10,115
Views
250
CrossRef citations to date
0
Altmetric
Review

Bacterial interactions in dental biofilm

, &
Pages 435-444 | Received 14 Mar 2011, Accepted 22 Jun 2011, Published online: 01 Sep 2011

References

  • Dobell C. The rst observations on entozoic protozoa and bacteria. Antony Van Leeuwenhoek and His ‘Little Animals’ 1958; New York Russell and Russell, Inc 236 - 256
  • Marsh PD. Dental plaque: biological signicance of a biolm and community life-style. Journal of Clinical Periodontology 2005; 32:7 - 15
  • Madigan MT, Martinko JM. Brock Biology of microorganisms 2006; 617:Upper Saddle River Prentice Hall, Inc 618
  • Kolenbrander PE, Palmer RJ Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. Bacterial interactions and successions during plaque development. Periodontol 2000; 42:47 - 79
  • Hojo K, Nagaoka S, Ohshima T, Maeda N. Bacterial interactions in dental biofilm development. J Dent Res 2009; 88:982 - 990
  • Geesey GG, Lewandowski Z, Flemming HC. Biofouling and Biocorrosion in Industrial Water Systems 1994; Ann Arbor Lewis Publishers
  • Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 2003; 50:61 - 68
  • Kenneth J, Ryan C, Ray G. Sherris' medical microbiology [M] 2004; 4:New York McGraw Hill Medical Pub Division 141 - 149
  • Hyman RW, Fukushima M, Diamond L, Kumm J, Giudice LC, Davis RW. Microbes on the human vaginal epithelium. Proc Natl Acad Sci USA 2005; 102:7952 - 7957
  • Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000 2006; 42:80 - 87
  • Roberts FA, Darveau RP. Beneficial bacteria of the periodontium. Periodontol 2002; 30:40 - 50
  • Hannig C, Hannig M. The oral cavity—a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clinical Oral Investigations 2009; 13:123 - 139
  • Gray JJ. The interaction of proteins with solid surfaces. Current Opinion in Structural Biololy 2004; 14:110 - 115
  • Characklis WG, Marshall KC. Biofilms 1990; New York John Wiley & Sons, Inc
  • Handley PS. Structure, composition and functions of surface structures on oral bacteria. Biofouling 1990; 2:239 - 264
  • Ritz HL. Microbial population shifts in developing human dental plaque. Archives of Oral Biologh 1967; 12:1561 - 1568
  • Foster JS, Kolenbrander PE. Development of a multi-species oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol 2004; 70:4340 - 4348
  • Dige I, Nyengaard JR, Kilian M, Nyvad B. Application of stereological principles for quantification of bacteria in intact dental biofilms. Oral Microbiol Immunol 2009; 24:69 - 75
  • Kreth J, Merritt J, Shi W, Qi F. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 2005; 187:7193 - 7203
  • Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ. Communication among oral bacteria. Microbiology and Molecular Biology Reviews 2002; 66:486 - 505
  • Kolenbrander PE, London J. Ecological signicance of coaggregation among oral bacteria. Advances in Microbial Ecology 1992; 12:183 - 217
  • McIntire FC, Vatter AE, Baros J, Arnold J. Mechanism of coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34. Infection and Immunity 1978; 21:978 - 988
  • Kaplan JB. Biofilm dispersal: mechanisms, clinical implications and potential therapeutic uses. J Dent Res 2010; 89:205 - 218
  • Sanui T, Gregory RL. Analysis of Streptococcus mutans biofilm proteins recognized by salivary immunoglobulin A. Oral Microbiol Immunol 2009; 24:361 - 368
  • Roberts SK, Bass C, Brading M, Lappin-Scott H, Stoodley P. New-man HN, Wilson M. Biolm information and structure: what's new?. Dental plaque revisited 1999; Cardiff Bioline 15 - 35
  • Kolenbrander PE, Andersen RN, Moore LV. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect Immun 1989; 57:3194 - 3203
  • Metzger Z, Blasbalg J, Dotan M, Weiss EI. Enhanced attachment of Porphyromonas gingivalis to human fibroblasts mediated by Fusobacterium nucleatum. J Endod 2009; 35:82 - 85
  • Bradshaw DJ, Marsh PD, Watson GK, Allison C. Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect Immun 1998; 66:4729 - 4732
  • Takahashi N. Acid-neutralizing activity during amino acid fermentation by Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum. Oral Microbiol Immunol 2003; 18:109 - 113
  • Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 2002; 292:107 - 113
  • McCann KS. The diversity-stability debate. Nature 2000; 405:228 - 233
  • Costerton JW. Introduction to biolm. International Journal of Antimicrobial Agents 1999; 11:217 - 221
  • Levy SB. The challenge of antibiotic resistance. Scientific American 1998; 278:46 - 53
  • Erickson PR, Herzberg MC. Emergence of antibiotic resistant Streptococcus sanguis in dental plaque of children after frequent antibiotic therapy. Pediatric Dentistry 1999; 21:181 - 185
  • Sedlacek MJ, Walker C. Antibiotic resistance in an in vitro subgingival biofilm model. Oral Microbiol Immunol 2007; 22:333 - 339
  • Kuramitsu HK, He X, Lux R, Anderson MH, Shi W. Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 2007; 71:653 - 670
  • Senadheera D, Cvitkovitch DG. Quorum sensing and biofilm formation by Streptococcus mutans. Adv Exp Med Biol 2008; 631:178 - 188
  • Chatterjee C, Paul M, Xie L, Wilfred A, Donk WA. Biosynthesis and mode of action of lantibiotics. Chem Rev 2005; 105:633 - 684
  • Nes IF, Diep DB, Holo H. Bacteriocin diversity in Streptococcus and Enterococcus. J Bacteriol 2007; 189:1189 - 1198
  • Kreth J, Zhang Y, Herzberg MC. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol 2008; 190:4632 - 4640
  • Wescombe PA, Upton M, Dierksen KP, Ragland NL, Sivabalan S, Wirawan RE, et al. Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl Environ Microbiol 2006; 72:1459 - 1466
  • Perry JA, Jones MB, Peterson SN, Cvitkovitch DG, Levesque CM. Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol Microbiol 2009; 72:905 - 917
  • Reading NC, Sperandio V. Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 2006; 254:1 - 11
  • Zhang K, Ou M, Wang W, Ling J. Effects of quorum sensing on cell viability in Streptococcus mutans biofilm formation. Biochem Biophys Res Commun 2009; 379:933 - 938
  • Nadell CD, Xavier JB, Levin SA, Foster KR. The evolution of quorum sensing in bacterial biofilms. PLoS Biol 2008; 6:171 - 179
  • Sifri CD. Healthcare epidemiology: quorum sensing: bacteria talk sense. Clin Infect Dis 2008; 47:1070 - 1076
  • Kolenbrander PE. Oral microbial communities: biofilms, interactions and genetic systems. Annu Rev Microbiol 2000; 54:413 - 437
  • Henke JM, Bassler BL. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 2004; 186:6902 - 6914
  • Jayaraman A, Wood TK. Bacterial quorum sensing: signals, circuits and implications for biofilms and disease. Annu Rev Biomed Eng 2008; 10:145 - 167
  • Karatan E, Watnick P. Signals, regulatory networks and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73:310 - 347
  • Novick RP, Geisinger E. Quorum sensing in staphylococci. Annu Rev Genet 2008; 42:541 - 564
  • Pottathil M, Lazazzera BA. The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis. Front Biosci 2003; 8:32 - 45
  • Henke JM, Bassler BL. Bacterial social engagements. Trends Cell Biol 2004; 14:648 - 656
  • Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 1994; 176:269 - 275
  • Bassler BL. Small talk: Cell-to-cell communication in bacteria. Cell 2002; 109:421 - 424
  • Xie H, Lin X, Wang BYWJ, Lamont RJ. Identification of a signalling molecule involved in bacterial intergeneric communication. Microbiology 2007; 153:3228 - 3234
  • James CE, Hasegawa Y, Park Y, Yeung V, Tribble GD, Kuboniwa M, et al. LuxS involvement in the regulation of genes coding for hemin and iron acquisition systems in Porphyromonas gingivalis. Infect Immun 2006; 74:3834 - 3844
  • Rickard AH Jr, Palmer RJ, Blehert DS, Campagna SR, Semmelhack MF, Egland PG, et al. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol 2006; 60:1446 - 1456
  • Li Y, Hanna MN, Svensater G, Ellen RP, Cvitkovitch DG. Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 2001; 183:6875 - 6884
  • Li Y, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG. Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 2001; 183:897 - 908
  • Li Y, Tang N, Aspiras MB, Lau PCY, Lee JH, Ellen RP, Cvitkovitch DG. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 2002; 184:2699 - 2708
  • Petersen FC, Pecharki D, Scheie AA. Biofilm mode of growth of Streptococcus intermedius favored by a competence-stimulating signaling peptide. J Bacteriol 2004; 186:6327 - 6331
  • Jarosz LM, Deng D, van der Mei Henny C, Crielarrd W, Krom BP. Streptococcus mutans Competence-Stimulating Peptide Inhibits Candida albicans Hypha Formation. Eukaryotic Cell 2009; 8:1658 - 1664
  • Petersen FC, Scheie AA. Genetic transformation in Streptococcus mutans requires a peptide secretion-like apparatus. Oral Microbiol Immunol 2000; 15:329 - 334
  • Kreth J, Merritt J, Shi W, Qi F. Coordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighboring species. Mol Microbiol 2005; 57:392 - 404
  • Eckert R, He J, Yarbrough DK, Qi F, Anderson MH, Shi W. Targeted killing of Streptococcus mutans by a pheromone-guided “smart” antimicrobial peptide. Antimicrob Agents Chemother 2006; 50:3651 - 3657
  • Balakrishnan M, Simmonds RS, Tagg JR. Dental caries is a preventable infectious disease. Australian Dental Journal 2000; 45:235 - 245
  • Marsh PD. Are dental diseases examples of ecological catastrophes?. Microbiology 2003; 149:279 - 294
  • Kemp CW, Robrish SA, Curtis MA, Sharer SA, Bowen WH. Application of a competition model to the growth of Streptococcus mutans and Streptococcus sanguis in binary continuous culture. Appl Environ Microbiol 1983; 45:1277 - 1282
  • Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, et al. Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 2002; 40:1001 - 1009
  • Komiyama K, Kleinberg I. Comparison of glucose utilization and acid formation by Streptococcus mutans and Streptococcus sanguis at different pH. J dent Res 1974; 53:241
  • Iwami Y, Yamada T. Rate-limiting steps of the glycolytic pathway in the oral bacteria Streptococcus mutans and Streptococcus sanguis and the influence of acidic pH on the glucose metabolism. Arch Oral Biol 1980; 25:163 - 169
  • Tong H, Chen W, Shi W, Qi F, Dong X. SO-LAAO, a novel L-amino acid oxidase that enables Streptococcus oligofermentans to outcompete Streptococcus mutans by generating H2O2 from peptone. J Bacteriol 2008; 190:4716 - 4721
  • Stinson MW, Alder S, Kumar S. Invasion and killing of human endothelial cells by viridans group streptococci. Infect Immun 2003; 71:2365 - 2372
  • Merritt J, Kreth J, Shi W, Qi F. LuxS controls bacteriocin production in Streptococcus mutans through a novel regulatory component. Mol Microbiol 2005; 57:960 - 969
  • Baldeck JD, Marquis RE. Targets for hydrogen-peroxide-induced damage to suspension and biolm cells of Streptococcus mutans. Can J Microbiol 2008; 54:868 - 875
  • Skaar EP, Tobiason DM, Quick J, Judd RC, Weissbach H, Etienne F, et al. The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc Natl Acad Sci USA 2002; 99:10108 - 10113
  • Zhu L, Kreth J. Role of Streptococcus mutans eukaryotic-type serine/threonine protein kinase in interspecies interactions with Streptococcus sanguinis. Arch Oral Biol 2010; 55:385 - 390
  • Wen ZT, Yates D, Ahn SJ, Burne RA. Biofilm formation and virulence expression by Streptococcus mutans are altered when grown in dual-species model. BMC Microbiol 2010; 10:111
  • Gregory RL, Lloyd DR. Enhancement of Streptococcus sanguis immunoglobulin A1 protease activity by Streptococcus mutans. Immunol Infect Dis 1993; 3:309 - 315
  • Periasamy S, Kolenbrander PE. Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early and late colonizers of enamel. J Bacteriol 2009; 191:6804 - 6811
  • Lev M. Sphingolipid biosynthesis and vitamin K metabolism in Bacteroides melaninogenicus. Am J Clin Nutr 1979; 32:179 - 186
  • Grenier D. Nutritional interactions between two suspected periodontopathogens, Treponema denticola and Porphyromonas gingivalis. Infect Immun 1992; 60:5298 - 5301
  • Kolenbrander PE, London J. Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol 1993; 175:3247 - 3252
  • Rosen G, Sela MN. Coaggregation of Porphyromonas gingivalis and Fusobacterium nucleatum PK 1594 is mediated by capsular polysaccharide and lipopolysaccharide. FEMS Microbiol Lett 2006; 256:304 - 310
  • Kang MS, Na HS, Oh JS. Coaggregation ability of Weissella cibaria isolates with Fusobacterium nucleatum and their adhesiveness to epithelial cells. FEMS Microbiol Lett 2005; 253:323 - 329
  • Nagaoka S, Hojo K, Murata S, Mori T, Ohshima T, Maeda N. Interactions between salivary Bifidobacterium adolescentis and other oral bacteria: in vitro coaggregation and coadhesion assays. FEMS Microbiol Lett 2008; 281:183 - 189
  • Periasamy S, Chalmers NI, Du-Thumm L, Kolenbrander PE. Fusobacterium nucleatum ATCC 10953 requires Actinomyces naeslundii ATCC 43146 for growth on saliva in a three-species community that includes Streptococcus oralis 34. Appl Environ Microbiol 2009; 75:3250 - 3257
  • Diaz PI, Zilm PS, Rogers AH. Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbondioxide-depleted environments. Microbiology 2002; 148:467 - 472
  • Pangsomboon K, Kaewnopparat S, Pitakpornpreecha T, Srichana T. Antibacterial activity of a bacteriocin from Lactobacillus paracasei HL32 against Porphyromonas gingivalis. Arch Oral Biol 2006; 51:784 - 793
  • Pangsomboon K, Bansal S, Martin GP, Suntinanalert P, Kaewnopparat S, Srichana T. Further characterization of a bacteriocin produced by Lactobacillus paracasei HL32. J Appl Microbiol 2009; 106:1928 - 1940
  • Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 2003; 25:207 - 218
  • Jakubovics NS, Gill SR, Iobst SE, Vickerman MM, Kolenbrander PE. Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol 2008; 190:3646 - 3657
  • Jakubovics NS, Gill SR, Vickerman MM, Kolenbrander PE. Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii. FEMS Microbiol Ecol 2008; 66:637 - 644
  • Marcotte H, Lavoie MC. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol Mol Biol Rev 1998; 62:71 - 109