1,386
Views
24
CrossRef citations to date
0
Altmetric
Review

Direct effects of non-antifungal agents used in cancer chemotherapy and organ transplantation on the development and virulence of Candida and Aspergillus species

, &
Pages 280-295 | Received 15 Apr 2011, Accepted 03 Jun 2011, Published online: 01 Jul 2011

References

  • Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 2010; 36:1 - 53
  • Fishman JA. Infection in solid organ transplant recipients. N Engl J Med 2007; 357:601 - 614
  • Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, et al. Invasive fungal infections among organ transplant recipients: results of the transplant-associated infection surveillance network (TRANSNET). Clin Infect Dis 2010; 50:101 - 111
  • Marr KA, Carter RA, Boeckh M, Martin P, Corey L. Invasive aspergillosis in allogeneic stem cell transplant recipients: changes in epidemiology and risk factors. Blood 2002; 100:4358 - 4366
  • Lionakis MS, Kontoyiannis DP. Glucocorticoids and invasive fungal infections. Lancet 2003; 362:1828 - 1838
  • Rubin RH. Overview: pathogenesis of fungal infections in the organ transplant recipient. Transpl Infect Dis 2002; 4:12 - 17
  • MacFadden KD, Saito S, Pruzanski W. The effect of chemotherapeutic agents on chemotaxis and random migration of human leukocytes. J Clin Oncol 1985; 3:415 - 419
  • Ng TT, Robson GD, Denning DW. Hydrocortisone-enhanced growth of Aspergillus spp.: implications for pathogenesis. Microbiology 1994; 140:2475 - 2479
  • Ueta E, Tanida T, Yoneda K, Yamamoto T, Osaki T. Increase of Candida cell virulence by anticancer drugs and irradiation. Oral Microbiol Immunol 2001; 16:243 - 249
  • Bastidas RJ, Reedy JL, Morales-Johansson H, Heitman J, Cardenas ME. Signalling cascades as drug targets in model and pathogenic fungi. Curr Opin Invest Drugs 2008; 9:856 - 864
  • Cardenas ME, Cruz MC, Del Poeta M, Chung N, Perfect JR, Heitman J. Antifungal activities of antineoplastic agents: Saccharomyces cerevisiae as a model system to study drug action. Clin Microbiol Rev 1999; 12:583 - 611
  • Swain SM. Chemotherapy: updates and new perspectives. Oncologist 2010; 15:8 - 17
  • Sharp S, Workman P. Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 2006; 95:323 - 348
  • Rotili D, Simonetti G, Savarino A, Palamara AT, Migliaccio AR, Mai A. Non-cancer uses of histone deacetylase inhibitors: effects on infectious diseases and β-hemoglobinopathies. Curr Top Med Chem 2009; 9:272 - 291
  • Kufe DW, Major PP, Egan EM, Beardsley GP. Correlation of cytotoxicity with incorporation of ara-C into DNA. J Biol Chem 1980; 255:8997 - 9000
  • Perez EA. Microtubule inhibitors: Differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity and resistance. Mol Cancer Ther 2009; 8:2086 - 2095
  • Ghannoum MA, Abu-Elteen KH, Motawy MS, Abu-Hatah MA, Ibrahim AS, Criddle RS. Combinations of antifungal and antineoplstic drugs with interactive effects of inhibition of yeast growth. Chemotherapy 1990; 36:308 - 320
  • Savani DV, Perfect JR, Durack DT. Activity of anticancer drugs against yeast in vitro. Program and abstracts of the 26th Interscience Conference on Antimicrobial Agents and Chemotherapy 1986; 838:Washington DC American Society for Microbiology 252
  • Graybill JR, Bocanegra R, Fothergill A, Rinaldi MG. Bleomycin therapy of experimental disseminated candidiasis in mice. Antimicrob Agents Chemother 1996; 40:816 - 818
  • Bleomycin http://www.drugs.com/pro/bleomycin.html
  • Ghannoum MA, Motawy MS, Abu-Hatah MA, Abu-Elteen KA, Criddle RS. Interactive effect of antifungal and antineoplastic agents on yeasts commonly prevalent in cancer patients. Antimicrob Agents Chemother 1989; 33:726 - 730
  • Ghannoum MA, Al-Kharis A. Effect of antineoplastic agents on the growth and ultrastructure of Candida albicans. Mykosen 1984; 27:452 - 464
  • Land GA, Hulme KL, Chaffin WL. The effect of selected antineoplastic agents on the morphology of Candida albicans 5865. Can J Microbiol 1980; 26:812 - 818
  • Linaris CEB, Briebeler D, Cargnelutti D, Alves SH, Morsch VM, Schetinger MRC. Catalase activity in Candida albicans exposed to antineoplastic drugs. J Med Microbiol 2006; 55:259 - 262
  • Nakagawa Y, Kanbe T, Mizuguchi I. Disruption of the human pathogenic yeast Candida albicans catalase gene decreased survival in mouse-model infection and elevated susceptibility to higher temperature and to detergents. Microbiol Immunol 2003; 47:395 - 403
  • Ghannoum MA. Effects of antineoplastic agents on growth, morphology and metabolism of Torulopsis glabrata. Mycopathologica 1986; 95:171 - 181
  • Miyamoto CT, Sant'Anna JR, Franco CCS, Castro-Prado MAA. Genotoxicity (mitotic recombination) of the cancer chemotherapeutic agents cisplatin and cytosine arabinoside in Aspergillus nidulans. Food Chem Toxicol 2007; 45:1091 - 1095
  • Becker TCA, Castro-Prado MAA. Parameiosis in Aspergillus nidulans in response to doxorubicin. Folia Microbiol 2004; 49:699 - 704
  • Tamame M, Antoquera F, Santos E. Developmental characterisation and chromosomal mapping of the 5-azacytidine-sensitive fluF locus of Aspergillus nidulans. Mol Cell Biol 1988; 8:3043 - 3050
  • Ben-Ami R, Varga J, Lewis RE, May GS, Nierman WC, Kontoyiannis DP. Characterization of a 5-azacytidine-induced developmental Aspergillus fumigatus variant. Virulence 2010; 1:164 - 173
  • Pharmion Corporation. Azacitidine Investigator's brochure 2007; Boulder, CO 5
  • Moussa NM, Ghannoum MA, Whittaker PA, el-Ezaby MS, Quraman S. Effects of cisplatin and tow novel palladium complexes on Candida albicans. Microbios 1990; 62:252 - 253
  • Chandrasekar K, Shyla JH, Malathi R. Can antitumor platinum compounds be effective against Candida albicans?—a screening assay fusing disk diffusion method. J Clin Microbiol 2000; 38:3905
  • Salas S, Mercier C, Ciccolini J, Pourroy B, Fanciullino R, Tranchand B, et al. Therapeutic drug monitoring for dose individualization of Cisplatin in testicular cancer patients based upon total platinum measurement in plasma. Ther Drug Monit 2006; 28:532 - 539
  • Malathi R, Chandrasekar K. Self splicing in group-I intron of Tetrahymena rRNA and its possible inhibition when reacted with platinum complexes. J Biosci 1999; 24:96
  • Sarachek A, Henderson LA. Modification of responses of Candida albicans to cisplatin by membrane damaging antimycotic agents. Mycoses 1991; 34:177 - 182
  • Chandrasekar K, Raghunathan M, Ganesan N. Morphological and growth altering effects of Cisplatin in C. albicans using fluorescence microscopy. Ann Clin Microbiol Antimicrob 2005; 4:7
  • Litzow MR. Arsenic trioxide. Expert Opin Pharmacother 2008; 9:1773 - 1785
  • Jin YH, Dunlop PE, McBride SJ, Al-Refai H, Bushel PR, Freedman JH. Global transcriptome and deletome profiles of yeast exposed to transition metals. PLoS Genet 2008; 4:1000053
  • Hosiner D, Lempiainen, Reiter W, Urban J, Loewith R, Ammerer G, et al. Arsenic toxicity to Saccharomyces cerevisiae is a consequence of inhibition of the TORC1 kinase combined with a chronic stress response. Mol Biol Cell 2009; 20:1048 - 1057
  • Buckova M, Godocikova J, Polek B. Responses in the mycelia growth of Aspergillus niger isolates to arsenic contaminated environments and their resistance to exogenic metal stress. J Basic Microbiol 2007; 47:295 - 300
  • Buckova M, Godocikova J, Simonovicova A, Polek B. Production of catalases by Aspergillus niger isolates as a response to pollutant stress by heavy metals. Curr Microbiol 2005; 50:175 - 179
  • Zhao J, Kim JE, Reed E, Li QQ. Molecular mechanism of antitumour activity of taxanes in lung cancer. Int J Oncol 2005; 27:247 - 256
  • Whelan J. Targeted taxane therapy for cancer. Drug Discov Today 2002; 7:90 - 92
  • Chakravarthi BVSK, Das P, Surendranath K, Karande AA, Jayabaskaran C. Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J Biosci 2008; 33:259 - 267
  • Foland TB, Dentler WL, Suprenant KA, Gupta ML Jr, Himes RH. Paclitaxel-induced microtubule stabilisation causes mitotic block and apoptotic-like cell death in a paclitaxel-sensitive strain of Saccharomyces cerevisiae. Yeast 2005; 22:971 - 978
  • Yokoyama K, Kaji H, Nishimura K, Miyaji M. The role of microfilaments and microtubules in apical growth and dimorphism of Candida albicans. J Gen Microbiol 1990; 136:1067 - 1075
  • Filler SG, Swerdloff JN, Hobbs C, Luckett PM. Penetration and damage of endothelial cells by Candida albicans. Infect Immun 1995; 63:976 - 983
  • Maraki S, Hajiioannou I, Anatoliotakis N, Plataki M, Chatzinikolaou I, Zoras O, et al. Ceftriaxone and dexamethasone affecting yeast gut flora in experimental mice. J Chemother 1999; 11:363 - 366
  • Myerowitz RL. Gastrointestinal and disseminated candidiasis. An experimental model in the immunosuppressed rat. Arch Pathol Lab Med 1981; 105:138 - 143
  • Ellepola ANB, Samaranayake LP. Inhalational and topical steroids, and oral candidosis: a mini-review. Oral Dis 2001; 7:211 - 216
  • Bykov VL. Morphological analysis of the effect of corticosteroids on the development and course of vaginal candidiasis. Akush Ginekol 1989; 2:35 - 37
  • Ghannoum MA, Elteen KA. Effect of growth of Candida spp. in the presence of various glucocorticoids on the adherence to human buccal epithelial cells. Mycopathologia 1987; 98:171 - 178
  • Wu TG, Wilhelmus KR, Mitchell BM. Experimental keratomycosis in a mouse model. Invest Ophthalmol Vis Sci 2003; 44:210 - 216
  • Gyetvai A, Emri T, Fekete A, Varga Z, Gazdag Z, Pesti M, et al. High dose methylprednisolone influences the physiology and virulence of Candida albicans ambiguously and enhances the candidacidal activity of the polyene antibiotic amphotericin B and the superoxide-generating agent menadione. FEMS Yeast Res 2007; 7:265 - 275
  • Cutler JE. Putative virulence factors of Candida albicans. Annu Rev Microbiol 1991; 45:187 - 218
  • Loose DS, Schurman DJ, Feldman D. A corticosteroid binding protein and endogenous ligand in Candida albicans indicating a possible steroid-receptor system. Nature 1981; 293:477 - 479
  • Stover EP, Loose DS, Stevens DA, Feldman D. Ketoconazole binds to the intracellular corticosteroid-binding protein in Candida albicans. Biochim Res Commun 1983; 117:43 - 50
  • Banerjee D, Martin N, Nandi S, Shukla S, Dominguez A, Mukhopadhyay G, et al. Genome-wide steroid response study of the major human fungal pathogen Candida albicans. Mycopathologia 2007; 164:1 - 17
  • Karnani N, Gaur NA, Jha S, Puri N, Krishnamurthy S, Goswami SK, et al. SRE1 and SRE2 are two specific steroid-responsive modules of Candida drug resistance gene 1 (CDR1) promoter. Yeast 2004; 21:219 - 239
  • Ramondec I, Pinel C, Ambroise-thomas P, Grillot R. Does hydrocortisone modify the in vitro susceptibility of Aspergillus fumigatus to itraconazole and amphotericin B?. Med Mycol 1998; 36:69 - 73
  • Steinbach WJ, Reedy JL, Cramer RA Jr, Perfect JR, Heitman J. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 2007; 5:418 - 430
  • Fox DS, Heitman J. Good fungi gone bad: the corruption of calcineurin. BioEssays 2002; 24:893 - 903
  • Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991; 253:905 - 909
  • Cutler NS, Pan X, Heitman J, Cardenas ME. The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol Cell Biol 2001; 12:4103 - 4113
  • High KP. The antimicrobial activities of cyclosporine, FK506 and rapamycin. Transplantation 1994; 12:1689 - 1700
  • Vakil R, Knilans K, Andes D, Kwon GS. Combination antifungal therapy involving amphotericin B, rapamycin and 5-FC using PEG-phospholipid micelles. Pharm Res 2008; 25:2056 - 2064
  • Cruz MC, Goldstein AL, Blankenship J, Del Poeta M, Perfect JR, McCusker JH, et al. Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob Agents Chemother 2001; 45:3162 - 3170
  • Liao WL, Ramon AM, Fonzi WA. GLN3 encodes a global regulator of nitrogen metabolism and virulence of Candida albicans. Fungal Genet Biol 2008; 45:514 - 526
  • Baker H, Sidorowicz A, Sehgal SN, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic: III. In vitro and in vivo evaluation. J Antibiot 1978; 31:539 - 545
  • Onyewu C, Blankenship JR, Del Poeta M, Heitman. Ergosterol biosynthesis become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata and Candida krusei. Antimicrob Agents Chemother 2003; 47:956 - 964
  • Marchetti O, Moreillon P, Glauser MP, Bille J, Sanglard D. Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans. Antimicrob Agents Chemother 2000; 44:2932 - 2938
  • Cruz M, Goldstein AL, Blankenship JR, Del Poeta M, Davis D, Cardenas ME, et al. Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J 2002; 21:546 - 559
  • Bader T, Bodendorfer B, Schroppel K, Morschhauser J. Calcineurin is essential for virulence in Candida albicans. Infect Immun 2003; 71:5344 - 5354
  • Blankenship JR, Wormley FL, Boyce MK, Schell WA, Filler SG, Perfect JR, et al. Calcineurin is essential for Candida albicans survival in serum and virulence. Euk Cell 2003; 2:422 - 430
  • Onyewu C, Wormley FL Jr, Perfect JR, Heitman J. The calcineurin target Crz1, functions in azole tolerance but is not required for virulence of Candida albicans. Infect Immun 2004; 72:7330 - 7333
  • Marchetti O, Entenza JM, Sanglard D, Bille J, Glauser MP, Moreillon P. Fluconazole plus cyclosporine: a fungicidal combination effective against experimental endocarditis due to Candida albicans. Antimicrob Agents Chemother 2000; 44:2932 - 2938
  • Reedy JL, Husain S, Ison M, Pruett TL, Singh N, Hietman J. Immunotherapy with tacrolimus (FK506) does not select for resistance to calcineurin inhibitors in Candida albicans isolates from liver transplant patients. Antimicrob Agents Chemother 2006; 50:1573 - 1577
  • Onyewu C, Ahshari N, Heitman J. Calcineurin promotes infection of the cornea by Candida albicans. Antimicrob Agents Chemother 2006; 50:3963 - 3965
  • Uppuluri P, Nett J, Heitman J, Andes D. Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother 2008; 52:1127 - 1132
  • Miyazaki T, Yamauchi S, Inaminbe T, Nagayoshi Y, Saijo T, Izumikawa K, et al. Roles of calcineurin and Crz1 in antifungal susceptibility and virulence of Candida glabrata. Antimicrob Agents Chemother 2010; 54:1639 - 1643
  • Palmbad J, Lonnqvist B, Carlsson B, Grimfors G, Jarnmark M, Lerner R. Oral ketoconazole prophylaxis for Candida infections during induction therapy for acute leukemia in adults: more bacteremia. J Int Medicine 1992; 231:363 - 370
  • Kern W, Behre G, Rudolf T. failure of fluconazole prophylaxis to reduce mortality or the requirement of systemic amphtoericin B therapy during treatment for refractory AML: results of a prospective randomised phase III study. German AML Cooperative Group. Cancer 1998; 83:291 - 301
  • Krajewska-Kulak E, Niczyporuk W. J Effects of cyclosporine A on mycelia transformation of Candida albicans in human serum. Eur Acad Dematol Venereol 1998; 10:191 - 192
  • Steinbach WJ, Cramer RJ Jr, Perfect BZ, Asfaw YG, Sauer TC, Najvar LK, et al. Calcineurin controls growth, morphology and pathogencity in Aspergillus fumigatus. Eukayrot Cell 2006; 5:1091 - 1103
  • Ferreira ME, Heinekamp T, Hartl A, Brakhage AA, Semighini CP, Harris SD, et al. Functional characterisation of the Aspergillus fumigatus calcineurin. Fungal Genet Biol 2007; 44:219 - 230
  • Steinbach WJ, Singh N, Miller JL, Benjamin DK, Schell WA, Heitman J, et al. In vitro interaction between antifungals and immunosuppressants against Aspergillus fumigatus isolates from transplant and nontransplant patients. Antimicrob Agents Chemother 2004; 48:4922 - 4925
  • Steinbach WJ, Schell WA, Blankenship JR, Onyewu C, Heitman J, Perfect JR. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. Antimicrob Agents Chemother 2004; 48:1664 - 1669
  • Kontoyiannis DP, Lewis RE, Osherov N, Albert ND, May GS. Combination of caspofungin with inhibitors of the calcineurin pathway attenuates growth in vitro in Aspergillus species. J Antimicrob Chemother 2003; 51:313 - 316
  • Berenguer J, Allende MC, Lee JW, Garrett K, Lyman C, Ali NM, et al. Pathogenesis of pulmonary aspergillosis. Granulocytopenia versus cyclosporine and methylpredisolone-induced immunosuppression. Am J Resp Crit Care 1995; 152:1079 - 1086
  • High KP, Washburn RG. Invasive aspergillosis in mice immunosuppressed with cyclosporine A, tacrolimus (FK506) or sirolimus (rapamycin). J Infect Dis 1997; 175:222 - 225
  • Nielsen Kahn J, Hsu MJ, Racine F, Giacobbe R, Motyl M. Caspofungin susceptibility in Aspergillus and non-Aspergillus moulds: inhibition of glucan synthase and reduction of B-D-1,3 glucan levels in culture. Antimicrob Agents Chemother 2006; 50:2214 - 2216
  • Steinbach WJ, Cramer RA, Perfect BZ, Henn C, Nielsen K, Heitman J, et al. Calcienurin inhibition or mutation enhances cell wall inhibitors against Aspergillus fumigatus. Antimicrob Agents Chemother 2007; 51:2979 - 2981
  • Cramer RA Jr, Perfect BZ, Pinchai N, Park S, Perlin DS, Asfaw YG, et al. Calcineurin target CrzA regulates conidial germination, hyphal growth and pathogenesis of Aspergillus fumigatus. Eukaryot Cell 2008; 7:1085 - 1097
  • Cruz MC, Del Poeta M, Wang P, Wenger R, Zenke G, Quesniaux VF, et al. Immunosuppressive and nonimmunosuppressive cyclosporine analogs are toxic to the opportunistic fungal pathogen Cryptococcus neoformans via cyclophilin-dependent inhibition of calcineurin. Antimicrob Agents Chemother 2000; 44:143 - 149
  • Taldone T, Gozman A, Maharaj R, Chiosis G. Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol 2008; 8:370 - 374
  • Donnelly A, Blagg BSJ. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem 2008; 15:2702 - 2717
  • Kamal A, Boehm M, Burrows FJ. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol Med 2004; 10:283 - 290
  • Cowen LE, Lindquist S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 2005; 309:2185 - 2189
  • Cowen LE, Carpenter AE, Matangkasombuk O, Fink GR, Lindquist S. Genetic architecture of Hsp90-dependent drug resistance. Euk Cell 2006; 5:2184 - 2188
  • Cowen L, Singh SD, Kohler JR, Collins C, Zaas AK, Schell WA, et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. PNAS 2009; 106:2818 - 2823
  • Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathogens 2009; 5:1000532
  • Kaneko Y, Ohno H, Imamura Y, Kohno S, Miyazaki Y. The effects of an Hsp90 inhibitor on the paradoxical effect. Jpn J Infect Dis 2009; 62:392 - 393
  • Shapiro RS, Cowen LE. Coupling temperature sensing and development. Virulence 2010; 1:45 - 48
  • Hodgetts S, Nooney L, Al-Akeel R, Curry A, Awad S, Matthews R, et al. Efungumab and caspofungin: pre-clinical data supporting synergy. J Antimicrob Chemother 2008; 61:1132 - 1139
  • Matthews RC, Burnie JP. Human recombinant antibody to HSP90: a natural partner in combination therapy. Curr Mol Med 2005; 5:403 - 411
  • Pachl J, Svoboda P, Jacobs F, Vandewoude K, Hoven B, van der Spronik P, et al. A randomised blinded multicentre trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin Infect Dis 2006; 42:1404 - 1413
  • Srivastava P. Roles of hear shock proteins in innate and adaptive immunity. Nat Rev Immunol 2002; 2:185 - 194
  • Andrews KT, Tan TN, Lucke AJ, Kahnberg P, Lee GT, Boyle GM, et al. Potent antimalarial activity of histone acetylase inhibitor analogues. Antimicrob Agents Chemother 2008; 52:1454 - 1461
  • Batty N, Malouf GG, Issa JP. Histone deacetylase inhibitors as anti-neoplastic agents. Cancer Lett 2009; 280:192 - 200
  • Copeland A, Buglio D, Younes A. Histone deacetylase inhibitors in lymphoma. Curr Opin Oncol 2010; 22:431 - 436
  • Brosch G, Loidl P, Graessle S. Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol Rev 2008; 32:409 - 439
  • Wurtele H, Tsao S, Lepine G, Mullick A, Tremblay J, Drogaris P, et al. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med 2010; 16:774 - 781
  • Srikantha T, Tsai L, Daniels K, Klar AJS, Soll DR. The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high frequency phenotypic switching in Candida albicans. J Bacteriol 2001; 183:4614 - 4625
  • Smith WL, Edlind TD. Histone deacetylase inhibitors enhance Candida albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregulation. Antimicrob Agents Chemother 2002; 46:3532 - 3539
  • Simonetti G, Passariello C, Rotili D, Mai A, Garaci E, Palamara AT. Histone deacetylase inhibitors may reduce pathogenicity and virulence in Candida albicans. FEMS Yeast Res 2007; 7:1371 - 1380
  • Mai A, Rotili D, Massa S, Brosch G, Simonettti G, Passariello C, Palamara AT. Discovery of uracil-based histone deacetylase inhibitors able to reduce acquired antifungal drug resistance and trailing growth in Candida albicans. Bioorg Med Chem 2007; 17:1221 - 1225
  • Kozikowski AP, Tapadar S, Luchini DN, Kim KH, Billadeau DD. Use of the nitrile oxide cycloaddition (NOC) reaction for molecular rpobe generation: a new class of enzyme selective histone decetylase inhibitors (HDACIs) showing picomolar activity at HDAC6. J Med Chem 2008; 51:4370 - 4373
  • Aoyagi S, Archer TK. Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol 2005; 15:565 - 567
  • da Rosa JL, Boyartchuk VL, Zhu LJ, Kaufman PD. Histone acertyltransferase Rtt109 is required for Candida albicans pathogenesis. Proc Natl Acad Sci 2010; 107:1594 - 1599
  • Pfaller MA, Messer SA, Georgopapadakou N, Martell LA, Besterman JM, Diekema DJ. Activity of MGCD290, a Hos histone deacetylase inhibtor in combination with azole antifungals against opportunistic fungal pathogens. J Clin Microbiol 2009; 47:3797 - 3804
  • Lee I, Oh JH, Shwab EK, Degenais T, Andes D, Keller NP. HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet Biol 2009; 46:782 - 790
  • Tribus M, Bauer I, Galehr J, Rieser G, Trojer P, Brosch G, et al. A novel motif in fungal class 1 histone deacetylases is essential for growth and development of Aspergillus. Mol Biol Cell 2010; 21:345 - 353
  • Shen LL, Fostel JM. DNA topoisomerase inhibitors as antifungal agents. Adv Pharmacol 1994; 29:227 - 244
  • Ozdek SC, Miller D, Flynn PM, Flynn HW Jr. In vitro antifungal activity of the fourth generation fluoroquinolones against Candida isolates from human ocular infections. Ocul Immunol Inflamm 2006; 14:347 - 351
  • Stergiopoulou T, Meletiadis J, Sein T, Papaioannidou P, Tsiouris I, Roilides E, et al. Isobolographic analysis of pharmacodynamic interactions between antifungal agents and ciprofloxacin against Candida albicans and Aspergillus fumigatus. Antimicrob Agents Chemother 2008; 52:2196 - 2204
  • Stergiopoulou T, Meletiadis J, Sein T, Papaioannidou P, Tsiouris I, Roilides E, et al. Comparative pharmacodynamic interaction analysis between ciprofloxacin, moxifloxacin and levofloxacin and antifungal agents against Candida albicans and Aspergillus fumigatus. J Antimicrob Chemother 2009; 63:343 - 348
  • Maurer N, Wong KF, Hope MJ, Cullis PR. Anomalous solubility behaviour of the antibiotic ciprofloxacin encapsulated in liposomes; a 1H-NMR study. Biophys Biochim Acta 1998; 1374:9 - 20
  • Nakajima R, Kitamura A, Someya K, Tanaka M, Sato K. In vitro and in vivo antifungal activities of DU-6859a, a fluoroquinolone, in combination with amphotericin B and fluconazole against pathogenic fungi. Antimicrob Agents Chemother 1995; 39:1517 - 1521
  • Sugar AM, Liu XP, Chen RJ. Effectiveness of quinolone antibiotics in modulating the effects of antifungal drugs. Antimicrob Agents Chemother 1997; 41:2518 - 2521
  • Deren YT, Ozdek S, Kalkanci A, Akyurek N, Hasanreisoglu B. Comparison of antifungal efficacies of moxifloxacin, liposomal amphotericin B and combination treatment in experimental Candida albicans endophthalmitis in rabbits. Can J Microbiol 2010; 56:1 - 7
  • Shalit I, Horev-Azaria L, Fabian I, Blau H, Kariv N, Shechtman I, et al. Immunomodulatory and protective effects of moxifloxacin against Candida albicans-induced bronchopneumonia in mice injected with cyclophosphamide. Antimicrob Agents Chemother 2002; 46:2442 - 2449
  • Parker MA, King V, Howard KP. Nuclear magnetic resonance study of doxorubicin binding to cardiolipin containing magnetically orientated phospholipid bilayers. Biochim Biophys Acta Biomembranes 2001; 1514:206 - 216
  • Peiris V, Oppenheim BA. Antimicrobial activity of cytotoxic drugs may influence isolation of bacteria and fungi from blood cultures. J Clin Pathol 1993; 46:1124 - 1125
  • Kinnunen U, Syrjala H, Koistinen P, Koskela M. Idarubicin inhibits the growth of bacteria and yeasts in an automated blood culture system. Eur J Clin Microbiol Infect Dis 2009; 28:301 - 303
  • Kwok SC, Schelenz S, Wand X, Steverding D. In vitro effect of DNA topoisomerase inhibitors on Candida albicans. Med Mycol 2010; 48:155 - 160
  • O'Keefe J, Doyle S, Kavanagh K. Exposure of the yeast Candida albicans to the anti-neoplastic agent adriamycin increases the tolerance to amphotericin B. J Pharm Pharmcol 2003; 5:1629 - 1633
  • Kofla G, Turner V, Schulz B, Storch U, Froelich D, Rognon B, et al. Doxorubicin induces drug efflux pumps in Candida albicans. Med Mycol 2011; 49:132 - 142
  • Becker TCA, De Castro-Prado MAA. Parameiosis in Aspergillus nidulans in response to doxorubicin. Folia Microbiol 2004; 49:699 - 704
  • Jayaguru P, Raghunathan M. Group I intron renders differential susceptibility of Candida albicans to bleomycin. Mol Biol Rep 2007; 34:11 - 17
  • Kafer E. Botran and bleomycin induce crossing-over and bleomycin also increases aneuploidy in diploid strains of Aspergillus. Mutat Res 1990; 241:49 - 66
  • Moore CW, McKoy J, Del Valle R, Armstrong D, Bernard EM, Katz N, et al. Fungal cell wall septation and cytokinesis are inhibited by bleomycins. Antimicrob Agents Chemother 2003; 47:3281 - 3289
  • Alfeltra J, Verwiej PE. Antifungal activity of nonantifungal drugs. Eur J Clin Microbiol Infect Dis 2003; 22:397 - 407
  • Beggs WH. Combined activity of ketoconazole and sulphamethoxazole against Candida albicans. J Antimicrob Chemother 1982; 10:539 - 541
  • Chang MR, Cury AE. Amphotericin B-metronidazole combination against Candida spp. Rev Iberoam Micol 1998; 15:78 - 80
  • Krause DS, Van Ellen RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005; 353:172 - 187
  • Ozvegy-Laczka C, Cserepes J, Elkind NB, Sarkadi B. Tyrosine kinase inhibitor resistance in cancer: role of ANC multidrug transporters. Drug Res Update 2005; 8:15 - 26
  • Haouala A, Widmer N, Duchosai MA, Montemurro M, Buclin, Deconsterd LA. Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib and nilotinib. Blood 2011; 117:e75 - e87
  • Limongi CL, De Souza W, Rozental S. Protein kinase antagonists inhibit invasion of mammlian cells by Fonsecaea pedrosoi. J Med Microbiol 2003; 52:201 - 209
  • Yazdanyar A, Essrmann M, Larsen B. Genistein effects on growth and cell cycle of Candida albicans. J Biomed Sci 2001; 8:153 - 159
  • Filler SG, Swerdloff JN, Hobbs C, Luckett PM. Penetration and damage of endothelial cells by Candida albicans. Infect Immun 1995; 63:976 - 983
  • Luther K, Rohde M, Sturm K, Kotz A, Heeseman J, Ebel F. Characterisation of the phagocytic uptake of Aspergillus conidia by macrophages. Microb Infect 2008; 10:175 - 184
  • Van Erp NP, Gelderblom H, Guchelaar HJ. Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 2009; 35:692 - 706
  • Bartoszewska M, Kiel JAKW. The role of macroautophagy in development of filamentous fungi. Antiox Redox Sig 2011; 14:2271 - 2287
  • Richie DL, Askew DS. Autophagy in the filamentous fungus Aspergillus fumigatus. Methods Enzmol 2008; 451:241 - 250
  • Ma J, Jin R, Dobry CJ, Lawson SK, Kumar A. Overexpression of autophagy-related genes inhibits yeast filamentous growth. Autophagy 2007; 3:604 - 609
  • Palmer G, Kelly M, Sturtevant J. Autophagy in the pathogen Candida albicans. Microbiology 2007; 153:51 - 58
  • Roetzer A, Gratz N, Kovrik P, Schuller C. Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol 2010; 12:199 - 216
  • Pollack JK, Harris SD, Marten MR. Autophagy in filamentous fungi. Fungal Genet Biol 2009; 46:1 - 8
  • Kikuma T, Arioka M, Katsuhiko K. Autophagy during conidiation and conidial; germination in filamentous fungi. Autophagy 2007; 3:128 - 129
  • Richie DL, Fuller KK, Fortwendel J, Miley MD, McCarthy JW, Feldmesser M, et al. Unexpected link between metal ion deficiency and autopahgy in Aspergillus fumigatus. Eukaryot Cell 2007; 6:2437 - 2447