1,387
Views
57
CrossRef citations to date
0
Altmetric
Research Paper

Campylobacter capsule and lipooligosaccharide confer resistance to serum and cationic antimicrobials

Pages 30-40 | Received 27 Aug 2010, Accepted 10 Jan 2011, Published online: 01 Jan 2011

References

  • Preliminary Foodnet data on the incidence of infection with pathogens transmitted commonly through food—10 states 2009. MMWR Morb Mortal Wkly Rep 2010; 59:418 - 422
  • Blaser MJ, Allos BM,. Mandell GL, Bennett JE, Dolin R. Campylobacter jejuni and related species. Principles and Practice of Infectious Diseases 2005; 6th ed Philadelphia Elsevier 2548 - 2557
  • Iovine NM, Pursnani S, Voldman A, Wasserman G, Blaser MJ, Weinrauch Y. Reactive nitrogen species contribute to innate host defense against Campylobacter jejuni. Infect Immun 2008; 76:986 - 993
  • Zilbauer M, Dorrell N, Boughan PK, Harris A, Wren BW, Klein NJ, et al. Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun 2005; 73:7281 - 7289
  • Butzler JP. Campylobacter, from obscurity to celebrity. Clin Microbiol Infect 2004; 10:868 - 876
  • Skirrow MB. Campylobacter enteritis: A “New” Disease. Br Med J 1977; 2:9 - 11
  • Beery JT, Hugdahl MB, Doyle MP. Colonization of gastrointestinal tracts of chicks by Campylobacter jejuni. Appl Environ Microbiol 1988; 54:2365 - 2370
  • Guerry P, Ewing CP, Hickey TE, Prendergast MM, Moran AP. Sialylation of lipooligosaccharide cores affects immunogenicity and serum resistance of Campylobacter jejuni. Infect Immun 2000; 68:6656 - 6662
  • Guerry P, Szymanski CM, Prendergast MM, Hickey TE, Ewing CP, Pattarini DL, et al. Phase variation of Campylobacter jejuni 81-176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro. Infect Immun 2002; 70:787 - 793
  • Kanipes MI, Holder LC, Corcoran AT, Moran AP, Guerry P. A deep-rough mutant of Campylobacter jejuni 81-176 is noninvasive for intestinal epithelial cells. Infect Immun 2004; 72:2452 - 2455
  • Karlyshev AV, Everest P, Linton D, Cawthraw S, Newell DG, Wren BW. The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiol 2004; 150:1957 - 1964
  • Blaser MJ, Perez GP, Smith PF, Patton C, Tenover FC, Lastovica AJ, et al. Extraintestinal Campylobacter jejuni and Campylobacter coli infections: Host factors and strain characteristics. J Infect Dis 1986; 153:552 - 559
  • Dann SM, Eckmann L. Innate immune defenses in the intestinal tract. Curr Opin Gastroenterol 2007; 23:115 - 120
  • Diffenbach CW, Tramont EC. Mandell GL, Bennett JE, Dolin R. Innate (general or nonspecific) host defense mechanisms. Principles and Practice of Infectious Diseases 2005; 6th ed Philadelphia Elsevier 34 - 42
  • Lehrer RI. Primate defensins. Nat Rev Microbiol 2004; 2:727 - 738
  • Scott MG, Hancock RE. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit Rev Immunol 2000; 20:407 - 431
  • Weiss J. Bactericidal/Permeability-Increasing Protein (BPI) and Lipopolysaccharide-Binding Protein (LBP): Structure, function and regulation in host defence against Gram-negative bacteria. Biochem Soc Trans 2003; 31:785 - 790
  • Eckmann L. Innate immunity and mucosal bacterial interactions in the intestine. Curr Opin Gastroenterol 2004; 20:82 - 88
  • Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF. Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 2005; 174:4901 - 4907
  • Zanetti M, Gennaro R, Romeo D. Cathelicidins: A novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 1995; 374:1 - 5
  • Weiss J, Elsbach P, Olsson I, Odeberg H. Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J Biol Chem 1978; 253:2664 - 2672
  • Guerry P, Szymanski CM. Campylobacter sugars sticking out. Trends Microbiol 2008; 16:428 - 435
  • Frank MM. Complement deficiencies. Pediatr Clin North Am 2000; 47:1339 - 1354
  • Naito M, Frirdich E, Fields JA, Pryjma M, Li J, Cameron A, et al. Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival and pathogenesis. J Bacteriol 2010; 192:2182 - 2192
  • Bacon DJ, Szymanski CM, Burr DH, Silver RP, Alm RA, Guerry P. A phase-variable capsule is involved in virulence of Campylobacter jejuni 81-176. Mol Microbiol 2001; 40:769 - 777
  • Hani EK, Chan VL. Expression and characterization of Campylobacter jejuni benzoylglycine amidohydrolase (hippuricase) gene in Escherichia coli. J Bacteriol 1995; 177:2396 - 2402
  • Slater ER, Owen RJ. Restriction fragment length polymorphism analysis shows that the hippuricase gene of Campylobacter jejuni is highly conserved. Lett Appl Microbiol 1997; 25:274 - 278
  • Karlyshev AV, Wren BW. Development and application of an insertional system for gene delivery and expression in Campylobacter jejuni. Appl Environ Microbiol 2005; 71:4004 - 4013
  • Yao R, Burr DH, Guerry P. CheY-mediated modulation of Campylobacter jejuni virulence. Mol Microbiol 1997; 23:1021 - 1031
  • Yao R, Guerry P. Molecular cloning and site-specific mutagenesis of a gene involved in arylsulfatase production in Campylobacter jejuni. J Bacteriol 1996; 178:3335 - 3338
  • Karlyshev AV, Linton D, Gregson NA, Lastovica AJ, Wren BW. Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for penner serotype specificity. Mol Microbiol 2000; 35:529 - 541
  • Gilbert M, Karwaski MF, Bernatchez S, Young NM, Taboada E, Michniewicz J, et al. The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem 2002; 277:327 - 337
  • Parker CT, Gilbert M, Yuki N, Endtz HP, Mandrell RE. Characterization of lipooligosaccharide-biosynthetic loci of Campylobacter jejuni reveals new lipooligosaccharide classes: Evidence of mosaic organizations. J Bacteriol 2008; 190:5681 - 5689
  • St. Michael F, Szymanski CM, Li J, Chan KH, Khieu NH, Larocque S, et al. The structures of the lipooligosaccharide and capsule polysaccharide of Campylobacter jejuni genome sequenced strain NCTC 11168. Eur J Biochem 2002; 269:5119 - 5136
  • Oldfield NJ, Moran AP, Millar LA, Prendergast MM, Ketley JM. Characterization of the Campylobacter jejuni heptosyltransferase II gene, waaf, provides genetic evidence that extracellular polysaccharide is lipid A core independent. J Bacteriol 2002; 184:2100 - 2107
  • Ganz T. Defensins: Antimicrobial peptides of vertebrates. C R Biol 2004; 327:539 - 549
  • Cross AS, Kim KS, Wright DC, Sadoff JC, Gemski P. Role of lipopolysaccharide and capsule in the serum resistance of bacteremic strains of Escherichia coli. J Infect Dis 1986; 154:497 - 503
  • Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 2003; 422:522 - 526
  • Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. Secretion of microbicidal alpha-defensins by intestinal paneth cells in response to bacteria. Nat Immunol 2000; 1:113 - 118
  • Ouellette AJ. Iv. Paneth cell antimicrobial peptides and the biology of the mucosal barrier. Am J Physiol 1999; 277:257 - 261
  • Cowland JB, Johnsen AH, Borregaard N. hCap-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett 1995; 368:173 - 176
  • Xiao Y, Cai Y, Bommineni YR, Fernando SC, Prakash O, Gilliland SE, et al. Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity. J Biol Chem 2006; 281:2858 - 2867
  • Jones A, Georg M, Maudsdotter L, Jonsson AB. Endotoxin, capsule and bacterial attachment contribute to Neisseria meningitidis resistance to the human antimicrobial peptide LL-37. J Bacteriol 2009; 191:3861 - 3868
  • Hancock RE, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 2000; 8:402 - 410
  • Weiss J, Elsbach P, Shu C, Castillo J, Grinna L, Horwitz A, et al. Human Bactericidal/Permeability-Increasing Protein and a recombinant NH2-terminal fragment cause killing of serum-resistant Gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria. J Clin Invest 1992; 90:1122 - 1130
  • Iovine NM, Elsbach P, Weiss J. An opsonic function of the neutrophil Bactericidal/Permeability-Increasing Protein depends on both its N- and C-terminal domains. Proc Natl Acad Sci USA 1997; 94:10973 - 10978
  • Weiss J, Beckerdite-Quagliata S, Elsbach P. Resistance of Gram-negative bacteria to purified bactericidal leukocyte proteins: Relation to binding and bacterial lipopolysaccharide structure. J Clin Invest 1980; 65:619 - 628
  • Weiss J, Hutzler M, Kao L. Environmental modulation of lipopolysaccharide chain length alters the sensitivity of Escherichia coli to the neutrophil Bactericidal/Permeability-Increasing Protein. Infect Immun 1986; 51:594 - 599
  • Wassenaar TM, Fry BN, van der Zeijst BA. Genetic manipulation of campylobacter: Evaluation of natural transformation and electro-transformation. Gene 1993; 132:131 - 135
  • Miller JF, Dower WJ, Tompkins LS. High-voltage electroporation of bacteria: Genetic transformation of Campylobacter jejuni with plasmid DNA. Proc Natl Acad Sci USA 1988; 85:856 - 860
  • Labigne-Roussel A, Harel J, Tompkins L. Gene transfer from Escherichia coli to Campylobacter species: Development of shuttle vectors for genetic analysis of Campylobacter jejuni. J Bacteriol 1987; 169:5320 - 5323
  • Morrison DC, Jacobs DM. Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochem 1976; 13:813 - 818
  • Johnson RJ, Nolan C, Wang SP, Shelton WR, Blaser MJ. Persistent Campylobacter jejuni infection in an immunocompromised patient. Ann Intern Med 1984; 100:832 - 834
  • Lekstrom-Himes JA, Gallin JI. Immunodeficiency diseases caused by defects in phagocytes. N Engl J Med 2000; 343:1703 - 1714
  • Gazzano-Santoro H, Parent JB, Grinna L, Horwitz A, Parsons T, Theofan G, et al. High-affinity binding of the Bactericidal/Permeability-Increasing Protein and a recombinant amino-terminal fragment to the lipid A region of lipopolysaccharide. Infect Immun 1992; 60:4754 - 4761
  • Bokarewa MI, Jin T, Tarkowski A. Intraarticular release and accumulation of defensins and Bactericidal/Permeability-Increasing Protein in patients with rheumatoid arthritis. J Rheumatol 2003; 30:1719 - 1724
  • Opal SM, Palardy JE, Marra MN, Fisher CJ Jr, McKelligon BM, Scott RW. Relative concentrations of endotoxin-binding proteins in body fluids during infection. Lancet 1994; 344:429 - 431
  • Weinrauch Y, Foreman A, Shu C, Zarember K, Levy O, Elsbach P, et al. Extracellular accumulation of potently microbicidal Bactericidal/Permeability-Increasing Protein and p15s in an evolving sterile rabbit peritoneal inflammatory exudate. J Clin Invest 1995; 95:1916 - 1924
  • Moffitt MC, Frank MM. Complement resistance in microbes. Springer Semin Immunopathol 1994; 15:327 - 344
  • McNally DJ, Lamoureux MP, Karlyshev AV, Fiori LM, Li J, Thacker G, et al. Commonality and biosynthesis of the o-methyl phosphoramidate capsule modification in Campylobacter jejuni. J Biol Chem 2007; 282:28566 - 28576
  • McNally DJ, Jarrell HC, Khieu NH, Li J, Vinogradov E, Whitfield DM, et al. The HS:19 serostrain of Campylobacter jejuni has a hyaluronic acid-type capsular polysaccharide with a nonstoichiometric sorbose branch and o-methyl phosphoramidate group. FEBS J 2006; 273:3975 - 3989
  • Takata T, Aras R, Tavakoli D, Ando T, Olivares AZ, Blaser MJ. Phenotypic and genotypic variation in methylases involved in type II restriction-modification systems in Helicobacter pylori. Nucleic Acids Res 2002; 30:2444 - 2452
  • Karlyshev AV, Wren BW. Detection and initial characterization of novel capsular polysaccharide among diverse Campylobacter jejuni strains using Alcian Blue dye. J Clin Microbiol 2001; 39:279 - 284
  • DeCross AJ, Marshall BJ, McCallum RW, Hoffman SR, Barrett LJ, Guerrant RL. Metronidazole susceptibility testing for Helicobacter pylori: Comparison of disk, broth and agar dilution methods and their clinical relevance. J Clin Microbiol 1993; 31:1971 - 1974
  • Blaser MJ, Smith PF, Kohler PF. Susceptibility of Campylobacter isolates to the bactericidal activity of human serum. J Infect Dis 1985; 151:227 - 235
  • Blaser MJ, Duncan DJ. Human serum antibody response to Campylobacter jejuni infection as measured in an enzyme-linked immunosorbent assay. Infect Immun 1984; 44:292 - 298
  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and clustal X version 2.0. Bioinformatics 2007; 23:2947 - 2948
  • Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 2000; 403:665 - 668
  • Kanipes MI, Tan X, Akelaitis A, Li J, Rockabrand D, Guerry P, et al. Genetic analysis of lipooligosaccharide core biosynthesis in Campylobacter jejuni 81-176. J Bacteriol 2008; 190:1568 - 1574
  • Gilbert M, Brisson JR, Karwaski MF, Michniewicz J, Cunningham AM, Wu Y, et al. Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds and characterization of nanomole amounts by 600 mhz (1)h and (13)c NMR analysis. J Biol Chem 2000; 275:3896 - 3906
  • Korlath JA, Osterholm MT, Judy LA, Forfang JC, Robinson RA. A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J Infect Dis 1985; 152:592 - 596
  • Tummuru MK, Blaser MJ. Characterization of the Campylobacter fetus sapA promoter: Evidence that the sapA promoter is deleted in spontaneous mutant strains. J Bacteriol 1992; 174:5916 - 5922