918
Views
8
CrossRef citations to date
0
Altmetric
Review

Investigating transcription reinitiation through in vitro approaches

, &
Article: e27704 | Received 08 Nov 2013, Accepted 02 Jan 2014, Published online: 06 Jan 2014

References

  • Moir RD, Willis IM. Regulation of pol III transcription by nutrient and stress signaling pathways. Biochim Biophys Acta 2013; 1829:361 - 75; http://dx.doi.org/10.1016/j.bbagrm.2012.11.001; PMID: 23165150
  • Hannan KM, Sanij E, Rothblum LI, Hannan RD, Pearson RB. Dysregulation of RNA polymerase I transcription during disease. Biochim Biophys Acta 2013; 1829:342 - 60; http://dx.doi.org/10.1016/j.bbagrm.2012.10.014; PMID: 23153826
  • Laferté A, Favry E, Sentenac A, Riva M, Carles C, Chédin S. The transcriptional activity of RNA polymerase I is a key determinant for the level of all ribosome components. Genes Dev 2006; 20:2030 - 40; http://dx.doi.org/10.1101/gad.386106; PMID: 16882981
  • Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 1999; 24:437 - 40; http://dx.doi.org/10.1016/S0968-0004(99)01460-7; PMID: 10542411
  • Hahn S. Activation and the role of reinitiation in the control of transcription by RNA polymerase II. Cold Spring Harb Symp Quant Biol 1998; 63:181 - 8; http://dx.doi.org/10.1101/sqb.1998.63.181; PMID: 10384282
  • Dieci G, Bosio MC, Fermi B, Ferrari R. Transcription reinitiation by RNA polymerase III. Biochim Biophys Acta 2013; 1829:331 - 41; http://dx.doi.org/10.1016/j.bbagrm.2012.10.009; PMID: 23128323
  • Dieci G, Sentenac A. Detours and shortcuts to transcription reinitiation. Trends Biochem Sci 2003; 28:202 - 9; http://dx.doi.org/10.1016/S0968-0004(03)00054-9; PMID: 12713904
  • Shandilya J, Roberts SG. The transcription cycle in eukaryotes: from productive initiation to RNA polymerase II recycling. Biochim Biophys Acta 2012; 1819:391 - 400; http://dx.doi.org/10.1016/j.bbagrm.2012.01.010; PMID: 22306664
  • Lassar AB, Martin PL, Roeder RG. Transcription of class III genes: formation of preinitiation complexes. Science 1983; 222:740 - 8; http://dx.doi.org/10.1126/science.6356356; PMID: 6356356
  • Bogenhagen DF, Wormington WM, Brown DD. Stable transcription complexes of Xenopus 5S RNA genes: a means to maintain the differentiated state. Cell 1982; 28:413 - 21; http://dx.doi.org/10.1016/0092-8674(82)90359-2; PMID: 7060135
  • Wandelt C, Grummt I. Formation of stable preinitiation complexes is a prerequisite for ribosomal DNA transcription in vitro. Nucleic Acids Res 1983; 11:3795 - 809; http://dx.doi.org/10.1093/nar/11.11.3795; PMID: 6856465
  • Cizewski V, Sollner-Webb B. A stable transcription complex directs mouse ribosomal RNA synthesis by RNA polymerase I. Nucleic Acids Res 1983; 11:7043 - 56; http://dx.doi.org/10.1093/nar/11.20.7043; PMID: 6314273
  • Kassavetis GA, Riggs DL, Negri R, Nguyen LH, Geiduschek EP. Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes. Mol Cell Biol 1989; 9:2551 - 66; PMID: 2668737
  • Kovelman R, Roeder RG. Sarkosyl defines three intermediate steps in transcription initiation by RNA polymerase III: application to stimulation of transcription by E1A. Genes Dev 1990; 4:646 - 58; http://dx.doi.org/10.1101/gad.4.4.646; PMID: 1694510
  • Kato H, Nagamine M, Kominami R, Muramatsu M. Formation of the transcription initiation complex on mammalian rDNA. Mol Cell Biol 1986; 6:3418 - 27; PMID: 3796586
  • Yamamoto RT, Nogi Y, Dodd JA, Nomura M. RRN3 gene of Saccharomyces cerevisiae encodes an essential RNA polymerase I transcription factor which interacts with the polymerase independently of DNA template. EMBO J 1996; 15:3964 - 73; PMID: 8670901
  • Schnapp A, Grummt I. Transcription complex formation at the mouse rDNA promoter involves the stepwise association of four transcription factors and RNA polymerase I. J Biol Chem 1991; 266:24588 - 95; PMID: 1761556
  • Kassavetis GA, Joazeiro CA, Pisano M, Geiduschek EP, Colbert T, Hahn S, Blanco JA. The role of the TATA-binding protein in the assembly and function of the multisubunit yeast RNA polymerase III transcription factor, TFIIIB. Cell 1992; 71:1055 - 64; http://dx.doi.org/10.1016/0092-8674(92)90399-W; PMID: 1458536
  • Huet J, Manaud N, Dieci G, Peyroche G, Conesa C, Lefebvre O, Ruet A, Riva M, Sentenac A. RNA polymerase III and class III transcription factors from Saccharomyces cerevisiae. Methods Enzymol 1996; 273:249 - 67; http://dx.doi.org/10.1016/S0076-6879(96)73024-0; PMID: 8791617
  • Dieci G, Sentenac A. Facilitated recycling pathway for RNA polymerase III. Cell 1996; 84:245 - 52; http://dx.doi.org/10.1016/S0092-8674(00)80979-4; PMID: 8565070
  • Ferrari R, Rivetti C, Acker J, Dieci G. Distinct roles of transcription factors TFIIIB and TFIIIC in RNA polymerase III transcription reinitiation. Proc Natl Acad Sci U S A 2004; 101:13442 - 7; http://dx.doi.org/10.1073/pnas.0403851101; PMID: 15347814
  • Ferrari R, Dieci G. The transcription reinitiation properties of RNA polymerase III in the absence of transcription factors. Cell Mol Biol Lett 2008; 13:112 - 8; http://dx.doi.org/10.2478/s11658-007-0041-y; PMID: 17965971
  • Wang Z, Roeder RG. DNA topoisomerase I and PC4 can interact with human TFIIIC to promote both accurate termination and transcription reinitiation by RNA polymerase III. Mol Cell 1998; 1:749 - 57; http://dx.doi.org/10.1016/S1097-2765(00)80074-X; PMID: 9660958
  • Tavenet A, Suleau A, Dubreuil G, Ferrari R, Ducrot C, Michaut M, Aude JC, Dieci G, Lefebvre O, Conesa C, et al. Genome-wide location analysis reveals a role for Sub1 in RNA polymerase III transcription. Proc Natl Acad Sci U S A 2009; 106:14265 - 70; http://dx.doi.org/10.1073/pnas.0900162106; PMID: 19706510
  • Dieci G, Ruotolo R, Braglia P, Carles C, Carpentieri A, Amoresano A, Ottonello S. Positive modulation of RNA polymerase III transcription by ribosomal proteins. Biochem Biophys Res Commun 2009; 379:489 - 93; http://dx.doi.org/10.1016/j.bbrc.2008.12.097; PMID: 19116144
  • Braglia P, Dugas SL, Donze D, Dieci G. Requirement of Nhp6 proteins for transcription of a subset of tRNA genes and heterochromatin barrier function in Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:1545 - 57; http://dx.doi.org/10.1128/MCB.00773-06; PMID: 17178828
  • Panova TB, Panov KI, Russell J, Zomerdijk JC. Casein kinase 2 associates with initiation-competent RNA polymerase I and has multiple roles in ribosomal DNA transcription. Mol Cell Biol 2006; 26:5957 - 68; http://dx.doi.org/10.1128/MCB.00673-06; PMID: 16880508
  • Mariconti L, Loll B, Schlinkmann K, Wengi A, Meinhart A, Dichtl B. Coupled RNA polymerase II transcription and 3′ end formation with yeast whole-cell extracts. RNA 2010; 16:2205 - 17; http://dx.doi.org/10.1261/rna.2172510; PMID: 20810619
  • Porrua O, Libri D. A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nat Struct Mol Biol 2013; 20:884 - 91; http://dx.doi.org/10.1038/nsmb.2592; PMID: 23748379
  • Szentirmay MN, Sawadogo M. Sarkosyl block of transcription reinitiation by RNA polymerase II as visualized by the colliding polymerases reinitiation assay. Nucleic Acids Res 1994; 22:5341 - 6; http://dx.doi.org/10.1093/nar/22.24.5341; PMID: 7529406
  • Szentirmay MN, Sawadogo M. Transcription factor requirement for multiple rounds of initiation by human RNA polymerase II. Proc Natl Acad Sci U S A 1991; 88:10691 - 5; http://dx.doi.org/10.1073/pnas.88.23.10691; PMID: 1961736
  • Fukuda A, Shimada M, Nakadai T, Nishimura K, Hisatake K. Heterogeneous nuclear ribonucleoprotein R cooperates with mediator to facilitate transcription reinitiation on the c-Fos gene. PLoS One 2013; 8:e72496; http://dx.doi.org/10.1371/journal.pone.0072496; PMID: 23967313
  • Hawley DK, Roeder RG. Functional steps in transcription initiation and reinitiation from the major late promoter in a HeLa nuclear extract. J Biol Chem 1987; 262:3452 - 61; PMID: 2434502
  • Yean D, Gralla J. Transcription reinitiation rate: a special role for the TATA box. Mol Cell Biol 1997; 17:3809 - 16; PMID: 9199314
  • White J, Brou C, Wu J, Lutz Y, Moncollin V, Chambon P. The acidic transcriptional activator GAL-VP16 acts on preformed template-committed complexes. EMBO J 1992; 11:2229 - 40; PMID: 1376247
  • Kraus WL, Kadonaga JT. p300 and estrogen receptor cooperatively activate transcription via differential enhancement of initiation and reinitiation. Genes Dev 1998; 12:331 - 42; http://dx.doi.org/10.1101/gad.12.3.331; PMID: 9450928
  • Sheridan PL, Mayall TP, Verdin E, Jones KA. Histone acetyltransferases regulate HIV-1 enhancer activity in vitro. Genes Dev 1997; 11:3327 - 40; http://dx.doi.org/10.1101/gad.11.24.3327; PMID: 9407026
  • Sandaltzopoulos R, Becker PB. Analysis of activator-dependent transcription reinitiation in vitro. Methods Enzymol 2003; 370:487 - 501; http://dx.doi.org/10.1016/S0076-6879(03)70042-1; PMID: 14712670
  • Sandaltzopoulos R, Becker PB. Heat shock factor increases the reinitiation rate from potentiated chromatin templates. Mol Cell Biol 1998; 18:361 - 7; PMID: 9418883
  • Mizuguchi G, Vassilev A, Tsukiyama T, Nakatani Y, Wu C. ATP-dependent nucleosome remodeling and histone hyperacetylation synergistically facilitate transcription of chromatin. J Biol Chem 2001; 276:14773 - 83; http://dx.doi.org/10.1074/jbc.M100125200; PMID: 11279013
  • Morachis JM, Murawsky CM, Emerson BM. Regulation of the p53 transcriptional response by structurally diverse core promoters. Genes Dev 2010; 24:135 - 47; http://dx.doi.org/10.1101/gad.1856710; PMID: 20040571
  • Hampsey M, Singh BN, Ansari A, Lainé JP, Krishnamurthy S. Control of eukaryotic gene expression: gene loops and transcriptional memory. Adv Enzyme Regul 2011; 51:118 - 25; http://dx.doi.org/10.1016/j.advenzreg.2010.10.001; PMID: 21036187
  • Tan-Wong SM, Wijayatilake HD, Proudfoot NJ. Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev 2009; 23:2610 - 24; http://dx.doi.org/10.1101/gad.1823209; PMID: 19933151
  • Tan-Wong SM, Zaugg JB, Camblong J, Xu Z, Zhang DW, Mischo HE, Ansari AZ, Luscombe NM, Steinmetz LM, Proudfoot NJ. Gene loops enhance transcriptional directionality. Science 2012; 338:671 - 5; http://dx.doi.org/10.1126/science.1224350; PMID: 23019609
  • Lainé JP, Singh BN, Krishnamurthy S, Hampsey M. A physiological role for gene loops in yeast. Genes Dev 2009; 23:2604 - 9; http://dx.doi.org/10.1101/gad.1823609; PMID: 19933150
  • von Hippel PH. An integrated model of the transcription complex in elongation, termination, and editing. Science 1998; 281:660 - 5; http://dx.doi.org/10.1126/science.281.5377.660; PMID: 9685251
  • Mooney RA, Darst SA, Landick R. Sigma and RNA polymerase: an on-again, off-again relationship?. Mol Cell 2005; 20:335 - 45; http://dx.doi.org/10.1016/j.molcel.2005.10.015; PMID: 16285916
  • Sukhodolets MV, Garges S, Adhya S. Ribosomal protein S1 promotes transcriptional cycling. RNA 2006; 12:1505 - 13; http://dx.doi.org/10.1261/rna.2321606; PMID: 16775305
  • Bar-Nahum G, Nudler E. Isolation and characterization of sigma(70)-retaining transcription elongation complexes from Escherichia coli. Cell 2001; 106:443 - 51; http://dx.doi.org/10.1016/S0092-8674(01)00461-5; PMID: 11525730
  • Deighan P, Pukhrambam C, Nickels BE, Hochschild A. Initial transcribed region sequences influence the composition and functional properties of the bacterial elongation complex. Genes Dev 2011; 25:77 - 88; http://dx.doi.org/10.1101/gad.1991811; PMID: 21205867
  • Sukhodolets MV, Cabrera JE, Zhi H, Jin DJ. RapA, a bacterial homolog of SWI2/SNF2, stimulates RNA polymerase recycling in transcription. Genes Dev 2001; 15:3330 - 41; http://dx.doi.org/10.1101/gad.936701; PMID: 11751638
  • Spitalny P, Thomm M. A polymerase III-like reinitiation mechanism is operating in regulation of histone expression in archaea. Mol Microbiol 2008; 67:958 - 70; http://dx.doi.org/10.1111/j.1365-2958.2007.06084.x; PMID: 18182021
  • Ferrari R, Rivetti C, Dieci G. Transcription reinitiation properties of bacteriophage T7 RNA polymerase. Biochem Biophys Res Commun 2004; 315:376 - 80; http://dx.doi.org/10.1016/j.bbrc.2004.01.071; PMID: 14766218
  • Sikorski TW, Buratowski S. The basal initiation machinery: beyond the general transcription factors. Curr Opin Cell Biol 2009; 21:344 - 51; http://dx.doi.org/10.1016/j.ceb.2009.03.006; PMID: 19411170
  • Zawel L, Kumar KP, Reinberg D. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev 1995; 9:1479 - 90; http://dx.doi.org/10.1101/gad.9.12.1479; PMID: 7601352
  • Yudkovsky N, Ranish JA, Hahn S. A transcription reinitiation intermediate that is stabilized by activator. Nature 2000; 408:225 - 9; http://dx.doi.org/10.1038/35041603; PMID: 11089979
  • Rani PG, Ranish JA, Hahn S. RNA polymerase II (Pol II)-TFIIF and Pol II-mediator complexes: the major stable Pol II complexes and their activity in transcription initiation and reinitiation. Mol Cell Biol 2004; 24:1709 - 20; http://dx.doi.org/10.1128/MCB.24.4.1709-1720.2004; PMID: 14749386
  • Reeves WM, Hahn S. Activator-independent functions of the yeast mediator sin4 complex in preinitiation complex formation and transcription reinitiation. Mol Cell Biol 2003; 23:349 - 58; http://dx.doi.org/10.1128/MCB.23.1.349-358.2003; PMID: 12482986
  • Cabart P, Lee J, Willis IM. Facilitated recycling protects human RNA polymerase III from repression by Maf1 in vitro. J Biol Chem 2008; 283:36108 - 17; http://dx.doi.org/10.1074/jbc.M807538200; PMID: 18974046
  • Cho H, Kim TK, Mancebo H, Lane WS, Flores O, Reinberg D. A protein phosphatase functions to recycle RNA polymerase II. Genes Dev 1999; 13:1540 - 52; http://dx.doi.org/10.1101/gad.13.12.1540; PMID: 10385623
  • Bataille AR, Jeronimo C, Jacques PE, Laramée L, Fortin ME, Forest A, Bergeron M, Hanes SD, Robert F. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol Cell 2012; 45:158 - 70; http://dx.doi.org/10.1016/j.molcel.2011.11.024; PMID: 22284676
  • Guffanti E, Corradini R, Ottonello S, Dieci G. Functional dissection of RNA polymerase III termination using a peptide nucleic acid as a transcriptional roadblock. J Biol Chem 2004; 279:20708 - 16; http://dx.doi.org/10.1074/jbc.M311295200; PMID: 14970213
  • Landrieux E, Alic N, Ducrot C, Acker J, Riva M, Carles C. A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation. EMBO J 2006; 25:118 - 28; http://dx.doi.org/10.1038/sj.emboj.7600915; PMID: 16362040
  • Canella D, Bernasconi D, Gilardi F, LeMartelot G, Migliavacca E, Praz V, Cousin P, Delorenzi M, Hernandez N, Cycli XC, CycliX Consortium. A multiplicity of factors contributes to selective RNA polymerase III occupancy of a subset of RNA polymerase III genes in mouse liver. Genome Res 2012; 22:666 - 80; http://dx.doi.org/10.1101/gr.130286.111; PMID: 22287103
  • Dieci G, Giuliodori S, Catellani M, Percudani R, Ottonello S. Intragenic promoter adaptation and facilitated RNA polymerase III recycling in the transcription of SCR1, the 7SL RNA gene of Saccharomyces cerevisiae. J Biol Chem 2002; 277:6903 - 14; http://dx.doi.org/10.1074/jbc.M105036200; PMID: 11741971
  • Rijal K, Maraia RJ. RNA polymerase III mutants in TFIIFα-like C37 that cause terminator readthrough with no decrease in transcription output. Nucleic Acids Res 2013; 41:139 - 55; http://dx.doi.org/10.1093/nar/gks985; PMID: 23093604
  • Nielsen S, Yuzenkova Y, Zenkin N. Mechanism of eukaryotic RNA polymerase III transcription termination. Science 2013; 340:1577 - 80; http://dx.doi.org/10.1126/science.1237934; PMID: 23812715
  • Emde G, Frontzek A, Benecke BJ. Secondary structure of the nascent 7S L RNA mediates efficient transcription by RNA polymerase III. RNA 1997; 3:538 - 49; PMID: 9149234
  • Knuesel MT, Meyer KD, Bernecky C, Taatjes DJ. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev 2009; 23:439 - 51; http://dx.doi.org/10.1101/gad.1767009; PMID: 19240132
  • Cavalli G, Misteli T. Functional implications of genome topology. Nat Struct Mol Biol 2013; 20:290 - 9; http://dx.doi.org/10.1038/nsmb.2474; PMID: 23463314
  • Tan C, Saurabh S, Bruchez MP, Schwartz R, Leduc P. Molecular crowding shapes gene expression in synthetic cellular nanosystems. Nat Nanotechnol 2013; 8:602 - 8; http://dx.doi.org/10.1038/nnano.2013.132; PMID: 23851358
  • Sokolova E, Spruijt E, Hansen MM, Dubuc E, Groen J, Chokkalingam V, Piruska A, Heus HA, Huck WT. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc Natl Acad Sci U S A 2013; 110:11692 - 7; http://dx.doi.org/10.1073/pnas.1222321110; PMID: 23818642

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.