1,168
Views
15
CrossRef citations to date
0
Altmetric
Review

Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription

, , , &
Article: e27526 | Received 27 Nov 2013, Accepted 13 Dec 2013, Published online: 07 Jan 2014

References

  • Dean N, Berk AJ. Separation of TFIIIC into two functional components by sequence specific DNA affinity chromatography. Nucleic Acids Res 1987; 15:9895 - 907; http://dx.doi.org/10.1093/nar/15.23.9895; PMID: 3697084
  • Carey MF, Peterson CL, Smale ST. DNase I footprinting. Cold Spring Harb Protoc 2013; 2013:469 - 78; http://dx.doi.org/10.1101/pdb.prot074328; PMID: 23637368
  • Carey MF, Peterson CL, Smale ST. Electrophoretic mobility-shift assays. Cold Spring Harb Protoc 2013; 2013:636 - 9; http://dx.doi.org/10.1101/pdb.prot075861; PMID: 23818676
  • Wu GJ. Adenovirus DNA-directed transcription of 5.5S RNA in vitro. Proc Natl Acad Sci U S A 1978; 75:2175 - 9; http://dx.doi.org/10.1073/pnas.75.5.2175; PMID: 276858
  • Weil PA, Segall J, Harris B, Ng SY, Roeder RG. Faithful transcription of eukaryotic genes by RNA polymerase III in systems reconstituted with purified DNA templates. J Biol Chem 1979; 254:6163 - 73; PMID: 447704
  • Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 1983; 11:1475 - 89; http://dx.doi.org/10.1093/nar/11.5.1475; PMID: 6828386
  • Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A. The expanding RNA polymerase III transcriptome. Trends Genet 2007; 23:614 - 22; http://dx.doi.org/10.1016/j.tig.2007.09.001; PMID: 17977614
  • Orioli A, Pascali C, Pagano A, Teichmann M, Dieci G. RNA polymerase III transcription control elements: themes and variations. Gene 2012; 493:185 - 94; http://dx.doi.org/10.1016/j.gene.2011.06.015; PMID: 21712079
  • Segall J, Matsui T, Roeder RG. Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III. J Biol Chem 1980; 255:11986 - 91; PMID: 7440579
  • Lassar AB, Martin PL, Roeder RG. Transcription of class III genes: formation of preinitiation complexes. Science 1983; 222:740 - 8; http://dx.doi.org/10.1126/science.6356356; PMID: 6356356
  • Bieker JJ, Martin PL, Roeder RG. Formation of a rate-limiting intermediate in 5S RNA gene transcription. Cell 1985; 40:119 - 27; http://dx.doi.org/10.1016/0092-8674(85)90315-0; PMID: 3967290
  • Moorefield B, Roeder RG. Purification and characterization of human transcription factor IIIA. J Biol Chem 1994; 269:20857 - 65; PMID: 8063702
  • Arakawa H, Nagase H, Hayashi N, Ogawa M, Nagata M, Fujiwara T, Takahashi E, Shin S, Nakamura Y. Molecular cloning, characterization, and chromosomal mapping of a novel human gene (GTF3A) that is highly homologous to Xenopus transcription factor IIIA. Cytogenet Cell Genet 1995; 70:235 - 8; http://dx.doi.org/10.1159/000134041; PMID: 7789179
  • Drew PD, Nagle JW, Canning RD, Ozato K, Biddison WE, Becker KG. Cloning and expression analysis of a human cDNA homologous to Xenopus TFIIIA. Gene 1995; 159:215 - 8; http://dx.doi.org/10.1016/0378-1119(95)00145-V; PMID: 7622052
  • Engelke DR, Ng SY, Shastry BS, Roeder RG. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell 1980; 19:717 - 28; http://dx.doi.org/10.1016/S0092-8674(80)80048-1; PMID: 6153931
  • Ginsberg AM, King BO, Roeder RG. Xenopus 5S gene transcription factor, TFIIIA: characterization of a cDNA clone and measurement of RNA levels throughout development. Cell 1984; 39:479 - 89; http://dx.doi.org/10.1016/0092-8674(84)90455-0; PMID: 6210149
  • Waldschmidt R, Jahn D, Seifart KH. Purification of transcription factor IIIB from HeLa cells. J Biol Chem 1988; 263:13350 - 6; PMID: 3417660
  • Hoffman A, Sinn E, Yamamoto T, Wang J, Roy A, Horikoshi M, Roeder RG. Highly conserved core domain and unique N terminus with presumptive regulatory motifs in a human TATA factor (TFIID). Nature 1990; 346:387 - 90; http://dx.doi.org/10.1038/346387a0; PMID: 2374612
  • Peterson MG, Tanese N, Pugh BF, Tjian R. Functional domains and upstream activation properties of cloned human TATA binding protein. Science 1990; 248:1625 - 30; http://dx.doi.org/10.1126/science.2363050; PMID: 2363050
  • Margottin F, Dujardin G, Gérard M, Egly JM, Huet J, Sentenac A. Participation of the TATA factor in transcription of the yeast U6 gene by RNA polymerase C. Science 1991; 251:424 - 6; http://dx.doi.org/10.1126/science.1989075; PMID: 1989075
  • Lobo SM, Lister J, Sullivan ML, Hernandez N. The cloned RNA polymerase II transcription factor IID selects RNA polymerase III to transcribe the human U6 gene in vitro. Genes Dev 1991; 5:1477 - 89; http://dx.doi.org/10.1101/gad.5.8.1477; PMID: 1869050
  • Simmen KA, Bernués J, Parry HD, Stunnenberg HG, Berkenstam A, Cavallini B, Egly JM, Mattaj IW. TFIID is required for in vitro transcription of the human U6 gene by RNA polymerase III. EMBO J 1991; 10:1853 - 62; PMID: 2050122
  • Waldschmidt R, Wanandi I, Seifart KH. Identification of transcription factors required for the expression of mammalian U6 genes in vitro. EMBO J 1991; 10:2595 - 603; PMID: 1868835
  • White RJ, Jackson SP, Rigby PW. A role for the TATA-box-binding protein component of the transcription factor IID complex as a general RNA polymerase III transcription factor. Proc Natl Acad Sci U S A 1992; 89:1949 - 53; http://dx.doi.org/10.1073/pnas.89.5.1949; PMID: 1542692
  • Lobo SM, Tanaka M, Sullivan ML, Hernandez N. A TBP complex essential for transcription from TATA-less but not TATA-containing RNA polymerase III promoters is part of the TFIIIB fraction. Cell 1992; 71:1029 - 40; http://dx.doi.org/10.1016/0092-8674(92)90397-U; PMID: 1458534
  • Simmen KA, Waldschmidt R, Bernués J, Parry HD, Seifart KH, Mattaj IW. Proximal sequence element factor binding and species specificity in vertebrate U6 snRNA promoters. J Mol Biol 1992; 223:873 - 84; http://dx.doi.org/10.1016/0022-2836(92)90249-J; PMID: 1538402
  • Taggart AK, Fisher TS, Pugh BF. The TATA-binding protein and associated factors are components of pol III transcription factor TFIIIB. Cell 1992; 71:1015 - 28; http://dx.doi.org/10.1016/0092-8674(92)90396-T; PMID: 1458533
  • White RJ, Jackson SP. Mechanism of TATA-binding protein recruitment to a TATA-less class III promoter. Cell 1992; 71:1041 - 53; http://dx.doi.org/10.1016/0092-8674(92)90398-V; PMID: 1458535
  • Chiang CM, Ge H, Wang Z, Hoffmann A, Roeder RG. Unique TATA-binding protein-containing complexes and cofactors involved in transcription by RNA polymerases II and III. EMBO J 1993; 12:2749 - 62; PMID: 7687540
  • Wang Z, Roeder RG. Structure and function of a human transcription factor TFIIIB subunit that is evolutionarily conserved and contains both TFIIB- and high-mobility-group protein 2-related domains. Proc Natl Acad Sci U S A 1995; 92:7026 - 30; http://dx.doi.org/10.1073/pnas.92.15.7026; PMID: 7624363
  • Mital R, Kobayashi R, Hernandez N. RNA polymerase III transcription from the human U6 and adenovirus type 2 VAI promoters has different requirements for human BRF, a subunit of human TFIIIB. Mol Cell Biol 1996; 16:7031 - 42; PMID: 8943358
  • Colbert T, Hahn S. A yeast TFIIB-related factor involved in RNA polymerase III transcription. Genes Dev 1992; 6:1940 - 9; http://dx.doi.org/10.1101/gad.6.10.1940; PMID: 1398071
  • López-De-León A, Librizzi M, Puglia K, Willis IM. PCF4 encodes an RNA polymerase III transcription factor with homology to TFIIB. Cell 1992; 71:211 - 20; http://dx.doi.org/10.1016/0092-8674(92)90350-L; PMID: 1423589
  • Kassavetis GA, Joazeiro CA, Pisano M, Geiduschek EP, Colbert T, Hahn S, Blanco JA. The role of the TATA-binding protein in the assembly and function of the multisubunit yeast RNA polymerase III transcription factor, TFIIIB. Cell 1992; 71:1055 - 64; http://dx.doi.org/10.1016/0092-8674(92)90399-W; PMID: 1458536
  • Ha I, Lane WS, Reinberg D. Cloning of a human gene encoding the general transcription initiation factor IIB. Nature 1991; 352:689 - 95; http://dx.doi.org/10.1038/352689a0; PMID: 1876184
  • Malik S, Hisatake K, Sumimoto H, Horikoshi M, Roeder RG. Sequence of general transcription factor TFIIB and relationships to other initiation factors. Proc Natl Acad Sci U S A 1991; 88:9553 - 7; http://dx.doi.org/10.1073/pnas.88.21.9553; PMID: 1946368
  • Teichmann M, Seifart KH. Physical separation of two different forms of human TFIIIB active in the transcription of the U6 or the VAI gene in vitro. EMBO J 1995; 14:5974 - 83; PMID: 8846790
  • Teichmann M, Dieci G, Huet J, Rüth J, Sentenac A, Seifart KH. Functional interchangeability of TFIIIB components from yeast and human cells in vitro. EMBO J 1997; 16:4708 - 16; http://dx.doi.org/10.1093/emboj/16.15.4708; PMID: 9303315
  • Kelter AR, Herchenbach J, Wirth B. The transcription factor-like nuclear regulator (TFNR) contains a novel 55-amino-acid motif repeated nine times and maps closely to SMN1. Genomics 2000; 70:315 - 26; http://dx.doi.org/10.1006/geno.2000.6396; PMID: 11161782
  • Schramm L, Pendergrast PS, Sun Y, Hernandez N. Different human TFIIIB activities direct RNA polymerase III transcription from TATA-containing and TATA-less promoters. Genes Dev 2000; 14:2650 - 63; http://dx.doi.org/10.1101/gad.836400; PMID: 11040218
  • Teichmann M, Wang Z, Roeder RG. A stable complex of a novel transcription factor IIB- related factor, human TFIIIB50, and associated proteins mediate selective transcription by RNA polymerase III of genes with upstream promoter elements. Proc Natl Acad Sci U S A 2000; 97:14200 - 5; http://dx.doi.org/10.1073/pnas.97.26.14200; PMID: 11121026
  • Yoshinaga SK, Boulanger PA, Berk AJ. Resolution of human transcription factor TFIIIC into two functional components. Proc Natl Acad Sci U S A 1987; 84:3585 - 9; http://dx.doi.org/10.1073/pnas.84.11.3585; PMID: 3473469
  • Cromlish JA, Roeder RG. Human transcription factor IIIC (TFIIIC). Purification, polypeptide structure, and the involvement of thiol groups in specific DNA binding. J Biol Chem 1989; 264:18100 - 9; PMID: 2808367
  • Schneider HR, Waldschmidt R, Jahn D, Seifart KH. Purification of human transcription factor IIIC and its binding to the gene for ribosomal 5S RNA. Nucleic Acids Res 1989; 17:5003 - 16; http://dx.doi.org/10.1093/nar/17.13.5003; PMID: 2762117
  • Yoshinaga SK, L’Etoile ND, Berk AJ. Purification and characterization of transcription factor IIIC2. J Biol Chem 1989; 264:10726 - 31; PMID: 2732244
  • Kovelman R, Roeder RG. Purification and characterization of two forms of human transcription factor IIIC. J Biol Chem 1992; 267:24446 - 56; PMID: 1447193
  • L’Etoile ND, Fahnestock ML, Shen Y, Aebersold R, Berk AJ. Human transcription factor IIIC box B binding subunit. Proc Natl Acad Sci U S A 1994; 91:1652 - 6; http://dx.doi.org/10.1073/pnas.91.5.1652; PMID: 8127861
  • Lagna G, Kovelman R, Sukegawa J, Roeder RG. Cloning and characterization of an evolutionarily divergent DNA-binding subunit of mammalian TFIIIC. Mol Cell Biol 1994; 14:3053 - 64; PMID: 8164661
  • Sinn E, Wang Z, Kovelman R, Roeder RG. Cloning and characterization of a TFIIIC2 subunit (TFIIIC beta) whose presence correlates with activation of RNA polymerase III-mediated transcription by adenovirus E1A expression and serum factors. Genes Dev 1995; 9:675 - 85; http://dx.doi.org/10.1101/gad.9.6.675; PMID: 7729686
  • Hsieh YJ, Wang Z, Kovelman R, Roeder RG. Cloning and characterization of two evolutionarily conserved subunits (TFIIIC102 and TFIIIC63) of human TFIIIC and their involvement in functional interactions with TFIIIB and RNA polymerase III. Mol Cell Biol 1999; 19:4944 - 52; PMID: 10373544
  • Hsieh YJ, Kundu TK, Wang Z, Kovelman R, Roeder RG. The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity. Mol Cell Biol 1999; 19:7697 - 704; PMID: 10523658
  • Dumay-Odelot H, Marck C, Durrieu-Gaillard S, Lefebvre O, Jourdain S, Prochazkova M, Pflieger A, Teichmann M. Identification, molecular cloning, and characterization of the sixth subunit of human transcription factor TFIIIC. J Biol Chem 2007; 282:17179 - 89; http://dx.doi.org/10.1074/jbc.M611542200; PMID: 17409385
  • Weser S, Gruber C, Hafner HM, Teichmann M, Roeder RG, Seifart KH, Meissner W. Transcription factor (TF)-like nuclear regulator, the 250-kDa form of Homo sapiens TFIIIB”, is an essential component of human TFIIIC1 activity. J Biol Chem 2004; 279:27022 - 9; http://dx.doi.org/10.1074/jbc.M312790200; PMID: 15096501
  • Murphy S, Yoon JB, Gerster T, Roeder RG. Oct-1 and Oct-2 potentiate functional interactions of a transcription factor with the proximal sequence element of small nuclear RNA genes. Mol Cell Biol 1992; 12:3247 - 61; PMID: 1535687
  • Sadowski CL, Henry RW, Lobo SM, Hernandez N. Targeting TBP to a non-TATA box cis-regulatory element: a TBP-containing complex activates transcription from snRNA promoters through the PSE. Genes Dev 1993; 7:1535 - 48; http://dx.doi.org/10.1101/gad.7.8.1535; PMID: 8339931
  • Henry RW, Sadowski CL, Kobayashi R, Hernandez N. A TBP-TAF complex required for transcription of human snRNA genes by RNA polymerase II and III. Nature 1995; 374:653 - 6; http://dx.doi.org/10.1038/374653a0; PMID: 7715707
  • Sadowski CL, Henry RW, Kobayashi R, Hernandez N. The SNAP45 subunit of the small nuclear RNA (snRNA) activating protein complex is required for RNA polymerase II and III snRNA gene transcription and interacts with the TATA box binding protein. Proc Natl Acad Sci U S A 1996; 93:4289 - 93; http://dx.doi.org/10.1073/pnas.93.9.4289; PMID: 8633057
  • Yoon JB, Roeder RG. Cloning of two proximal sequence element-binding transcription factor subunits (gamma and delta) that are required for transcription of small nuclear RNA genes by RNA polymerases II and III and interact with the TATA-binding protein. Mol Cell Biol 1996; 16:1 - 9; PMID: 8524284
  • Bai L, Wang Z, Yoon JB, Roeder RG. Cloning and characterization of the beta subunit of human proximal sequence element-binding transcription factor and its involvement in transcription of small nuclear RNA genes by RNA polymerases II and III. Mol Cell Biol 1996; 16:5419 - 26; PMID: 8816454
  • Henry RW, Ma B, Sadowski CL, Kobayashi R, Hernandez N. Cloning and characterization of SNAP50, a subunit of the snRNA-activating protein complex SNAPc. EMBO J 1996; 15:7129 - 36; PMID: 9003788
  • Wong MW, Henry RW, Ma B, Kobayashi R, Klages N, Matthias P, Strubin M, Hernandez N. The large subunit of basal transcription factor SNAPc is a Myb domain protein that interacts with Oct-1. Mol Cell Biol 1998; 18:368 - 77; PMID: 9418884
  • Henry RW, Mittal V, Ma B, Kobayashi R, Hernandez N. SNAP19 mediates the assembly of a functional core promoter complex (SNAPc) shared by RNA polymerases II and III. Genes Dev 1998; 12:2664 - 72; http://dx.doi.org/10.1101/gad.12.17.2664; PMID: 9732265
  • Ittmann M, Ali J, Greco A, Basilico C. The gene complementing a temperature-sensitive cell cycle mutant of BHK cells is the human homologue of the yeast RPC53 gene, which encodes a subunit of RNA polymerase C (III). Cell Growth Differ 1993; 4:503 - 11; PMID: 8373734
  • Wang Z, Roeder RG. Three human RNA polymerase III-specific subunits form a subcomplex with a selective function in specific transcription initiation. Genes Dev 1997; 11:1315 - 26; http://dx.doi.org/10.1101/gad.11.10.1315; PMID: 9171375
  • Hu P, Wu S, Sun Y, Yuan C-C, Kobayashi R, Myers MP, Hernandez N. Characterization of human RNA polymerase III identifies orthologues for Saccharomyces cerevisiae RNA polymerase III subunits. Mol Cell Biol 2002; 22:8044 - 55; http://dx.doi.org/10.1128/MCB.22.22.8044-8055.2002; PMID: 12391170
  • Dumay-Odelot H, Durrieu-Gaillard S, Da Silva D, Roeder RG, Teichmann M. Cell growth- and differentiation-dependent regulation of RNA polymerase III transcription. Cell Cycle 2010; 9:3687 - 99; http://dx.doi.org/10.4161/cc.9.18.13203; PMID: 20890107
  • Haurie V, Durrieu-Gaillard S, Dumay-Odelot H, Da Silva D, Rey C, Prochazkova M, Roeder RG, Besser D, Teichmann M. Two isoforms of human RNA polymerase III with specific functions in cell growth and transformation. Proc Natl Acad Sci U S A 2010; 107:4176 - 81; http://dx.doi.org/10.1073/pnas.0914980107; PMID: 20154270
  • Wong RC-B, Pollan S, Fong H, Ibrahim A, Smith EL, Ho M, Laslett AL, Donovan PJ. A novel role for an RNA polymerase III subunit POLR3G in regulating pluripotency in human embryonic stem cells. Stem Cells 2011; 29:1517 - 27; http://dx.doi.org/10.1002/stem.714; PMID: 21898682
  • Gjidoda A, Henry RW. RNA polymerase III repression by the retinoblastoma tumor suppressor protein. Biochim Biophys Acta 2013; 1829:385 - 92; http://dx.doi.org/10.1016/j.bbagrm.2012.09.011; PMID: 23063750
  • White RJ. RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet 2008; 24:622 - 9; http://dx.doi.org/10.1016/j.tig.2008.10.003; PMID: 18980784
  • Pluta K, Lefebvre O, Martin NC, Smagowicz WJ, Stanford DR, Ellis SR, Hopper AK, Sentenac A, Boguta M. Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:5031 - 40; http://dx.doi.org/10.1128/MCB.21.15.5031-5040.2001; PMID: 11438659
  • Reina JH, Azzouz TN, Hernandez N. Maf1, a new player in the regulation of human RNA polymerase III transcription. PLoS One 2006; 1:e134; http://dx.doi.org/10.1371/journal.pone.0000134; PMID: 17205138
  • Johnson SS, Zhang C, Fromm J, Willis IM, Johnson DL. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases. Mol Cell 2007; 26:367 - 79; http://dx.doi.org/10.1016/j.molcel.2007.03.021; PMID: 17499043
  • Rollins J, Veras I, Cabarcas S, Willis I, Schramm L. Human Maf1 negatively regulates RNA polymerase III transcription via the TFIIB family members Brf1 and Brf2. Int J Biol Sci 2007; 3:292 - 302; http://dx.doi.org/10.7150/ijbs.3.292; PMID: 17505538
  • Goodfellow SJ, Graham EL, Kantidakis T, Marshall L, Coppins BA, Oficjalska-Pham D, Gérard M, Lefebvre O, White RJ. Regulation of RNA polymerase III transcription by Maf1 in mammalian cells. J Mol Biol 2008; 378:481 - 91; http://dx.doi.org/10.1016/j.jmb.2008.02.060; PMID: 18377933
  • Michels AA. MAF1: a new target of mTORC1. Biochem Soc Trans 2011; 39:487 - 91; http://dx.doi.org/10.1042/BST0390487; PMID: 21428925
  • Kropotov A, Sedova V, Ivanov V, Sazeeva N, Tomilin A, Krutilina R, Oei SL, Griesenbeck J, Buchlow G, Tomilin N. A novel human DNA-binding protein with sequence similarity to a subfamily of redox proteins which is able to repress RNA-polymerase-III-driven transcription of the Alu-family retroposons in vitro. Eur J Biochem 1999; 260:336 - 46; http://dx.doi.org/10.1046/j.1432-1327.1999.00162.x; PMID: 10095767
  • Humphrey GW, Englander EW, Howard BH. Specific binding sites for a pol III transcriptional repressor and pol II transcription factor YY1 within the internucleosomal spacer region in primate Alu repetitive elements. Gene Expr 1996; 6:151 - 68; PMID: 9041122
  • Emran F, Florens L, Ma B, Swanson SK, Washburn MP, Hernandez N. A role for Yin Yang-1 (YY1) in the assembly of snRNA transcription complexes. Gene 2006; 377:96 - 108; http://dx.doi.org/10.1016/j.gene.2006.03.012; PMID: 16769183
  • Kurose K, Hata K, Hattori M, Sakaki Y. RNA polymerase III dependence of the human L1 promoter and possible participation of the RNA polymerase II factor YY1 in the RNA polymerase III transcription system. Nucleic Acids Res 1995; 23:3704 - 9; http://dx.doi.org/10.1093/nar/23.18.3704; PMID: 7479000
  • White RJ, Khoo BC, Inostroza JA, Reinberg D, Jackson SP. Differential regulation of RNA polymerases I, II, and III by the TBP-binding repressor Dr1. Science 1994; 266:448 - 50; http://dx.doi.org/10.1126/science.7939686; PMID: 7939686
  • Kantidakis T, White RJ. Dr1 (NC2) is present at tRNA genes and represses their transcription in human cells. Nucleic Acids Res 2010; 38:1228 - 39; http://dx.doi.org/10.1093/nar/gkp1102; PMID: 19965767
  • Moosmann P, Georgiev O, Thiesen HJ, Hagmann M, Schaffner W. Silencing of RNA polymerases II and III-dependent transcription by the KRAB protein domain of KOX1, a Krüppel-type zinc finger factor. Biol Chem 1997; 378:669 - 77; http://dx.doi.org/10.1515/bchm.1997.378.7.669; PMID: 9278146
  • Selvakumar T, Gjidoda A, Hovde SL, Henry RW. Regulation of human RNA polymerase III transcription by DNMT1 and DNMT3a DNA methyltransferases. J Biol Chem 2012; 287:7039 - 50; http://dx.doi.org/10.1074/jbc.M111.285601; PMID: 22219193
  • Bark C, Weller P, Zabielski J, Janson L, Pettersson U. A distant enhancer element is required for polymerase III transcription of a U6 RNA gene. Nature 1987; 328:356 - 9; http://dx.doi.org/10.1038/328356a0; PMID: 3299107
  • Carbon P, Murgo S, Ebel JP, Krol A, Tebb G, Mattaj LW. A common octamer motif binding protein is involved in the transcription of U6 snRNA by RNA polymerase III and U2 snRNA by RNA polymerase II. Cell 1987; 51:71 - 9; http://dx.doi.org/10.1016/0092-8674(87)90011-0; PMID: 3652209
  • Kunkel GR, Pederson T. Upstream elements required for efficient transcription of a human U6 RNA gene resemble those of U1 and U2 genes even though a different polymerase is used. Genes Dev 1988; 2:196 - 204; http://dx.doi.org/10.1101/gad.2.2.196; PMID: 3360322
  • Murphy S, Pierani A, Scheidereit C, Melli M, Roeder RG. Purified octamer binding transcription factors stimulate RNA polymerase III--mediated transcription of the 7SK RNA gene. Cell 1989; 59:1071 - 80; http://dx.doi.org/10.1016/0092-8674(89)90763-0; PMID: 2532066
  • Howe JG, Shu MD. Epstein-Barr virus small RNA (EBER) genes: unique transcription units that combine RNA polymerase II and III promoter elements. Cell 1989; 57:825 - 34; http://dx.doi.org/10.1016/0092-8674(89)90797-6; PMID: 2541926
  • Bredow S, Sürig D, Müller J, Kleinert H, Benecke BJ. Activating-transcription-factor (ATF) regulates human 7S L RNA transcription by RNA polymerase III in vivo and in vitro. Nucleic Acids Res 1990; 18:6779 - 84; http://dx.doi.org/10.1093/nar/18.23.6779; PMID: 1702200
  • Gomez-Roman N, Grandori C, Eisenman RN, White RJ. Direct activation of RNA polymerase III transcription by c-Myc. Nature 2003; 421:290 - 4; http://dx.doi.org/10.1038/nature01327; PMID: 12529648
  • Myslinski E, Schuster C, Huet J, Sentenac A, Krol A, Carbon P. Point mutations 5′ to the tRNA selenocysteine TATA box alter RNA polymerase III transcription by affecting the binding of TBP. Nucleic Acids Res 1993; 21:5852 - 8; http://dx.doi.org/10.1093/nar/21.25.5852; PMID: 8290344
  • Schuster C, Myslinski E, Krol A, Carbon P. Staf, a novel zinc finger protein that activates the RNA polymerase III promoter of the selenocysteine tRNA gene. EMBO J 1995; 14:3777 - 87; PMID: 7641696
  • Myslinski E, Krol A, Carbon P. ZNF76 and ZNF143 are two human homologs of the transcriptional activator Staf. J Biol Chem 1998; 273:21998 - 2006; http://dx.doi.org/10.1074/jbc.273.34.21998; PMID: 9705341
  • Rincon JC, Engler SK, Hargrove BW, Kunkel GR. Molecular cloning of a cDNA encoding human SPH-binding factor, a conserved protein that binds to the enhancer-like region of the U6 small nuclear RNA gene promoter. Nucleic Acids Res 1998; 26:4846 - 52; http://dx.doi.org/10.1093/nar/26.21.4846; PMID: 9776743
  • Stünkel W, Kober I, Kauer M, Taimor G, Seifart KH. Human TFIIIA alone is sufficient to prevent nucleosomal repression of a homologous 5S gene. Nucleic Acids Res 1995; 23:109 - 16; http://dx.doi.org/10.1093/nar/23.1.109; PMID: 7870575
  • Kundu TK, Wang Z, Roeder RG. Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity. Mol Cell Biol 1999; 19:1605 - 15; PMID: 9891093
  • Mertens C, Roeder RG. Different functional modes of p300 in activation of RNA polymerase III transcription from chromatin templates. Mol Cell Biol 2008; 28:5764 - 76; http://dx.doi.org/10.1128/MCB.01262-07; PMID: 18644873
  • Nagy Z, Tora L. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 2007; 26:5341 - 57; http://dx.doi.org/10.1038/sj.onc.1210604; PMID: 17694077
  • Kenneth NS, Ramsbottom BA, Gomez-Roman N, Marshall L, Cole PA, White RJ. TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc Natl Acad Sci U S A 2007; 104:14917 - 22; http://dx.doi.org/10.1073/pnas.0702909104; PMID: 17848523
  • Stünkel W, Kober I, Seifart KH. A nucleosome positioned in the distal promoter region activates transcription of the human U6 gene. Mol Cell Biol 1997; 17:4397 - 405; PMID: 9234698
  • Zhao X, Pendergrast PS, Hernandez N. A positioned nucleosome on the human U6 promoter allows recruitment of SNAPc by the Oct-1 POU domain. Mol Cell 2001; 7:539 - 49; http://dx.doi.org/10.1016/S1097-2765(01)00201-5; PMID: 11463379
  • Boyd DC, Greger IH, Murphy S. In vivo footprinting studies suggest a role for chromatin in transcription of the human 7SK gene. Gene 2000; 247:33 - 44; http://dx.doi.org/10.1016/S0378-1119(00)00134-7; PMID: 10773442
  • Yuan C-C, Zhao X, Florens L, Swanson SK, Washburn MP, Hernandez N. CHD8 associates with human Staf and contributes to efficient U6 RNA polymerase III transcription. Mol Cell Biol 2007; 27:8729 - 38; http://dx.doi.org/10.1128/MCB.00846-07; PMID: 17938208
  • Ge H, Roeder RG. Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class II genes. Cell 1994; 78:513 - 23; http://dx.doi.org/10.1016/0092-8674(94)90428-6; PMID: 8062391
  • Kretzschmar M, Kaiser K, Lottspeich F, Meisterernst M. A novel mediator of class II gene transcription with homology to viral immediate-early transcriptional regulators. Cell 1994; 78:525 - 34; http://dx.doi.org/10.1016/0092-8674(94)90429-4; PMID: 8062392
  • Wang Z, Roeder RG. DNA topoisomerase I and PC4 can interact with human TFIIIC to promote both accurate termination and transcription reinitiation by RNA polymerase III. Mol Cell 1998; 1:749 - 57; http://dx.doi.org/10.1016/S1097-2765(00)80074-X; PMID: 9660958
  • Rosonina E, Willis IM, Manley JL. Sub1 functions in osmoregulation and in transcription by both RNA polymerases II and III. Mol Cell Biol 2009; 29:2308 - 21; http://dx.doi.org/10.1128/MCB.01841-08; PMID: 19204085
  • Tavenet A, Suleau A, Dubreuil G, Ferrari R, Ducrot C, Michaut M, Aude J-C, Dieci G, Lefebvre O, Conesa C, et al. Genome-wide location analysis reveals a role for Sub1 in RNA polymerase III transcription. Proc Natl Acad Sci U S A 2009; 106:14265 - 70; http://dx.doi.org/10.1073/pnas.0900162106; PMID: 19706510
  • Yoon JB, Murphy S, Bai L, Wang Z, Roeder RG. Proximal sequence element-binding transcription factor (PTF) is a multisubunit complex required for transcription of both RNA polymerase II- and RNA polymerase III-dependent small nuclear RNA genes. Mol Cell Biol 1995; 15:2019 - 27; PMID: 7891697
  • Jawdekar GW, Hanzlowsky A, Hovde SL, Jelencic B, Feig M, Geiger JH, Henry RW. The unorthodox SNAP50 zinc finger domain contributes to cooperative promoter recognition by human SNAPC. J Biol Chem 2006; 281:31050 - 60; http://dx.doi.org/10.1074/jbc.M603810200; PMID: 16901896
  • Gu L, Husain-Ponnampalam R, Hoffmann-Benning S, Henry RW. The protein kinase CK2 phosphorylates SNAP190 to negatively regulate SNAPC DNA binding and human U6 transcription by RNA polymerase III. J Biol Chem 2007; 282:27887 - 96; http://dx.doi.org/10.1074/jbc.M702269200; PMID: 17670747
  • Murphy S, Di Liegro C, Melli M. The in vitro transcription of the 7SK RNA gene by RNA polymerase III is dependent only on the presence of an upstream promoter. Cell 1987; 51:81 - 7; http://dx.doi.org/10.1016/0092-8674(87)90012-2; PMID: 3652210
  • Baillat D, Gardini A, Cesaroni M, Shiekhattar R. Requirement for SNAPC1 in transcriptional responsiveness to diverse extracellular signals. Mol Cell Biol 2012; 32:4642 - 50; http://dx.doi.org/10.1128/MCB.00906-12; PMID: 22966203
  • Gabrielsen OS, Sentenac A. RNA polymerase III (C) and its transcription factors. Trends Biochem Sci 1991; 16:412 - 6; http://dx.doi.org/10.1016/0968-0004(91)90166-S; PMID: 1776170
  • Burnol AF, Margottin F, Schultz P, Marsolier MC, Oudet P, Sentenac A. Basal promoter and enhancer element of yeast U6 snRNA gene. J Mol Biol 1993; 233:644 - 58; http://dx.doi.org/10.1006/jmbi.1993.1542; PMID: 8411171
  • Giuliodori S, Percudani R, Braglia P, Ferrari R, Guffanti E, Ottonello S, Dieci G. A composite upstream sequence motif potentiates tRNA gene transcription in yeast. J Mol Biol 2003; 333:1 - 20; http://dx.doi.org/10.1016/j.jmb.2003.08.016; PMID: 14516739
  • Ducrot C, Lefebvre O, Landrieux E, Guirouilh-Barbat J, Sentenac A, Acker J. Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors. J Biol Chem 2006; 281:11685 - 92; http://dx.doi.org/10.1074/jbc.M600101200; PMID: 16517597
  • Fabrizio P, Coppo A, Fruscoloni P, Benedetti P, Di Segni G, Tocchini-Valentini GP. Comparative mutational analysis of wild-type and stretched tRNA3(Leu) gene promoters. Proc Natl Acad Sci U S A 1987; 84:8763 - 7; http://dx.doi.org/10.1073/pnas.84.24.8763; PMID: 3321052
  • Guffanti E, Ferrari R, Preti M, Forloni M, Harismendy O, Lefebvre O, Dieci G. A minimal promoter for TFIIIC-dependent in vitro transcription of snoRNA and tRNA genes by RNA polymerase III. J Biol Chem 2006; 281:23945 - 57; http://dx.doi.org/10.1074/jbc.M513814200; PMID: 16787917
  • Englert M, Felis M, Junker V, Beier H. Novel upstream and intragenic control elements for the RNA polymerase III-dependent transcription of human 7SL RNA genes. Biochimie 2004; 86:867 - 74; http://dx.doi.org/10.1016/j.biochi.2004.10.012; PMID: 15667936
  • Martignetti JA, Brosius J. BC1 RNA: transcriptional analysis of a neural cell-specific RNA polymerase III transcript. Mol Cell Biol 1995; 15:1642 - 50; PMID: 7862155
  • Ludwig A, Rozhdestvensky TS, Kuryshev VY, Schmitz J, Brosius J. An unusual primate locus that attracted two independent Alu insertions and facilitates their transcription. J Mol Biol 2005; 350:200 - 14; http://dx.doi.org/10.1016/j.jmb.2005.03.058; PMID: 15922354
  • Khanam T, Rozhdestvensky TS, Bundman M, Galiveti CR, Handel S, Sukonina V, Jordan U, Brosius J, Skryabin BV. Two primate-specific small non-protein-coding RNAs in transgenic mice: neuronal expression, subcellular localization and binding partners. Nucleic Acids Res 2007; 35:529 - 39; http://dx.doi.org/10.1093/nar/gkl1082; PMID: 17175535
  • van Zon A, Mossink MH, Schoester M, Scheffer GL, Scheper RJ, Sonneveld P, Wiemer EA. Multiple human vault RNAs. Expression and association with the vault complex. J Biol Chem 2001; 276:37715 - 21; http://dx.doi.org/10.1074/jbc.M106055200; PMID: 11479319
  • Malik S, Roeder RG. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 2010; 11:761 - 72; http://dx.doi.org/10.1038/nrg2901; PMID: 20940737
  • Dynlacht BD, Hoey T, Tjian R. Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 1991; 66:563 - 76; http://dx.doi.org/10.1016/0092-8674(81)90019-2; PMID: 1907890
  • Zhou Q, Lieberman PM, Boyer TG, Berk AJ. Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev 1992; 6:1964 - 74; http://dx.doi.org/10.1101/gad.6.10.1964; PMID: 1398073
  • Majowski K, Mentzel H, Pieler T. A split binding site for TFIIIC on the Xenopus 5S gene. EMBO J 1987; 6:3057 - 63; PMID: 3691480
  • Veldhoen N, You Q, Setzer DR, Romaniuk PJ. Contribution of individual base pairs to the interaction of TFIIIA with the Xenopus 5S RNA gene. Biochemistry 1994; 33:7568 - 75; http://dx.doi.org/10.1021/bi00190a009; PMID: 8011622
  • Nielsen JN, Hallenberg C, Frederiksen S, Sørensen PD, Lomholt B. Transcription of human 5S rRNA genes is influenced by an upstream DNA sequence. Nucleic Acids Res 1993; 21:3631 - 6; http://dx.doi.org/10.1093/nar/21.16.3631; PMID: 8367278
  • Marck C, Grosjean H. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 2002; 8:1189 - 232; http://dx.doi.org/10.1017/S1355838202022021; PMID: 12403461
  • Jühling F, Mörl M, Hartmann RK, Sprinzl M, Stadler PF, Pütz J. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 2009; 37:D159 - 62; http://dx.doi.org/10.1093/nar/gkn772; PMID: 18957446
  • Moqtaderi Z, Wang J, Raha D, White RJ, Snyder M, Weng Z, Struhl K. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells. Nat Struct Mol Biol 2010; 17:635 - 40; http://dx.doi.org/10.1038/nsmb.1794; PMID: 20418883
  • Danzeiser DA, Urso O, Kunkel GR. Functional characterization of elements in a human U6 small nuclear RNA gene distal control region. Mol Cell Biol 1993; 13:4670 - 8; PMID: 8336708
  • Hannon GJ, Chubb A, Maroney PA, Hannon G, Altman S, Nilsen TW. Multiple cis-acting elements are required for RNA polymerase III transcription of the gene encoding H1 RNA, the RNA component of human RNase P. J Biol Chem 1991; 266:22796 - 9; PMID: 1720774
  • Myslinski E, Amé JC, Krol A, Carbon P. An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. Nucleic Acids Res 2001; 29:2502 - 9; http://dx.doi.org/10.1093/nar/29.12.2502; PMID: 11410657
  • Howe JG, Shu MD. Upstream basal promoter element important for exclusive RNA polymerase III transcription of the EBER 2 gene. Mol Cell Biol 1993; 13:2655 - 65; PMID: 8386314
  • Kickhoefer VA, Emre N, Stephen AG, Poderycki MJ, Rome LH. Identification of conserved vault RNA expression elements and a non-expressed mouse vault RNA gene. Gene 2003; 309:65 - 70; http://dx.doi.org/10.1016/S0378-1119(03)00507-9; PMID: 12758122
  • Stadler PF, Chen JJ-L, Hackermüller J, Hoffmann S, Horn F, Khaitovich P, Kretzschmar AK, Mosig A, Prohaska SJ, Qi X, et al. Evolution of vault RNAs. Mol Biol Evol 2009; 26:1975 - 91; http://dx.doi.org/10.1093/molbev/msp112; PMID: 19491402

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.