1,934
Views
38
CrossRef citations to date
0
Altmetric
Article Addendum

SNARE motif: A common motif used by pathogens to manipulate membrane fusion

&
Pages 319-324 | Received 01 Feb 2010, Accepted 28 Apr 2010, Published online: 01 Jul 2010

References

  • Stow J, Manderson A, Murray R. SNAREing immunity: the role of SNAREs in the immune system. Nat Rev Immunol 2006; 6:919 - 929
  • Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation and fusion. Cell 1993; 75:409 - 418
  • Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993; 362:318 - 324
  • Weimbs T, Low SH, Chapin SJ, Mostov KE, Bucher P, Hofmann K. A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc Natl Acad Sci USA 1997; 94:3046 - 3051
  • Fasshauer D, Sutton RB, Brunger AT, Jahn R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci USA 1998; 95:15781 - 15786
  • Kaiser CA, Scheckman R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 1990; 61:723 - 733
  • Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992; 359:832 - 835
  • Montecucco C, Schiavo G. Mechanism of action of tetanus and botulinum neurotoxins. Mol Microbiol 1994; 13:1 - 8
  • Bennett M, Garcia-Arraras J, Elferink L, Peterson K, Fleming A, Hazuka C, et al. The syntaxin family of vesicular transport receptors. Cell 1993; 74:863 - 873
  • Hansen NJ, Antonin W, Edwardson JM. Identification of SNAREs involved in regulated exocytosis in pancreatic acinar cells. J Biol Chem 1999; 274:22871 - 22876
  • Lafont F, Verkade P, Galli T, Wimmer C, Louvard D, Simons K. Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proc Natl Acad Sci USA 1999; 96:3734 - 3738
  • Paumet F, Le Mao J, Martin S, Galli T, David B, Blank U, et al. Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicle-associated membrane protein 8-containing secretory compartment. J Immunol 2000; 164:5850 - 5857
  • Macaulay S, Hewish D, Gough K, Stoichevska V, MacPherson S, Jagadish M, et al. Functional studies in 3T3-L1 cells support a role for SNARE proteins in insulin stimulation of GLUT4 translocation. Biochem J 1997; 324:217 - 224
  • Dascher C, Matteson J, Balch W. Syntaxin 5 regulates endoplasmic reticulum to Golgi transport. J Biol Chem 1994; 269:29363 - 29366
  • Prekeris R, Yang B, Oorschot V, Klumperman J, Scheller RH. Differential roles of syntaxin 7 and syntaxin 8 in endosomal trafficking. Mol Biol Cell 1999; 10:3891 - 3908
  • Weber T, Zemelman B, McNew J, Westermann B, Gmachl M, Parlati F, et al. SNAREpins: Minimal machinery for membrane fusion. Cell 1998; 92:759 - 772
  • Hu C, Ahmed M, Melia TJ, Sollner T, Mayer T, Rothman JE. Fusion of cells by flipped SNAREs. Science 2003; 300:1745 - 1749
  • Parlati F, Weber T, McNew JA, Westermann B, Sollner TH, Rothman JE. Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc Natl Acad Sci USA 1999; 96:12565 - 12570
  • Paumet F, Rahimian V, Rothman JE. The specificity of SNARE-dependent fusion is encoded in the SNARE motif. Proc Natl Acad Sci USA 2004; 101:3376 - 3380
  • Fukuda R, McNew JA, Weber T, Parlati F, Engel T, Nickel W, et al. Functional architecture of an intracellular membrane t-SNARE. Nature 2000; 407:198 - 202
  • Sutton R, Fasshauer D, Jahn R, Brunger A. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 1998; 395:347 - 353
  • Poirier MA, Xiao W, Macosko JC, Chan C, Shin YK, Bennett MK. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat Struct Biol 1998; 5:765 - 769
  • Antonin W, Fasshauer D, Becker S, Jahn R, Schneider TR. Crystal structure of the endosomal SNARE complex reveals commomn structural principles of all SNAREs. Nat Struct Biol 2002; 9:107 - 111
  • Eckert D, Kim P. Mechanisms of viral membrane fusion and its inhibition. Ann Rev Biochem 2001; 70:777 - 810
  • Doxsey S, Sambrook J, Helenius A, White J. An efficient method for introducing macromolecules into living cells. J Cell Biol 1985; 101:19 - 27
  • Qiao H, Pelletier SL, Hoffman L, Hacker J, Armstrong RT, White JM. Specific single or double proline substitutions in the “spring-loaded” coiled-coil region of the influenza hemagglutinin impair or abolish membrane fusion activity. J Cell Biol 1998; 141:1335 - 1347
  • Steinhauer D, Wharton S, Skehel J, Wiley D. Studies of the membrane fusion activities of fusion peptide mutants of influenza virus hemagglutinin. J Virol 1995; 69:6643 - 6651
  • Daniels RS, Downie JC, Hay AJ, Knossow M, Skehel JJ, Wang ML, et al. Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell 1985; 40:431 - 439
  • Gething M-J, Doms RW, York D, White J. Studies on the mechanism of membrane fusion: Site-specific mutagenesis of the Hemagglutinin of Influenza virus. J Cell Biol 1986; 102:11 - 23
  • Chan D, Fass D, Berger J, Kim P. Core structure of gp41 from the HIV envelope glycoprotein. Cell 1997; 89:263 - 273
  • Tan K, Liu J, Wang J, Shen S, Lu M. Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci USA 1997; 94:12303 - 12308
  • Weissenhorn W, Dessen A, Harrison S, Skehel J, Wiley D. Atomic structure of the ectodomain from HIV-1 gp41. Nature 1997; 387:426 - 430
  • Malashkevich V, Chan D, Chutkowski C, Kim P. Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc Natl Acad Sci USA 1998; 95:9134 - 9139
  • Yang Z, Mueser T, Kaufman J, Stahl S, Wingfield P, Hyde C. The crystal structure of the SIV gp41 ectodomain at 1.47 A resolution. J Struct Biol 1999; 126:131 - 144
  • Baker K, Dutch R, Lamb R, Jardetzky T. Structural basis for paramyxovirus-mediated membrane fusion. Mol Cell 1999; 3:309 - 319
  • Yin H-S, Wen X, Paterson R, Lamb R, Jardetzky T. Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature 2006; 439:38 - 44
  • Lou Z, Xu Y, Xiang K, su N, Qin L, Li X, et al. Crystal structures of Nipah and Hendra virus fusion core proteins. FEBS Lett 2006; 273:4538
  • Xu Y, Liu Y, Lou Z, Qin L, Li X, Bai Z, et al. Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core. J Biol Chem 2004; 279:30514 - 30522
  • Xu Y, Lou Z, Liu Y, Pang H, Tien P, Gao G, et al. Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J Biol Chem 2004; 279:49414 - 49419
  • Weissenhorn W, Carfi A, Lee K, Skehel J, Wiley D. Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol Cell 1998; 2:605 - 616
  • Skehel JJ, Wiley DC. Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 1998; 95:871 - 874
  • Sollner T. Intracellular and viral membrane fusion: a uniting mechanism. Curr Opin Cell Biol 2004; 16:429 - 435
  • Kuma Y, Valdivia R. Leading a sheltered life: intracellular pathogens and maintenance of vacuolar compartments. Cell Host Microbe 2009; 5:593 - 601
  • Meresse S, Steele-Mortimer O, Moreno E, Desjardins M, Finlay B, Gorvel J. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nat Cell Biol 1999; 1:183 - 188
  • Hackstadt T. Redirection of host vesicle trafficking pathways by intracellular parasites. Traffic 2000; 1:93 - 99
  • De Buck E, Anne J, Lammertyn E. The role of protein secretion systems in the virulence of the intracellular pathogen Legionella pneumophila. Microbiology 2007; 153:3948 - 3953
  • Roy CR, Berger KH, Isberg RR. Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol Microbiol 1998; 28:663 - 674
  • Heinzen RA, Scidmore MA, Rockey DD, Hackstadt T. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetti and Chlamydia trachomatis. Infect Immun 1996; 64:796 - 809
  • Taraska T, Ward DM, Ajioka RS, Wyrick PB, Davis-Kaplan SR, Davis CH, et al. The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins. Infect Immun 1996; 64:3713 - 3727
  • Scidmore MA, Fischer ER, Hackstadt T. Restricted Fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection. Infection and Immunity 2003; 71:973 - 984
  • Celli J, De Chastellier C, Franchini D-M, Pizarro-Cerda J, Moreno E, Gorvel J. Brucella evades macrophages killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 2003; 198:545 - 556
  • Morozova I, Qu X, Shi S, Asamani G, Greenberg J, Shuman H, Russo J. Comparative sequence analysis of the icm/dot genes in Legionella. Plasmid 2004; 51:127 - 147
  • Delevoye C, Nilges M, Dautry-Varsat A, Subtil A. Conservation of the biochemical properties of IncA from Chlamydia trachomatis and C. caviae: oligomerization of IncA mediates interaction between facing membranes. J Biol Chem 2004; 279:46896 - 46906
  • Delevoye C, Nilges M, Dehoux P, Paumet F, Perrinet S, Dautry-Varsat A, et al. SNARE protein mimicry by an intracellular bacterium. PLOS Pathogens 2008; 4:1000022
  • Paumet F, Wesolowski J, Garcia-Diaz A, Delevoye C, Aulner N, Shuman H, et al. Intracellular bacteria encode inhibitory SNARE-like proteins. PloS One 2009; 4:7375
  • Fields KA, Hackstadt T. The Chlamydial inclusion: Escape from the endocytic pathway. Annu Rev Cell Dev Biol 2002; 18:221 - 245
  • de Felipe K, Glover R, Charpentier X, Anderson O, Reyes M, Pericone C, et al. Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 2008; 4:1000117
  • Campodonico E, Chesnel L, Roy C. A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system. Mol Microbiol 2005; 56:918 - 933
  • Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001; 2:107 - 117
  • Ingmundson A, Delprato A, Lambright D, Roy C. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 2007; 450:365 - 370
  • Murata T, Delprato A, Ingmundson A, Toomre D, Lambright D, Roy C. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 2006; 8:971 - 977
  • Brumell J, Scidmore M. Manipulation of rab GTPase function by intracellular bacterial pathogens. Microbiol Mol Biol Rev 2007; 71:636 - 652