11,064
Views
329
CrossRef citations to date
0
Altmetric
Review

Importance of prophages to evolution and virulence of bacterial pathogens

&
Pages 354-365 | Received 31 Jan 2013, Accepted 28 Mar 2013, Published online: 23 Apr 2013

References

  • Brüssow H, Hendrix RW. Phage genomics: small is beautiful. Cell 2002; 108:13 - 6; http://dx.doi.org/10.1016/S0092-8674(01)00637-7; PMID: 11792317
  • Suttle CA. Marine viruses--major players in the global ecosystem. Nat Rev Microbiol 2007; 5:801 - 12; http://dx.doi.org/10.1038/nrmicro1750; PMID: 17853907
  • Suttle CA. Viruses in the sea. Nature 2005; 437:356 - 61; http://dx.doi.org/10.1038/nature04160; PMID: 16163346
  • Breitbart M, Haynes M, Kelley S, Angly F, Edwards RA, Felts B, et al. Viral diversity and dynamics in an infant gut. Res Microbiol 2008; 159:367 - 73; http://dx.doi.org/10.1016/j.resmic.2008.04.006; PMID: 18541415
  • Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, et al. Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 2003; 185:6220 - 3; http://dx.doi.org/10.1128/JB.185.20.6220-6223.2003; PMID: 14526037
  • Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brüssow H. Phage-host interaction: an ecological perspective. J Bacteriol 2004; 186:3677 - 86; http://dx.doi.org/10.1128/JB.186.12.3677-3686.2004; PMID: 15175280
  • Chibani-Chennoufi S, Sidoti J, Bruttin A, Dillmann ML, Kutter E, Qadri F, et al. Isolation of Escherichia coli bacteriophages from the stool of pediatric diarrhea patients in Bangladesh. J Bacteriol 2004; 186:8287 - 94; http://dx.doi.org/10.1128/JB.186.24.8287-8294.2004; PMID: 15576777
  • Dhillon TS, Dhillon EK, Chau HC, Li WK, Tsang AH. Studies on bacteriophage distribution: virulent and temperate bacteriophage content of mammalian feces. Appl Environ Microbiol 1976; 32:68 - 74; PMID: 987749
  • Brüssow H, Canchaya C, Hardt W-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004; 68:560 - 602; http://dx.doi.org/10.1128/MMBR.68.3.560-602.2004; PMID: 15353570
  • Canchaya C, Fournous G, Brüssow H. The impact of prophages on bacterial chromosomes. Mol Microbiol 2004; 53:9 - 18; http://dx.doi.org/10.1111/j.1365-2958.2004.04113.x; PMID: 15225299
  • Guttman B, Raya R, Kutter E, Kutter E, Sulakvelidze A. Basic phage biology. In: Kutter E, Sulakvelidze A, eds. Bacteriophages: biology and applications. Boca Raton: CRC Press, 2005;29–66.
  • Ackermann H-W, Prangishvili D. Prokaryote viruses studied by electron microscopy. Arch Virol 2012; 157:1843 - 9; http://dx.doi.org/10.1007/s00705-012-1383-y; PMID: 22752841
  • Wang IN, Smith DL, Young R. Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 2000; 54:799 - 825; http://dx.doi.org/10.1146/annurev.micro.54.1.799; PMID: 11018145
  • Casjens S. Prophages and bacterial genomics: what have we learned so far?. Mol Microbiol 2003; 49:277 - 300; http://dx.doi.org/10.1046/j.1365-2958.2003.03580.x; PMID: 12886937
  • Banks DJ, Beres SB, Musser JM. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol 2002; 10:515 - 21; http://dx.doi.org/10.1016/S0966-842X(02)02461-7; PMID: 12419616
  • Ohnishi M, Kurokawa K, Hayashi T. Diversification of Escherichia coli genomes: are bacteriophages the major contributors?. Trends Microbiol 2001; 9:481 - 5; http://dx.doi.org/10.1016/S0966-842X(01)02173-4; PMID: 11597449
  • Mead PS, Griffin PM. Escherichia coli O157:H7. Lancet 1998; 352:1207 - 12; http://dx.doi.org/10.1016/S0140-6736(98)01267-7; PMID: 9777854
  • Aziz RK, Edwards RA, Taylor WW, Low DE, McGeer A, Kotb M. Mosaic prophages with horizontally acquired genes account for the emergence and diversification of the globally disseminated M1T1 clone of Streptococcus pyogenes.. J Bacteriol 2005; 187:3311 - 8; http://dx.doi.org/10.1128/JB.187.10.3311-3318.2005; PMID: 15866915
  • Cleary PP, LaPenta D, Vessela R, Lam H, Cue D. A globally disseminated M1 subclone of group A streptococci differs from other subclones by 70 kilobases of prophage DNA and capacity for high-frequency intracellular invasion. Infect Immun 1998; 66:5592 - 7; PMID: 9784580
  • Cooke FJ, Wain J, Fookes M, Ivens A, Thomson N, Brown DJ, et al. Prophage sequences defining hot spots of genome variation in Salmonella enterica serovar Typhimurium can be used to discriminate between field isolates. J Clin Microbiol 2007; 45:2590 - 8; http://dx.doi.org/10.1128/JCM.00729-07; PMID: 17522270
  • Hermans APHM, Abee T, Zwietering MH, Aarts HJM. Identification of novel Salmonella enterica serovar Typhimurium DT104-specific prophage and nonprophage chromosomal sequences among serovar Typhimurium isolates by genomic subtractive hybridization. Appl Environ Microbiol 2005; 71:4979 - 85; http://dx.doi.org/10.1128/AEM.71.9.4979-4985.2005; PMID: 16151076
  • Thomson N, Baker S, Pickard D, Fookes M, Anjum M, Hamlin N, et al. The role of prophage-like elements in the diversity of Salmonella enterica serovars. J Mol Biol 2004; 339:279 - 300; http://dx.doi.org/10.1016/j.jmb.2004.03.058; PMID: 15136033
  • Figueroa-Bossi N, Uzzau S, Maloriol D, Bossi L. Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella.. Mol Microbiol 2001; 39:260 - 71; http://dx.doi.org/10.1046/j.1365-2958.2001.02234.x; PMID: 11136448
  • Rahimi F, Bouzari M, Katouli M, Pourshafie MR. Prophage and antibiotic resistance profiles of methicillin-resistant Staphylococcus aureus strains in Iran. Arch Virol 2012; 157:1807 - 11; http://dx.doi.org/10.1007/s00705-012-1361-4; PMID: 22684535
  • Goerke C, Pantucek R, Holtfreter S, Schulte B, Zink M, Grumann D, et al. Diversity of prophages in dominant Staphylococcus aureus clonal lineages. J Bacteriol 2009; 191:3462 - 8; http://dx.doi.org/10.1128/JB.01804-08; PMID: 19329640
  • Bae T, Baba T, Hiramatsu K, Schneewind O. Prophages of Staphylococcus aureus Newman and their contribution to virulence. Mol Microbiol 2006; 62:1035 - 47; http://dx.doi.org/10.1111/j.1365-2958.2006.05441.x; PMID: 17078814
  • Boyd EF. Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv Virus Res 2012; 82:91 - 118; http://dx.doi.org/10.1016/B978-0-12-394621-8.00014-5; PMID: 22420852
  • Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, et al. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 2001; 8:11 - 22; http://dx.doi.org/10.1093/dnares/8.1.11; PMID: 11258796
  • Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 1996; 272:1910 - 4; http://dx.doi.org/10.1126/science.272.5270.1910; PMID: 8658163
  • Boyd EF, Heilpern AJ, Waldor MK. Molecular analyses of a putative CTXphi precursor and evidence for independent acquisition of distinct CTX(phi)s by toxigenic Vibrio cholerae.. J Bacteriol 2000; 182:5530 - 8; http://dx.doi.org/10.1128/JB.182.19.5530-5538.2000; PMID: 10986258
  • Duerkop BA, Clements CV, Rollins D, Rodrigues JLM, Hooper LV. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc Natl Acad Sci U S A 2012; 109:17621 - 6; http://dx.doi.org/10.1073/pnas.1206136109; PMID: 23045666
  • Mills S, Shanahan F, Stanton C, Hill C, Coffey A, Ross RP. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 2013; 4:4 - 16; http://dx.doi.org/10.4161/gmic.22371; PMID: 23022738
  • Zhang Y, LeJeune JT. Transduction of bla(CMY-2), tet(A), and tet(B) from Salmonella enterica subspecies enterica serovar Heidelberg to S. Typhimurium. Vet Microbiol 2008; 129:418 - 25; http://dx.doi.org/10.1016/j.vetmic.2007.11.032; PMID: 18187273
  • Chen J, Novick RP. Phage-mediated intergeneric transfer of toxin genes. Science 2009; 323:139 - 41; http://dx.doi.org/10.1126/science.1164783; PMID: 19119236
  • Ubeda C, Maiques E, Knecht E, Lasa I, Novick RP, Penadés JR. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol Microbiol 2005; 56:836 - 44; http://dx.doi.org/10.1111/j.1365-2958.2005.04584.x; PMID: 15819636
  • Campbell AM. Chromosomal insertion sites for phages and plasmids. J Bacteriol 1992; 174:7495 - 9; PMID: 1447124
  • Ventura M, Canchaya C, Pridmore D, Berger B, Brüssow H. Integration and distribution of Lactobacillus johnsonii prophages. J Bacteriol 2003; 185:4603 - 8; http://dx.doi.org/10.1128/JB.185.15.4603-4608.2003; PMID: 12867471
  • Coleman D, Knights J, Russell R, Shanley D, Birkbeck TH, Dougan G, et al. Insertional inactivation of the Staphylococcus aureus β-toxin by bacteriophage phi 13 occurs by site- and orientation-specific integration of the phi 13 genome. Mol Microbiol 1991; 5:933 - 9; http://dx.doi.org/10.1111/j.1365-2958.1991.tb00768.x; PMID: 1830359
  • Lee CY, Iandolo JJ. Lysogenic conversion of staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene. J Bacteriol 1986; 166:385 - 91; PMID: 3009394
  • Goh S, Ong PF, Song KP, Riley TV, Chang BJ. The complete genome sequence of Clostridium difficile phage phiC2 and comparisons to phiCD119 and inducible prophages of CD630. Microbiology 2007; 153:676 - 85; http://dx.doi.org/10.1099/mic.0.2006/002436-0; PMID: 17322187
  • Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae.. Microbiol Mol Biol Rev 1998; 62:1301 - 14; PMID: 9841673
  • Schuch R, Fischetti VA. The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS One 2009; 4:e6532; http://dx.doi.org/10.1371/journal.pone.0006532; PMID: 19672290
  • Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 2003; 57:677 - 701; http://dx.doi.org/10.1146/annurev.micro.57.030502.090720; PMID: 14527295
  • Müller AJ, Kaiser P, Dittmar KEJ, Weber TC, Haueter S, Endt K, et al. Salmonella gut invasion involves TTSS-2-dependent epithelial traversal, basolateral exit, and uptake by epithelium-sampling lamina propria phagocytes. Cell Host Microbe 2012; 11:19 - 32; http://dx.doi.org/10.1016/j.chom.2011.11.013; PMID: 22264510
  • Hauser AR. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 2009; 7:654 - 65; http://dx.doi.org/10.1038/nrmicro2199; PMID: 19680249
  • Gill DM. Bacterial toxins: a table of lethal amounts. Microbiol Rev 1982; 46:86 - 94; PMID: 6806598
  • Wilcox MH, Fawley WN. Hospital disinfectants and spore formation by Clostridium difficile.. Lancet 2000; 356:1324; http://dx.doi.org/10.1016/S0140-6736(00)02819-1; PMID: 11073024
  • Keeney KM, Finlay BB. Enteric pathogen exploitation of the microbiota-generated nutrient environment of the gut. Curr Opin Microbiol 2011; 14:92 - 8; http://dx.doi.org/10.1016/j.mib.2010.12.012; PMID: 21215681
  • Ventura M, Sozzi T, Turroni F, Matteuzzi D, van Sinderen D. The impact of bacteriophages on probiotic bacteria and gut microbiota diversity. Genes Nutr. 2010; doi:10.1007/s12263-010-0188-4.
  • Juhala RJ, Ford ME, Duda RL, Youlton A, Hatfull GF, Hendrix RW. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol 2000; 299:27 - 51; http://dx.doi.org/10.1006/jmbi.2000.3729; PMID: 10860721
  • Hendrix RW, Lawrence JG, Hatfull GF, Casjens S. The origins and ongoing evolution of viruses. Trends Microbiol 2000; 8:504 - 8; http://dx.doi.org/10.1016/S0966-842X(00)01863-1; PMID: 11121760
  • Hendrix RW. Bacteriophages: evolution of the majority. Theor Popul Biol 2002; 61:471 - 80; http://dx.doi.org/10.1006/tpbi.2002.1590; PMID: 12167366
  • Lucchini S, Desiere F, Brüssow H. Comparative genomics of Streptococcus thermophilus phage species supports a modular evolution theory. J Virol 1999; 73:8647 - 56; PMID: 10482618
  • Desiere F, Lucchini S, Brüssow H. Evolution of Streptococcus thermophilus bacteriophage genomes by modular exchanges followed by point mutations and small deletions and insertions. Virology 1998; 241:345 - 56; http://dx.doi.org/10.1006/viro.1997.8959; PMID: 9499809
  • Bouchard JD, Moineau S. Homologous recombination between a lactococcal bacteriophage and the chromosome of its host strain. Virology 2000; 270:65 - 75; http://dx.doi.org/10.1006/viro.2000.0226; PMID: 10772980
  • Moineau S, Pandian S, Klaenhammer TR. Evolution of a lytic bacteriophage via DNA acquisition from the Lactococcus lactis chromosome. Appl Environ Microbiol 1994; 60:1832 - 41; PMID: 16349277
  • Labrie SJ, Moineau S. Abortive infection mechanisms and prophage sequences significantly influence the genetic makeup of emerging lytic lactococcal phages. J Bacteriol 2007; 189:1482 - 7; http://dx.doi.org/10.1128/JB.01111-06; PMID: 17041060
  • Durmaz E, Klaenhammer TR. Genetic analysis of chromosomal regions of Lactococcus lactis acquired by recombinant lytic phages. Appl Environ Microbiol 2000; 66:895 - 903; http://dx.doi.org/10.1128/AEM.66.3.895-903.2000; PMID: 10698748
  • Chopin M-C, Chopin A, Bidnenko E. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 2005; 8:473 - 9; http://dx.doi.org/10.1016/j.mib.2005.06.006; PMID: 15979388
  • Thiel K. Old dogma, new tricks--21st Century phage therapy. Nat Biotechnol 2004; 22:31 - 6; http://dx.doi.org/10.1038/nbt0104-31; PMID: 14704699
  • Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O, et al. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 2010; 201:1096 - 104; http://dx.doi.org/10.1086/651135; PMID: 20196657
  • Capparelli R, Parlato M, Borriello G, Salvatore P, Iannelli D. Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother 2007; 51:2765 - 73; http://dx.doi.org/10.1128/AAC.01513-06; PMID: 17517843
  • Rhoads DD, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS, Sulakvelidze A. Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care 2009; 18:237 - 8, 240-3; PMID: 19661847
  • Brüssow H. Phage therapy: the Escherichia coli experience. Microbiology 2005; 151:2133 - 40; http://dx.doi.org/10.1099/mic.0.27849-0; PMID: 16000704
  • Levin BR, Bull JJ. Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2004; 2:166 - 73; http://dx.doi.org/10.1038/nrmicro822; PMID: 15040264
  • Waldor MK, Friedman DI. Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 2005; 8:459 - 65; http://dx.doi.org/10.1016/j.mib.2005.06.001; PMID: 15979389
  • Meessen-Pinard M, Sekulovic O, Fortier LC. Evidence of in vivo prophage induction during Clostridium difficile infection. Appl Environ Microbiol 2012; 78:7662 - 70; http://dx.doi.org/10.1128/AEM.02275-12; PMID: 22923402
  • Zhang X, McDaniel AD, Wolf LE, Keusch GT, Waldor MK, Acheson DW. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J Infect Dis 2000; 181:664 - 70; http://dx.doi.org/10.1086/315239; PMID: 10669353
  • Kimmitt PT, Harwood CR, Barer MR. Induction of type 2 Shiga toxin synthesis in Escherichia coli O157 by 4-quinolones. Lancet 1999; 353:1588 - 9; http://dx.doi.org/10.1016/S0140-6736(99)00621-2; PMID: 10334263
  • Ingrey KT, Ren J, Prescott JF. A fluoroquinolone induces a novel mitogen-encoding bacteriophage in Streptococcus canis.. Infect Immun 2003; 71:3028 - 33; http://dx.doi.org/10.1128/IAI.71.6.3028-3033.2003; PMID: 12761079
  • Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RP. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus.. Mol Microbiol 1998; 29:527 - 43; http://dx.doi.org/10.1046/j.1365-2958.1998.00947.x; PMID: 9720870
  • Maiques E, Ubeda C, Campoy S, Salvador N, Lasa I, Novick RP, et al. beta-lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus.. J Bacteriol 2006; 188:2726 - 9; http://dx.doi.org/10.1128/JB.188.7.2726-2729.2006; PMID: 16547063
  • Novick RP, Schlievert P, Ruzin A. Pathogenicity and resistance islands of staphylococci. Microbes Infect 2001; 3:585 - 94; http://dx.doi.org/10.1016/S1286-4579(01)01414-9; PMID: 11418332
  • Eklund MW, Poysky FT, Reed SM, Smith CA. Bacteriophage and the toxigenicity of Clostridium botulinum type C. Science 1971; 172:480 - 2; http://dx.doi.org/10.1126/science.172.3982.480; PMID: 4927679
  • Scott ME, Sandkvist M. Toxins and Type II Secretion Systems. In: Burns DL, Barbieri JT, Iglewski BH, Rappuoli R, eds. Bacteria protein toxins. ASM Press; 2003:81–94.
  • Rossetto O, Tonello F, Montecucco C. Proteases. In: Burns DL, Barbieri JT, Iglewski BH, Rappuoli R, eds. Bacterial protein toxins. ASM Press; 2003:271–282.
  • Makino K, Yokoyama K, Kubota Y, Yutsudo CH, Kimura S, Kurokawa K, et al. Complete nucleotide sequence of the prophage VT2-Sakai carrying the verotoxin 2 genes of the enterohemorrhagic Escherichia coli O157:H7 derived from the Sakai outbreak. Genes Genet Syst 1999; 74:227 - 39; http://dx.doi.org/10.1266/ggs.74.227; PMID: 10734605
  • Yokoyama K, Makino K, Kubota Y, Watanabe M, Kimura S, Yutsudo CH, et al. Complete nucleotide sequence of the prophage VT1-Sakai carrying the Shiga toxin 1 genes of the enterohemorrhagic Escherichia coli O157:H7 strain derived from the Sakai outbreak. Gene 2000; 258:127 - 39; http://dx.doi.org/10.1016/S0378-1119(00)00416-9; PMID: 11111050
  • Neely MN, Friedman DI. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol Microbiol 1998; 28:1255 - 67; http://dx.doi.org/10.1046/j.1365-2958.1998.00890.x; PMID: 9680214
  • Wagner PL, Livny J, Neely MN, Acheson DWK, Friedman DI, Waldor MK. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli.. Mol Microbiol 2002; 44:957 - 70; http://dx.doi.org/10.1046/j.1365-2958.2002.02950.x; PMID: 12010491
  • Wagner PL, Neely MN, Zhang X, Acheson DW, Waldor MK, Friedman DI. Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J Bacteriol 2001; 183:2081 - 5; http://dx.doi.org/10.1128/JB.183.6.2081-2085.2001; PMID: 11222608
  • Freeman VJ. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae.. J Bacteriol 1951; 61:675 - 88; PMID: 14850426
  • Nakagawa I, Kurokawa K, Yamashita A, Nakata M, Tomiyasu Y, Okahashi N, et al. Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res 2003; 13:6A 1042 - 55; http://dx.doi.org/10.1101/gr.1096703; PMID: 12799345
  • Beres SB, Sylva GL, Barbian KD, Lei B, Hoff JS, Mammarella ND, et al. Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci U S A 2002; 99:10078 - 83; http://dx.doi.org/10.1073/pnas.152298499; PMID: 12122206
  • Weeks CR, Ferretti JJ. The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12. Infect Immun 1984; 46:531 - 6; PMID: 6389348
  • Goshorn SC, Schlievert PM. Bacteriophage association of streptococcal pyrogenic exotoxin type C. J Bacteriol 1989; 171:3068 - 73; PMID: 2566595
  • Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus.. Lancet 2001; 357:1225 - 40; http://dx.doi.org/10.1016/S0140-6736(00)04403-2; PMID: 11418146
  • Coleman DC, Sullivan DJ, Russell RJ, Arbuthnott JP, Carey BF, Pomeroy HM. Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. J Gen Microbiol 1989; 135:1679 - 97; PMID: 2533245
  • Kaneko J, Kimura T, Narita S, Tomita T, Kamio Y. Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage phiPVL carrying Panton-Valentine leukocidin genes. Gene 1998; 215:57 - 67; http://dx.doi.org/10.1016/S0378-1119(98)00278-9; PMID: 9666077
  • Yamaguchi T, Hayashi T, Takami H, Nakasone K, Ohnishi M, Nakayama K, et al. Phage conversion of exfoliative toxin A production in Staphylococcus aureus.. Mol Microbiol 2000; 38:694 - 705; http://dx.doi.org/10.1046/j.1365-2958.2000.02169.x; PMID: 11115106
  • Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 2009; 7:526 - 36; http://dx.doi.org/10.1038/nrmicro2164; PMID: 19528959
  • Mani N, Dupuy B. Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci U S A 2001; 98:5844 - 9; http://dx.doi.org/10.1073/pnas.101126598; PMID: 11320220
  • Matamouros S, England P, Dupuy B. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol 2007; 64:1274 - 88; http://dx.doi.org/10.1111/j.1365-2958.2007.05739.x; PMID: 17542920
  • Carter GP, Douce GR, Govind R, Howarth PM, Mackin KE, Spencer J, et al. The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile.. PLoS Pathog 2011; 7:e1002317; http://dx.doi.org/10.1371/journal.ppat.1002317; PMID: 22022270
  • Dupuy B, Sonenshein AL. Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol 1998; 27:107 - 20; http://dx.doi.org/10.1046/j.1365-2958.1998.00663.x; PMID: 9466260
  • Mani N, Lyras D, Barroso L, Howarth P, Wilkins T, Rood JI, et al. Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression. J Bacteriol 2002; 184:5971 - 8; http://dx.doi.org/10.1128/JB.184.21.5971-5978.2002; PMID: 12374831
  • Karlsson S, Dupuy B, Mukherjee K, Norin E, Burman LG, Akerlund T. Expression of Clostridium difficile toxins A and B and their sigma factor TcdD is controlled by temperature. Infect Immun 2003; 71:1784 - 93; http://dx.doi.org/10.1128/IAI.71.4.1784-1793.2003; PMID: 12654792
  • Karlsson S, Burman LG, Akerlund T. Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology 1999; 145:1683 - 93; http://dx.doi.org/10.1099/13500872-145-7-1683; PMID: 10439407
  • Karlsson S, Burman LG, Akerlund T. Induction of toxins in Clostridium difficile is associated with dramatic changes of its metabolism. Microbiology 2008; 154:3430 - 6; http://dx.doi.org/10.1099/mic.0.2008/019778-0; PMID: 18957596
  • Dineen SS, Villapakkam AC, Nordman JT, Sonenshein AL. Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol 2007; 66:206 - 19; http://dx.doi.org/10.1111/j.1365-2958.2007.05906.x; PMID: 17725558
  • Goh S, Chang BJ, Riley TV. Effect of phage infection on toxin production by Clostridium difficile.. J Med Microbiol 2005; 54:129 - 35; http://dx.doi.org/10.1099/jmm.0.45821-0; PMID: 15673505
  • Sekulovic O, Meessen-Pinard M, Fortier LC. Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens. J Bacteriol 2011; 193:2726 - 34; http://dx.doi.org/10.1128/JB.00787-10; PMID: 21441508
  • Govind R, Vediyappan G, Rolfe RD, Dupuy B, Fralick JA. Bacteriophage-mediated toxin gene regulation in Clostridium difficile.. J Virol 2009; 83:12037 - 45; http://dx.doi.org/10.1128/JVI.01256-09; PMID: 19776116
  • Ehrbar K, Hardt W-D. Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium. Infect Genet Evol 2005; 5:1 - 9; http://dx.doi.org/10.1016/j.meegid.2004.07.004; PMID: 15567133
  • Müller AJ, Hoffmann C, Galle M, Van Den Broeke A, Heikenwalder M, Falter L, et al. The S. Typhimurium effector SopE induces caspase-1 activation in stromal cells to initiate gut inflammation. Cell Host Microbe 2009; 6:125 - 36; http://dx.doi.org/10.1016/j.chom.2009.07.007; PMID: 19683679
  • Mirold S, Rabsch W, Rohde M, Stender S, Tschäpe H, Rüssmann H, et al. Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc Natl Acad Sci U S A 1999; 96:9845 - 50; http://dx.doi.org/10.1073/pnas.96.17.9845; PMID: 10449782
  • Humphreys D, Davidson A, Hume PJ, Koronakis V. Salmonella virulence effector SopE and Host GEF ARNO cooperate to recruit and activate WAVE to trigger bacterial invasion. Cell Host Microbe 2012; 11:129 - 39; http://dx.doi.org/10.1016/j.chom.2012.01.006; PMID: 22341462
  • Ehrbar K, Friebel A, Miller SI, Hardt W-D. Role of the Salmonella pathogenicity island 1 (SPI-1) protein InvB in type III secretion of SopE and SopE2, two Salmonella effector proteins encoded outside of SPI-1. J Bacteriol 2003; 185:6950 - 67; http://dx.doi.org/10.1128/JB.185.23.6950-6967.2003; PMID: 14617659
  • Tan KS, Wee BY, Song KP. Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile.. J Med Microbiol 2001; 50:613 - 9; PMID: 11444771
  • Govind R, Dupuy B. Secretion of Clostridium difficile toxins A and B requires the holin-like protein TcdE. PLoS Pathog 2012; 8:e1002727; http://dx.doi.org/10.1371/journal.ppat.1002727; PMID: 22685398
  • Haghjoo E, Galán JE. Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc Natl Acad Sci U S A 2004; 101:4614 - 9; http://dx.doi.org/10.1073/pnas.0400932101; PMID: 15070766
  • Hodak H, Galán JE. A Salmonella Typhi homologue of bacteriophage muramidases controls typhoid toxin secretion. EMBO Rep 2013; 14:95 - 102; http://dx.doi.org/10.1038/embor.2012.186; PMID: 23174673
  • Stanley NR, Lazazzera BA. Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 2004; 52:917 - 24; http://dx.doi.org/10.1111/j.1365-2958.2004.04036.x; PMID: 15130114
  • Watnick P, Kolter R. Biofilm, city of microbes. J Bacteriol 2000; 182:2675 - 9; http://dx.doi.org/10.1128/JB.182.10.2675-2679.2000; PMID: 10781532
  • Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 2007; 5:48 - 56; http://dx.doi.org/10.1038/nrmicro1557; PMID: 17143318
  • McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 2012; 10:39 - 50; http://dx.doi.org/10.1038/nrmicro2695; PMID: 22120588
  • Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J, Tay M, et al. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 2009; 3:271 - 82; http://dx.doi.org/10.1038/ismej.2008.109; PMID: 19005496
  • Carrolo M, Frias MJ, Pinto FR, Melo-Cristino J, Ramirez M. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.. PLoS One 2010; 5:e15678; http://dx.doi.org/10.1371/journal.pone.0015678; PMID: 21187931
  • Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, et al. Cryptic prophages help bacteria cope with adverse environments. Nat Commun 2010; 1:147 - 9; http://dx.doi.org/10.1038/ncomms1146; PMID: 21266997
  • Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Høiby N, et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 2012; 10:841 - 51; http://dx.doi.org/10.1038/nrmicro2907; PMID: 23147702
  • Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001; 413:860 - 4; http://dx.doi.org/10.1038/35101627; PMID: 11677611
  • Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, et al. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 2007; 153:2083 - 92; http://dx.doi.org/10.1099/mic.0.2007/006031-0; PMID: 17600053
  • Seper A, Fengler VHI, Roier S, Wolinski H, Kohlwein SD, Bishop AL, et al. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol Microbiol 2011; 82:1015 - 37; http://dx.doi.org/10.1111/j.1365-2958.2011.07867.x; PMID: 22032623
  • Conover MS, Mishra M, Deora R. Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice. PLoS One 2011; 6:e16861; http://dx.doi.org/10.1371/journal.pone.0016861; PMID: 21347299
  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 2000; 64:548 - 72; http://dx.doi.org/10.1128/MMBR.64.3.548-572.2000; PMID: 10974126
  • Higgins D, Dworkin J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol Rev 2012; 36:131 - 48; http://dx.doi.org/10.1111/j.1574-6976.2011.00310.x; PMID: 22091839
  • Paredes CJ, Alsaker KV, Papoutsakis ET. A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 2005; 3:969 - 78; http://dx.doi.org/10.1038/nrmicro1288; PMID: 16261177
  • Mallozzi M, Viswanathan VK, Vedantam G. Spore-forming Bacilli and Clostridia in human disease. Future Microbiol 2010; 5:1109 - 23; http://dx.doi.org/10.2217/fmb.10.60; PMID: 20632809
  • Postollec F, Mathot A-G, Bernard M, Divanac’h M-L, Pavan S, Sohier D. Tracking spore-forming bacteria in food: from natural biodiversity to selection by processes. Int J Food Microbiol 2012; 158:1 - 8; http://dx.doi.org/10.1016/j.ijfoodmicro.2012.03.004; PMID: 22795797
  • Schuch R, Nelson D, Fischetti VA. A bacteriolytic agent that detects and kills Bacillus anthracis.. Nature 2002; 418:884 - 9; http://dx.doi.org/10.1038/nature01026; PMID: 12192412
  • Bramucci MG, Keggins KM, Lovett PS. Bacteriophage PMB12 conversion of the sporulation defect in RNA polymerase mutants of Bacillus subtilis. J Virol 1977; 24:194 - 200; PMID: 409853
  • Silver-Mysliwiec TH, Bramucci MG. Bacteriophage-enhanced sporulation: comparison of spore-converting bacteriophages PMB12 and SP10. J Bacteriol 1990; 172:1948 - 53; PMID: 2108128
  • Bramucci MG, Keggins KM, Lovett PS. Bacteriophage conversion of spore-negative mutants to spore-positive in Bacillus pumilus.. J Virol 1977; 22:194 - 202; PMID: 857056
  • Keggins KM, Nauman RK, Lovett PS. Sporulation-converting bacteriophages for Bacillus pumilus.. J Virol 1978; 27:819 - 22; PMID: 702643
  • Perlak FJ, Mendelsohn CL, Thorne CB. Converting bacteriophage for sporulation and crystal formation in Bacillus thuringiensis.. J Bacteriol 1979; 140:699 - 706; PMID: 500567
  • Boudreaux DP, Srinivasan VR. Bacteriophage-induced sporulation in Bacillus cereus T. J Gen Microbiol 1981; 126:459 - 62
  • Kinney DM, Bramucci MG. Analysis of Bacillus subtilis sporulation with spore-converting bacteriophage PMB12. J Bacteriol 1981; 145:1281 - 5; PMID: 6782091
  • Stewart AW, Johnson MG. Increased numbers of heat-resistnat spores produced by two strains of Clostridium perfringens bearing temperate phage s9. J Gen Microbiol 1977; 103:45 - 50; http://dx.doi.org/10.1099/00221287-103-1-45; PMID: 201726
  • Kim K-P, Born Y, Lurz R, Eichenseher F, Zimmer M, Loessner MJ, et al. Inducible Clostridium perfringens bacteriophages ΦS9 and ΦS63: Different genome structures and a fully functional sigK intervening element. Bacteriophage 2012; 2:89 - 97; http://dx.doi.org/10.4161/bact.21363; PMID: 23050219
  • Zimmer M, Scherer S, Loessner MJ. Genomic analysis of Clostridium perfringens bacteriophage phi3626, which integrates into guaA and possibly affects sporulation. J Bacteriol 2002; 184:4359 - 68; http://dx.doi.org/10.1128/JB.184.16.4359-4368.2002; PMID: 12142405
  • Takemaru K, Mizuno M, Sato T, Takeuchi M, Kobayashi Y. Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis.. Microbiology 1995; 141:323 - 7; http://dx.doi.org/10.1099/13500872-141-2-323; PMID: 7704261
  • Stragier P, Kunkel B, Kroos L, Losick R. Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science 1989; 243:507 - 12; http://dx.doi.org/10.1126/science.2536191; PMID: 2536191
  • Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 2006; 38:779 - 86; http://dx.doi.org/10.1038/ng1830; PMID: 16804543
  • Haraldsen JD, Sonenshein AL. Efficient sporulation in Clostridium difficile requires disruption of the sigmaK gene. Mol Microbiol 2003; 48:811 - 21; http://dx.doi.org/10.1046/j.1365-2958.2003.03471.x; PMID: 12694623
  • Bott K, Strauss B. The carrier state of Bacillus subtilis infected with the transducing bacteriophage SP10. Virology 1965; 25:212 - 25; http://dx.doi.org/10.1016/0042-6822(65)90200-X; PMID: 14297209
  • Hemphill HE, Whiteley HR. Bacteriophages of Bacillus subtilis.. Bacteriol Rev 1975; 39:257 - 315; PMID: 809034
  • Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev 2004; 28:127 - 81; http://dx.doi.org/10.1016/j.femsre.2003.08.001; PMID: 15109783
  • Meijer WJJ, Castilla-Llorente V, Villar L, Murray H, Errington J, Salas M. Molecular basis for the exploitation of spore formation as survival mechanism by virulent phage phi29. EMBO J 2005; 24:3647 - 57; http://dx.doi.org/10.1038/sj.emboj.7600826; PMID: 16193065
  • Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol 2012; 9:599 - 608; http://dx.doi.org/10.1038/nrgastro.2012.152; PMID: 22907164
  • Casjens S, Hendrix R. Bacteriophages and the bacterial genome. In: Higgins NP, ed. The Bacterial Chromosome. Washington DC: ASM Press, 2005:39-52.