks323; PMID: 22510268
  • Tirode F, Busso D, Coin F, Egly JM. Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol Cell 1999; 3:87 - 95; http://dx.doi.org/10.1016/S1097-2765(00)80177-X; PMID: 10024882
  • Parvin JD, Sharp PA. DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell 1993; 73:533 - 40; http://dx.doi.org/10.1016/0092-8674(93)90140-L; PMID: 8490964
  • Pan G, Greenblatt J. Initiation of transcription by RNA polymerase II is limited by melting of the promoter DNA in the region immediately upstream of the initiation site. J Biol Chem 1994; 269:30101 - 4; PMID: 7982911
  • Kim TK, Ebright RH, Reinberg D. Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 2000; 288:1418 - 22; http://dx.doi.org/10.1126/science.288.5470.1418; PMID: 10827951
  • Grünberg S, Warfield L, Hahn S. Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening. Nat Struct Mol Biol 2012; 19:788 - 96; http://dx.doi.org/10.1038/nsmb.2334; PMID: 22751016
  • Li Y, Flanagan PM, Tschochner H, Kornberg RD. RNA polymerase II initiation factor interactions and transcription start site selection. Science 1994; 263:805 - 7; http://dx.doi.org/10.1126/science.8303296; PMID: 8303296
  • Maxon ME, Goodrich JA, Tjian R. Transcription factor IIE binds preferentially to RNA polymerase IIa and recruits TFIIH: a model for promoter clearance. Genes Dev 1994; 8:515 - 24; http://dx.doi.org/10.1101/gad.8.5.515; PMID: 7926747
  • Ohkuma Y, Hashimoto S, Wang CK, Horikoshi M, Roeder RG. Analysis of the role of TFIIE in basal transcription and TFIIH-mediated carboxy-terminal domain phosphorylation through structure-function studies of TFIIE-alpha. Mol Cell Biol 1995; 15:4856 - 66; PMID: 7651404
  • Bushnell DA, Bamdad C, Kornberg RD. A minimal set of RNA polymerase II transcription protein interactions. J Biol Chem 1996; 271:20170 - 4; http://dx.doi.org/10.1074/jbc.271.33.20170; PMID: 8702741
  • Timmers HTM. Transcription initiation by RNA polymerase II does not require hydrolysis of the beta-gamma phosphoanhydride bond of ATP. EMBO J 1994; 13:391 - 9; PMID: 8313884
  • Holstege FCP, Tantin D, Carey M, van der Vliet PC, Timmers HTM. The requirement for the basal transcription factor IIE is determined by the helical stability of promoter DNA. EMBO J 1995; 14:810 - 9; PMID: 7882984
  • Grohmann D, Nagy J, Chakraborty A, Klose D, Fielden D, Ebright RH, Michaelis J, Werner F. The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation. Mol Cell 2011; 43:263 - 74; http://dx.doi.org/10.1016/j.molcel.2011.05.030; PMID: 21777815
  • De Carlo S, Lin SC, Taatjes DJ, Hoenger A. Molecular basis of transcription initiation in Archaea. Transcription 2010; 1:103 - 11; http://dx.doi.org/10.4161/trns.1.2.13189; PMID: 21326901
  • Werner F, Weinzierl ROJ. Direct modulation of RNA polymerase core functions by basal transcription factors. Mol Cell Biol 2005; 25:8344 - 55; http://dx.doi.org/10.1128/MCB.25.18.8344-8355.2005; PMID: 16135821
  • Sopta M, Carthew RW, Greenblatt J. Isolation of three proteins that bind to mammalian RNA polymerase II. J Biol Chem 1985; 260:10353 - 60; PMID: 3860504
  • Eichner J, Chen HT, Warfield L, Hahn S. Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex. EMBO J 2010; 29:706 - 16; http://dx.doi.org/10.1038/emboj.2009.386; PMID: 20033062
  • Fishburn J, Hahn S. Architecture of the yeast RNA polymerase II open complex and regulation of activity by TFIIF. Mol Cell Biol 2012; 32:12 - 25; http://dx.doi.org/10.1128/MCB.06242-11; PMID: 22025674
  • Chen ZA, Jawhari A, Fischer L, Buchen C, Tahir S, Kamenski T, Rasmussen M, Lariviere L, Bukowski-Wills JC, Nilges M, et al. Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. EMBO J 2010; 29:717 - 26; http://dx.doi.org/10.1038/emboj.2009.401; PMID: 20094031
  • Čabart P, Újvári A, Pal M, Luse DS. TFIIF is not required for initiation by RNA polymerase II but it is essential to stabilize TFIIB in early transcription complexes. Proc Natl Acad Sci USA 2011; 108:15786 - 91; http://dx.doi.org/10.1073/pnas.1104591108; PMID: 21896726
  • Yan Q, Moreland RJ, Conaway JW, Conaway RC. Dual roles for transcription factor IIF in promoter escape by RNA polymerase II. J Biol Chem 1999; 274:35668 - 75; http://dx.doi.org/10.1074/jbc.274.50.35668; PMID: 10585446
  • Khaperskyy DA, Ammerman ML, Majovski RC, Ponticelli AS. Functions of Saccharomyces cerevisiae TFIIF during transcription start site utilization. Mol Cell Biol 2008; 28:3757 - 66; http://dx.doi.org/10.1128/MCB.02272-07; PMID: 18362165
  • Luse DS. Rethinking the role of TFIIF in transcript initiation by RNA polymerase II. Transcription 2012; 3:156 - 9; http://dx.doi.org/10.4161/trns.20725; PMID: 22771986
  • Rhee HS, Pugh BF. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 2012; 483:295 - 301; http://dx.doi.org/10.1038/nature10799; PMID: 22258509
  • Hieb AR, Halsey WA, Betterton MD, Perkins TT, Kugel JF, Goodrich JA. TFIIA changes the conformation of the DNA in TBP/TATA complexes and increases their kinetic stability. J Mol Biol 2007; 372:619 - 32; http://dx.doi.org/10.1016/j.jmb.2007.06.061; PMID: 17681538
  • Blair RH, Goodrich JA, Kugel JF. Single-molecule fluorescence resonance energy transfer shows uniformity in TATA binding protein-induced DNA bending and heterogeneity in bending kinetics. Biochemistry 2012; 51:7444 - 55; http://dx.doi.org/10.1021/bi300491j; PMID: 22934924
  • Cianfrocco MA, Kassavetis GA, Grob P, Fang J, Juven-Gershon T, Kadonaga JT, Nogales E. Human TFIID binds to core promoter DNA in a reorganized structural state. Cell 2013; 152:120 - 31; http://dx.doi.org/10.1016/j.cell.2012.12.005; PMID: 23332750
  • Juven-Gershon T, Cheng S, Kadonaga JT. Rational design of a super core promoter that enhances gene expression. Nat Methods 2006; 3:917 - 22; http://dx.doi.org/10.1038/nmeth937; PMID: 17124735
  • Lei L, Ren D, Finkelstein A, Burton ZF. Functions of the N- and C-terminal domains of human RAP74 in transcriptional initiation, elongation, and recycling of RNA polymerase II. Mol Cell Biol 1998; 18:2130 - 42; PMID: 9528785
  • Újvári A, Pal M, Luse DS. The functions of TFIIF during initiation and transcript elongation are differentially affected by phosphorylation by casein kinase 2. J Biol Chem 2011; 286:23160 - 7; http://dx.doi.org/10.1074/jbc.M110.205658; PMID: 21566144
  • Edwards AM, Kane CM, Young RA, Kornberg RD. Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro.. J Biol Chem 1991; 266:71 - 5; PMID: 1985924
  • Pal M, Ponticelli AS, Luse DS. The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. Mol Cell 2005; 19:101 - 10; http://dx.doi.org/10.1016/j.molcel.2005.05.024; PMID: 15989968
  • Luse DS, Jacob GA. Abortive initiation by RNA polymerase II in vitro at the adenovirus 2 major late promoter. J Biol Chem 1987; 262:14990 - 7; PMID: 3667620
  • Holstege FCP, Fiedler U, Timmers HTM. Three transitions in the RNA polymerase II transcription complex during initiation. EMBO J 1997; 16:7468 - 80; http://dx.doi.org/10.1093/emboj/16.24.7468; PMID: 9405375
  • Pal M, Luse DS. Strong natural pausing by RNA polymerase II within 10 bases of transcription start may result in repeated slippage and reextension of the nascent RNA. Mol Cell Biol 2002; 22:30 - 40; http://dx.doi.org/10.1128/MCB.22.1.30-40.2002; PMID: 11739720
  • Murakami K, Elmlund H, Kalisman N, Bushnell DA, Adams CM, Azubel M, Elmlund D, Levi-Kalisman Y, Liu X, Gibbons BJ, et al. Architecture of an RNA polymerase II transcription pre-initiation complex. Science 2013; 342:1238724; http://dx.doi.org/10.1126/science.1238724; PMID: 24072820
  • Kim B, Nesvizhskii AI, Rani PG, Hahn S, Aebersold R, Ranish JA. The transcription elongation factor TFIIS is a component of RNA polymerase II preinitiation complexes. Proc Natl Acad Sci U S A 2007; 104:16068 - 73; http://dx.doi.org/10.1073/pnas.0704573104; PMID: 17913884
  • Elsby LM, O’Donnell AJ, Green LM, Sharrocks AD, Roberts SG. Assembly of transcription factor IIB at a promoter in vivo requires contact with RNA polymerase II. EMBO Rep 2006; 7:898 - 903; http://dx.doi.org/10.1038/sj.embor.7400767; PMID: 16878124
  • Yudkovsky N, Ranish JA, Hahn S. A transcription reinitiation intermediate that is stabilized by activator. Nature 2000; 408:225 - 9; http://dx.doi.org/10.1038/35041603; PMID: 11089979
  • Singh BN, Hampsey M. A transcription-independent role for TFIIB in gene looping. Mol Cell 2007; 27:806 - 16; http://dx.doi.org/10.1016/j.molcel.2007.07.013; PMID: 17803944
  • El Kaderi B, Medler S, Raghunayakula S, Ansari A. Gene looping is conferred by activator-dependent interaction of transcription initiation and termination machineries. J Biol Chem 2009; 284:25015 - 25; http://dx.doi.org/10.1074/jbc.M109.007948; PMID: 19602510
  • Kouzine F, Wojtowicz D, Yamane A, Resch W, Kieffer-Kwon KR, Bandle R, Nelson S, Nakahashi H, Awasthi P, Feigenbaum L, et al. Global regulation of promoter melting in naive lymphocytes. Cell 2013; 153:988 - 99; http://dx.doi.org/10.1016/j.cell.2013.04.033; PMID: 23706737
  • Zanton SJ, Pugh BF. Full and partial genome-wide assembly and disassembly of the yeast transcription machinery in response to heat shock. Genes Dev 2006; 20:2250 - 65; http://dx.doi.org/10.1101/gad.1437506; PMID: 16912275
  • Hu X, Malik S, Negroiu CC, Hubbard K, Velalar CN, Hampton B, Grosu D, Catalano J, Roeder RG, Gnatt A. A Mediator-responsive form of metazoan RNA polymerase II. Proc Natl Acad Sci U S A 2006; 103:9506 - 11; http://dx.doi.org/10.1073/pnas.0603702103; PMID: 16769904
  • Cheng B, Li T, Rahl PB, Adamson TE, Loudas NB, Guo J, Varzavand K, Cooper JJ, Hu X, Gnatt A, et al. Functional association of Gdown1 with RNA polymerase II poised on human genes. Mol Cell 2012; 45:38 - 50; http://dx.doi.org/10.1016/j.molcel.2011.10.022; PMID: 22244331
  • Jishage M, Malik S, Wagner U, Uberheide B, Ishihama Y, Hu X, Chait BT, Gnatt A, Ren B, Roeder RG. Transcriptional regulation by Pol II(G) involving mediator and competitive interactions of Gdown1 and TFIIF with Pol II. Mol Cell 2012; 45:51 - 63; http://dx.doi.org/10.1016/j.molcel.2011.12.014; PMID: 22244332
  • Wu YM, Chang JW, Wang CH, Lin YC, Wu PL, Huang SH, Chang CC, Hu X, Gnatt A, Chang WH. Regulation of mammalian transcription by Gdown1 through a novel steric crosstalk revealed by cryo-EM. EMBO J 2012; 31:3575 - 87; http://dx.doi.org/10.1038/emboj.2012.205; PMID: 22850672
  • Lewis BA, Sims RJ 3rd, Lane WS, Reinberg D. Functional characterization of core promoter elements: DPE-specific transcription requires the protein kinase CK2 and the PC4 coactivator. Mol Cell 2005; 18:471 - 81; http://dx.doi.org/10.1016/j.molcel.2005.04.005; PMID: 15893730
  • Bernecky C, Grob P, Ebmeier CC, Nogales E, Taatjes DJ. Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly. PLoS Biol 2011; 9:e1000603; http://dx.doi.org/10.1371/journal.pbio.1000603; PMID: 21468301
  • Valen E, Sandelin A. Genomic and chromatin signals underlying transcription start-site selection. Trends Genet 2011; 27:475 - 85; http://dx.doi.org/10.1016/j.tig.2011.08.001; PMID: 21924514
  • Isogai Y, Keles S, Prestel M, Hochheimer A, Tjian R. Transcription of histone gene cluster by differential core-promoter factors. Genes Dev 2007; 21:2936 - 49; http://dx.doi.org/10.1101/gad.1608807; PMID: 17978101
  • Müller F, Demény MA, Tora L. New problems in RNA polymerase II transcription initiation: matching the diversity of core promoters with a variety of promoter recognition factors. J Biol Chem 2007; 282:14685 - 9; http://dx.doi.org/10.1074/jbc.R700012200; PMID: 17395580
  • Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev 2011; 25:1010 - 22; http://dx.doi.org/10.1101/gad.2037511; PMID: 21576262
  • Core LJ, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 2008; 322:1845 - 8; http://dx.doi.org/10.1126/science.1162228; PMID: 19056941
  • Lee JS, Shukla A, Schneider J, Swanson SK, Washburn MP, Florens L, Bhaumik SR, Shilatifard A. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 2007; 131:1084 - 96; http://dx.doi.org/10.1016/j.cell.2007.09.046; PMID: 18083099
  • Flynn RA, Almada AE, Zamudio JR, Sharp PA. Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome. Proc Natl Acad Sci U S A 2011; 108:10460 - 5; http://dx.doi.org/10.1073/pnas.1106630108; PMID: 21670248
  • Kuehner JN, Brow DA. Quantitative analysis of in vivo initiator selection by yeast RNA polymerase II supports a scanning model. J Biol Chem 2006; 281:14119 - 28; http://dx.doi.org/10.1074/jbc.M601937200; PMID: 16571719
  • Dvir A, Conaway RC, Conaway JW. Promoter escape by RNA polymerase II. A role for an ATP cofactor in suppression of arrest by polymerase at promoter-proximal sites. J Biol Chem 1996; 271:23352 - 6; http://dx.doi.org/10.1074/jbc.271.38.23352; PMID: 8798537

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.