2,828
Views
46
CrossRef citations to date
0
Altmetric
Review

Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation

, &
Article: e27369 | Received 15 Oct 2013, Accepted 27 Nov 2013, Published online: 10 Dec 2013

References

  • Vannini A, Cramer P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell 2012; 45:439 - 46; http://dx.doi.org/10.1016/j.molcel.2012.01.023; PMID: 22365827
  • Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 1999; 24:437 - 40; http://dx.doi.org/10.1016/S0968-0004(99)01460-7; PMID: 10542411
  • Orioli A, Pascali C, Pagano A, Teichmann M, Dieci G. RNA polymerase III transcription control elements: themes and variations. Gene 2012; 493:185 - 94; http://dx.doi.org/10.1016/j.gene.2011.06.015; PMID: 21712079
  • Kadonaga JT. Perspectives on the RNA polymerase II core promoter. Wiley Interdiscip Rev Dev Biol 2012; 1:40 - 51; http://dx.doi.org/10.1002/wdev.21; PMID: 23801666
  • Schramm L, Hernandez N. Recruitment of RNA polymerase III to its target promoters. Genes Dev 2002; 16:2593 - 620; http://dx.doi.org/10.1101/gad.1018902; PMID: 12381659
  • Geiduschek EP, Kassavetis GA. The RNA polymerase III transcription apparatus. J Mol Biol 2001; 310:1 - 26; http://dx.doi.org/10.1006/jmbi.2001.4732; PMID: 11419933
  • Kassavetis GA, Geiduschek EP. Transcription factor TFIIIB and transcription by RNA polymerase III. Biochem Soc Trans 2006; 34:1082 - 7; http://dx.doi.org/10.1042/BST0341082; PMID: 17073756
  • Moir RD, Willis IM. Regulation of pol III transcription by nutrient and stress signaling pathways. Biochim Biophys Acta 2013; 1829:361 - 75; http://dx.doi.org/10.1016/j.bbagrm.2012.11.001; PMID: 23165150
  • Venters BJ, Pugh BF. Genomic organization of human transcription initiation complexes. Nature 2013; 502:53 - 8; PMID: 24048476
  • Nagarajavel V, Iben JR, Howard BH, Maraia RJ, Clark DJ. Global ‘bootprinting’ reveals the elastic architecture of the yeast TFIIIB-TFIIIC transcription complex in vivo. Nucleic Acids Res 2013; 41:8135 - 43; http://dx.doi.org/10.1093/nar/gkt611; PMID: 23856458
  • Taylor NM, Baudin F, von Scheven G, Müller CW. RNA polymerase III-specific general transcription factor IIIC contains a heterodimer resembling TFIIF Rap30/Rap74. Nucleic Acids Res 2013; 41:9183 - 96; http://dx.doi.org/10.1093/nar/gkt664; PMID: 23921640
  • Lee J, Moir RD, McIntosh KB, Willis IM. TOR signaling regulates ribosome and tRNA synthesis via LAMMER/Clk and GSK-3 family kinases. Mol Cell 2012; 45:836 - 43; http://dx.doi.org/10.1016/j.molcel.2012.01.018; PMID: 22364741
  • Nielsen S, Yuzenkova Y, Zenkin N. Mechanism of eukaryotic RNA polymerase III transcription termination. Science 2013; 340:1577 - 80; http://dx.doi.org/10.1126/science.1237934; PMID: 23812715
  • Nikolov DB, Burley SK. RNA polymerase II transcription initiation: a structural view. Proc Natl Acad Sci U S A 1997; 94:15 - 22; http://dx.doi.org/10.1073/pnas.94.1.15; PMID: 8990153
  • Ranish JA, Yudkovsky N, Hahn S. Intermediates in formation and activity of the RNA polymerase II preinitiation complex: holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev 1999; 13:49 - 63; http://dx.doi.org/10.1101/gad.13.1.49; PMID: 9887099
  • Ha I, Roberts S, Maldonado E, Sun X, Kim LU, Green M, Reinberg D. Multiple functional domains of human transcription factor IIB: distinct interactions with two general transcription factors and RNA polymerase II. Genes Dev 1993; 7:1021 - 32; http://dx.doi.org/10.1101/gad.7.6.1021; PMID: 8504927
  • Buratowski S, Hahn S, Guarente L, Sharp PA. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 1989; 56:549 - 61; http://dx.doi.org/10.1016/0092-8674(89)90578-3; PMID: 2917366
  • Buratowski S, Zhou H. Functional domains of transcription factor TFIIB. Proc Natl Acad Sci U S A 1993; 90:5633 - 7; http://dx.doi.org/10.1073/pnas.90.12.5633; PMID: 8516312
  • Hahn S. Activation and the role of reinitiation in the control of transcription by RNA polymerase II. Cold Spring Harb Symp Quant Biol 1998; 63:181 - 8; http://dx.doi.org/10.1101/sqb.1998.63.181; PMID: 10384282
  • Kassavetis GA, Driscoll R, Geiduschek EP. Mapping the principal interaction site of the Brf1 and Bdp1 subunits of Saccharomyces cerevisiae TFIIIB. J Biol Chem 2006; 281:14321 - 9; http://dx.doi.org/10.1074/jbc.M601702200; PMID: 16551611
  • Kassavetis GA, Braun BR, Nguyen LH, Geiduschek EP. S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 1990; 60:235 - 45; http://dx.doi.org/10.1016/0092-8674(90)90739-2; PMID: 2404611
  • Marsolier MC, Chaussivert N, Lefebvre O, Conesa C, Werner M, Sentenac A. Directing transcription of an RNA polymerase III gene via GAL4 sites. Proc Natl Acad Sci U S A 1994; 91:11938 - 42; http://dx.doi.org/10.1073/pnas.91.25.11938; PMID: 7991561
  • Werner M, Chaussivert N, Willis IM, Sentenac A. Interaction between a complex of RNA polymerase III subunits and the 70-kDa component of transcription factor IIIB. J Biol Chem 1993; 268:20721 - 4; PMID: 8407894
  • Brun I, Sentenac A, Werner M. Dual role of the C34 subunit of RNA polymerase III in transcription initiation. EMBO J 1997; 16:5730 - 41; http://dx.doi.org/10.1093/emboj/16.18.5730; PMID: 9312031
  • Andrau JC, Sentenac A, Werner M. Mutagenesis of yeast TFIIIB70 reveals C-terminal residues critical for interaction with TBP and C34. J Mol Biol 1999; 288:511 - 20; http://dx.doi.org/10.1006/jmbi.1999.2724; PMID: 10329159
  • Ferri M-L, Peyroche G, Siaut M, Lefebvre O, Carles C, Conesa C, Sentenac A. A novel subunit of yeast RNA polymerase III interacts with the TFIIB-related domain of TFIIIB70. Mol Cell Biol 2000; 20:488 - 95; http://dx.doi.org/10.1128/MCB.20.2.488-495.2000; PMID: 10611227
  • Dieci G, Sentenac A. Detours and shortcuts to transcription reinitiation. Trends Biochem Sci 2003; 28:202 - 9; http://dx.doi.org/10.1016/S0968-0004(03)00054-9; PMID: 12713904
  • Zawel L, Kumar KP, Reinberg D. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev 1995; 9:1479 - 90; http://dx.doi.org/10.1101/gad.9.12.1479; PMID: 7601352
  • Sandaltzopoulos R, Becker PB. Heat shock factor increases the reinitiation rate from potentiated chromatin templates. Mol Cell Biol 1998; 18:361 - 7; PMID: 9418883
  • Yudkovsky N, Ranish JA, Hahn S. A transcription reinitiation intermediate that is stabilized by activator. Nature 2000; 408:225 - 9; http://dx.doi.org/10.1038/35041603; PMID: 11089979
  • Maraia RJ, Kenan DJ, Keene JD. Eukaryotic transcription termination factor La mediates transcript release and facilitates reinitiation by RNA polymerase III. Mol Cell Biol 1994; 14:2147 - 58; PMID: 8114745
  • Wang Z, Roeder RG. DNA topoisomerase I and PC4 can interact with human TFIIIC to promote both accurate termination and transcription reinitiation by RNA polymerase III. Mol Cell 1998; 1:749 - 57; http://dx.doi.org/10.1016/S1097-2765(00)80074-X; PMID: 9660958
  • Kassavetis GA, Riggs DL, Negri R, Nguyen LH, Geiduschek EP. Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes. Mol Cell Biol 1989; 9:2551 - 66; PMID: 2668737
  • Roberts DN, Stewart AJ, Huff JT, Cairns BR. The RNA polymerase III transcriptome revealed by genome-wide localization and activity-occupancy relationships. Proc Natl Acad Sci U S A 2003; 100:14695 - 700; http://dx.doi.org/10.1073/pnas.2435566100; PMID: 14634212
  • Joazeiro CA, Kassavetis GA, Geiduschek EP. Alternative outcomes in assembly of promoter complexes: the roles of TBP and a flexible linker in placing TFIIIB on tRNA genes. Genes Dev 1996; 10:725 - 39; http://dx.doi.org/10.1101/gad.10.6.725; PMID: 8598299
  • Hamada M, Huang Y, Lowe TM, Maraia RJ. Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast. Mol Cell Biol 2001; 21:6870 - 81; http://dx.doi.org/10.1128/MCB.21.20.6870-6881.2001; PMID: 11564871
  • Braun BR, Bartholomew B, Kassavetis GA, Geiduschek EP. Topography of transcription factor complexes on the Saccharomyces cerevisiae 5 S RNA gene. J Mol Biol 1992; 228:1063 - 77; http://dx.doi.org/10.1016/0022-2836(92)90315-B; PMID: 1474578
  • Bardeleben C, Kassavetis GA, Geiduschek EP. Encounters of Saccharomyces cerevisiae RNA polymerase III with its transcription factors during RNA chain elongation. J Mol Biol 1994; 235:1193 - 205; http://dx.doi.org/10.1006/jmbi.1994.1073; PMID: 8308884
  • Ferrari R, Rivetti C, Acker J, Dieci G. Distinct roles of transcription factors TFIIIB and TFIIIC in RNA polymerase III transcription reinitiation. Proc Natl Acad Sci U S A 2004; 101:13442 - 7; http://dx.doi.org/10.1073/pnas.0403851101; PMID: 15347814
  • Soragni E, Kassavetis GA. Absolute gene occupancies by RNA polymerase III, TFIIIB, and TFIIIC in Saccharomyces cerevisiae. J Biol Chem 2008; 283:26568 - 76; http://dx.doi.org/10.1074/jbc.M803769200; PMID: 18667429
  • Mayer A, Heidemann M, Lidschreiber M, Schreieck A, Sun M, Hintermair C, Kremmer E, Eick D, Cramer P. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 2012; 336:1723 - 5; http://dx.doi.org/10.1126/science.1219651; PMID: 22745433
  • Le Martelot G, Canella D, Symul L, Migliavacca E, Gilardi F, Liechti R, Martin O, Harshman K, Delorenzi M, Desvergne B, et al, CycliX Consortium. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol 2012; 10:e1001442; http://dx.doi.org/10.1371/journal.pbio.1001442; PMID: 23209382
  • Boguta M. Maf1, a general negative regulator of RNA polymerase III in yeast. Biochim Biophys Acta 2013; 1829:376 - 84; http://dx.doi.org/10.1016/j.bbagrm.2012.11.004; PMID: 23201230
  • Upadhya R, Lee J, Willis IM. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Mol Cell 2002; 10:1489 - 94; http://dx.doi.org/10.1016/S1097-2765(02)00787-6; PMID: 12504022
  • Harismendy O, Gendrel CG, Soularue P, Gidrol X, Sentenac A, Werner M, Lefebvre O. Genome-wide location of yeast RNA polymerase III transcription machinery. EMBO J 2003; 22:4738 - 47; http://dx.doi.org/10.1093/emboj/cdg466; PMID: 12970186
  • Kumar Y, Bhargava P. A unique nucleosome arrangement, maintained actively by chromatin remodelers facilitates transcription of yeast tRNA genes. BMC Genomics 2013; 14:402; http://dx.doi.org/10.1186/1471-2164-14-402; PMID: 23767421
  • Braun BR, Bartholomew B, Kassavetis GA, Geiduschek EP. Topography of transcription factor complexes on the Saccharomyces cerevisiae 5 S RNA gene. J Mol Biol 1992; 228:1063 - 77; http://dx.doi.org/10.1016/0022-2836(92)90315-B; PMID: 1474578
  • Bartholomew B, Kassavetis GA, Braun BR, Geiduschek EP. The subunit structure of Saccharomyces cerevisiae transcription factor IIIC probed with a novel photocrosslinking reagent. EMBO J 1990; 9:2197 - 205; PMID: 2100996
  • Schultz P, Marzouki N, Marck C, Ruet A, Oudet P, Sentenac A. The two DNA-binding domains of yeast transcription factor tau as observed by scanning transmission electron microscopy. EMBO J 1989; 8:3815 - 24; PMID: 2684647
  • Eschenlauer JB, Kaiser MW, Gerlach VL, Brow DA. Architecture of a yeast U6 RNA gene promoter. Mol Cell Biol 1993; 13:3015 - 26; PMID: 8474459
  • Bartholomew B, Braun BR, Kassavetis GA, Geiduschek EP. Probing close DNA contacts of RNA polymerase III transcription complexes with the photoactive nucleoside 4-thiodeoxythymidine. J Biol Chem 1994; 269:18090 - 5; PMID: 8027070
  • Burnol AF, Margottin F, Schultz P, Marsolier MC, Oudet P, Sentenac A. Basal promoter and enhancer element of yeast U6 snRNA gene. J Mol Biol 1993; 233:644 - 58; http://dx.doi.org/10.1006/jmbi.1993.1542; PMID: 8411171
  • Braun BR, Riggs DL, Kassavetis GA, Geiduschek EP. Multiple states of protein-DNA interaction in the assembly of transcription complexes on Saccharomyces cerevisiae 5S ribosomal RNA genes. Proc Natl Acad Sci U S A 1989; 86:2530 - 4; http://dx.doi.org/10.1073/pnas.86.8.2530; PMID: 2649882
  • Thuillier V, Stettler S, Sentenac A, Thuriaux P, Werner M. A mutation in the C31 subunit of Saccharomyces cerevisiae RNA polymerase III affects transcription initiation. EMBO J 1995; 14:351 - 9; PMID: 7835345
  • Wang Z, Roeder RG. Three human RNA polymerase III-specific subunits form a subcomplex with a selective function in specific transcription initiation. Genes Dev 1997; 11:1315 - 26; http://dx.doi.org/10.1101/gad.11.10.1315; PMID: 9171375
  • Carter R, Drouin G. The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase II is due to the permanent recruitment of general transcription factors. Mol Biol Evol 2010; 27:1035 - 43; http://dx.doi.org/10.1093/molbev/msp316; PMID: 20026480
  • Grünberg S, Warfield L, Hahn S. Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening. Nat Struct Mol Biol 2012; 19:788 - 96; http://dx.doi.org/10.1038/nsmb.2334; PMID: 22751016
  • Wu CC, Herzog F, Jennebach S, Lin YC, Pai CY, Aebersold R, Cramer P, Chen HT. RNA polymerase III subunit architecture and implications for open promoter complex formation. Proc Natl Acad Sci U S A 2012; 109:19232 - 7; http://dx.doi.org/10.1073/pnas.1211665109; PMID: 23132938
  • Maxon ME, Goodrich JA, Tjian R. Transcription factor IIE binds preferentially to RNA polymerase IIa and recruits TFIIH: a model for promoter clearance. Genes Dev 1994; 8:515 - 24; http://dx.doi.org/10.1101/gad.8.5.515; PMID: 7926747
  • Ohkuma Y, Roeder RG. Regulation of TFIIH ATPase and kinase activities by TFIIE during active initiation complex formation. Nature 1994; 368:160 - 3; http://dx.doi.org/10.1038/368160a0; PMID: 8166891
  • Ohkuma Y, Hashimoto S, Wang CK, Horikoshi M, Roeder RG. Analysis of the role of TFIIE in basal transcription and TFIIH-mediated carboxy-terminal domain phosphorylation through structure-function studies of TFIIE-alpha. Mol Cell Biol 1995; 15:4856 - 66; PMID: 7651404
  • Egly JM, Coin F. A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst) 2011; 10:714 - 21; http://dx.doi.org/10.1016/j.dnarep.2011.04.021; PMID: 21592869
  • Compe E, Egly J-M. TFIIH: when transcription met DNA repair. Nat Rev Mol Cell Biol 2012; 13:343 - 54; http://dx.doi.org/10.1038/nrm3350; PMID: 22572993
  • Kassavetis GA, Prakash P, Shim E. The C53/C37 subcomplex of RNA polymerase III lies near the active site and participates in promoter opening. J Biol Chem 2010; 285:2695 - 706; http://dx.doi.org/10.1074/jbc.M109.074013; PMID: 19940126
  • Vannini A. A Structural Perspective on RNA Polymerase I and RNA Polymerase III Transcription Machineries. Biochim Biophys Acta 2012; PMID: 23031840
  • Landrieux E, Alic N, Ducrot C, Acker J, Riva M, Carles C. A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation. EMBO J 2006; 25:118 - 28; http://dx.doi.org/10.1038/sj.emboj.7600915; PMID: 16362040
  • Wu CC, Lin YC, Chen HT. The TFIIF-like Rpc37/53 dimer lies at the center of a protein network to connect TFIIIC, Bdp1, and the RNA polymerase III active center. Mol Cell Biol 2011; 31:2715 - 28; http://dx.doi.org/10.1128/MCB.05151-11; PMID: 21536656
  • Geiduschek EP, Kassavetis GA. Transcription: adjusting to adversity by regulating RNA polymerase. Curr Biol 2006; 16:R849 - 51; http://dx.doi.org/10.1016/j.cub.2006.08.071; PMID: 17027482
  • Willis IM, Moir RD. Integration of nutritional and stress signaling pathways by Maf1. Trends Biochem Sci 2007; 32:51 - 3; http://dx.doi.org/10.1016/j.tibs.2006.12.001; PMID: 17174096
  • Chédin S, Riva M, Schultz P, Sentenac A, Carles C. The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIS-like subunit and is important for transcription termination. Genes Dev 1998; 12:3857 - 71; http://dx.doi.org/10.1101/gad.12.24.3857; PMID: 9869639
  • Fernández-Tornero C, Böttcher B, Rashid UJ, Steuerwald U, Flörchinger B, Devos DP, Lindner D, Müller CW. Conformational flexibility of RNA polymerase III during transcriptional elongation. EMBO J 2010; 29:3762 - 72; http://dx.doi.org/10.1038/emboj.2010.266; PMID: 20967027
  • Yee NS, Gong W, Huang Y, Lorent K, Dolan AC, Maraia RJ, Pack M. Mutation of RNA Pol III subunit rpc2/polr3b Leads to Deficiency of Subunit Rpc11 and disrupts zebrafish digestive development. PLoS Biol 2007; 5:e312; http://dx.doi.org/10.1371/journal.pbio.0050312; PMID: 18044988
  • Van Mullem V, Landrieux E, Vandenhaute J, Thuriaux P. Rpa12p, a conserved RNA polymerase I subunit with two functional domains. Mol Microbiol 2002; 43:1105 - 13; http://dx.doi.org/10.1046/j.1365-2958.2002.02824.x; PMID: 11918799
  • Izban MG, Luse DS. The RNA polymerase II ternary complex cleaves the nascent transcript in a 3′----5′ direction in the presence of elongation factor SII. Genes Dev 1992; 6:1342 - 56; http://dx.doi.org/10.1101/gad.6.7.1342; PMID: 1378419
  • Wind M, Reines D. Transcription elongation factor SII. Bioessays 2000; 22:327 - 36; http://dx.doi.org/10.1002/(SICI)1521-1878(200004)22:4<327::AID-BIES3>3.0.CO;2-4; PMID: 10723030
  • Arimbasseri AG, Rijal K, Maraia RJ. Transcription termination by the eukaryotic RNA polymerase III. Biochim Biophys Acta 2013; 1829:318 - 30; http://dx.doi.org/10.1016/j.bbagrm.2012.10.006; PMID: 23099421
  • Nudler E. RNA polymerase backtracking in gene regulation and genome instability. Cell 2012; 149:1438 - 45; http://dx.doi.org/10.1016/j.cell.2012.06.003; PMID: 22726433
  • Borukhov S, Sagitov V, Goldfarb A. Transcript cleavage factors from E. coli. Cell 1993; 72:459 - 66; http://dx.doi.org/10.1016/0092-8674(93)90121-6; PMID: 8431948
  • Cheung AC, Cramer P. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 2011; 471:249 - 53; http://dx.doi.org/10.1038/nature09785; PMID: 21346759
  • Komissarova N, Kashlev M. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded. Proc Natl Acad Sci U S A 1997; 94:1755 - 60; http://dx.doi.org/10.1073/pnas.94.5.1755; PMID: 9050851
  • Nudler E, Mustaev A, Lukhtanov E, Goldfarb A. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 1997; 89:33 - 41; http://dx.doi.org/10.1016/S0092-8674(00)80180-4; PMID: 9094712
  • Conaway JW, Shilatifard A, Dvir A, Conaway RC. Control of elongation by RNA polymerase II. Trends Biochem Sci 2000; 25:375 - 80; http://dx.doi.org/10.1016/S0968-0004(00)01615-7; PMID: 10916156
  • Sims RJ 3rd, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev 2004; 18:2437 - 68; http://dx.doi.org/10.1101/gad.1235904; PMID: 15489290
  • Zhou Q, Li T, Price DH. RNA polymerase II elongation control. Annu Rev Biochem 2012; 81:119 - 43; http://dx.doi.org/10.1146/annurev-biochem-052610-095910; PMID: 22404626
  • Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009; 23:1247 - 69; http://dx.doi.org/10.1101/gad.1792809; PMID: 19487567
  • Campbell FE Jr., Setzer DR. Transcription termination by RNA polymerase III: uncoupling of polymerase release from termination signal recognition. Mol Cell Biol 1992; 12:2260 - 72; PMID: 1314952
  • Arimbasseri AG, Maraia RJ. Distinguishing core and holoenzyme mechanisms of transcription termination by RNA polymerase III. Mol Cell Biol 2013; 33:1571 - 81; http://dx.doi.org/10.1128/MCB.01733-12; PMID: 23401852
  • Iben JR, Mazeika JK, Hasson S, Rijal K, Arimbasseri AG, Russo AN, Maraia RJ. Point mutations in the Rpb9-homologous domain of Rpc11 that impair transcription termination by RNA polymerase III. Nucleic Acids Res 2011; 39:6100 - 13; http://dx.doi.org/10.1093/nar/gkr182; PMID: 21450810
  • Huang Y, Intine RV, Mozlin A, Hasson S, Maraia RJ. Mutations in the RNA polymerase III subunit Rpc11p that decrease RNA 3′ cleavage activity increase 3′-terminal oligo(U) length and La-dependent tRNA processing. Mol Cell Biol 2005; 25:621 - 36; http://dx.doi.org/10.1128/MCB.25.2.621-636.2005; PMID: 15632064
  • Kuhn CD, Geiger SR, Baumli S, Gartmann M, Gerber J, Jennebach S, Mielke T, Tschochner H, Beckmann R, Cramer P. Functional architecture of RNA polymerase I. Cell 2007; 131:1260 - 72; http://dx.doi.org/10.1016/j.cell.2007.10.051; PMID: 18160037
  • Peters JM, Vangeloff AD, Landick R. Bacterial transcription terminators: the RNA 3′-end chronicles. J Mol Biol 2011; 412:793 - 813; http://dx.doi.org/10.1016/j.jmb.2011.03.036; PMID: 21439297
  • Spitalny P, Thomm M. A polymerase III-like reinitiation mechanism is operating in regulation of histone expression in archaea. Mol Microbiol 2008; 67:958 - 70; http://dx.doi.org/10.1111/j.1365-2958.2007.06084.x; PMID: 18182021
  • Wang X, Folk WR. Termination of transcription by RNA polymerase III from wheat germ. J Biol Chem 1994; 269:4993 - 5004; PMID: 8106475
  • French SL, Osheim YN, Schneider DA, Sikes ML, Fernandez CF, Copela LA, Misra VA, Nomura M, Wolin SL, Beyer AL. Visual analysis of the yeast 5S rRNA gene transcriptome: regulation and role of La protein. Mol Cell Biol 2008; 28:4576 - 87; http://dx.doi.org/10.1128/MCB.00127-08; PMID: 18474615
  • Moir RD, Willis IM. Regulation of pol III transcription by nutrient and stress signaling pathways. Biochim Biophys Acta 2012; PMID: 23165150
  • Zamft B, Bintu L, Ishibashi T, Bustamante C. Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proc Natl Acad Sci U S A 2012; 109:8948 - 53; http://dx.doi.org/10.1073/pnas.1205063109; PMID: 22615360
  • Bobkova EV, Habib N, Alexander G, Hall BD. Mutational analysis of the hydrolytic activity of yeast RNA polymerase III. J Biol Chem 1999; 274:21342 - 8; http://dx.doi.org/10.1074/jbc.274.30.21342; PMID: 10409694
  • Rijal K, Maraia RJ. RNA polymerase III mutants in TFIIFα-like C37 that cause terminator readthrough with no decrease in transcription output. Nucleic Acids Res 2013; 41:139 - 55; http://dx.doi.org/10.1093/nar/gks985; PMID: 23093604
  • White RJ. RNA polymerases I and III, growth control and cancer. Nat Rev Mol Cell Biol 2005; 6:69 - 78; http://dx.doi.org/10.1038/nrm1551; PMID: 15688068
  • Marshall L, Goodfellow SJ, White RJ. Diminished activity of RNA polymerase III selectively disrupts tissues with the most actively dividing cells. PLoS Biol 2007; 5:e286; http://dx.doi.org/10.1371/journal.pbio.0050286; PMID: 20076650
  • Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS. Global analysis of protein expression in yeast. Nature 2003; 425:737 - 41; http://dx.doi.org/10.1038/nature02046; PMID: 14562106
  • Dieci G, Sentenac A. Facilitated recycling pathway for RNA polymerase III. Cell 1996; 84:245 - 52; http://dx.doi.org/10.1016/S0092-8674(00)80979-4; PMID: 8565070
  • Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, Bähler J. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 2012; 151:671 - 83; http://dx.doi.org/10.1016/j.cell.2012.09.019; PMID: 23101633
  • Cabart P, Lee J, Willis IM. Facilitated recycling protects human RNA polymerase III from repression by Maf1 in vitro. J Biol Chem 2008; 283:36108 - 17; http://dx.doi.org/10.1074/jbc.M807538200; PMID: 18974046
  • Desai N, Lee J, Upadhya R, Chu Y, Moir RD, Willis IM. Two steps in Maf1-dependent repression of transcription by RNA polymerase III. J Biol Chem 2005; 280:6455 - 62; http://dx.doi.org/10.1074/jbc.M412375200; PMID: 15590667
  • Maraia RJ. Transcription termination factor La is also an initiation factor for RNA polymerase III. Proc Natl Acad Sci U S A 1996; 93:3383 - 7; http://dx.doi.org/10.1073/pnas.93.8.3383; PMID: 8622944
  • Hopper AK, Pai DA, Engelke DR. Cellular dynamics of tRNAs and their genes. FEBS Lett 2010; 584:310 - 7; http://dx.doi.org/10.1016/j.febslet.2009.11.053; PMID: 19931532

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.