2,093
Views
34
CrossRef citations to date
0
Altmetric
Review

Genetic changes that accompanied shifts of low pathogenic avian influenza viruses toward higher pathogenicity in poultry

, &
Pages 441-452 | Received 02 May 2013, Accepted 10 Jul 2013, Published online: 16 Jul 2013

References

  • ICTVdB. International Committee on Taxonomy of Viruses Index of Viruses, Index of Viruses: Orthomyxoviridae. In: Büchen-Osmond CE, ed. ICTVdB - The Universal Virus Database, version 4: Columbia University, New York, USA., 2006.
  • Tollis M, Di Trani L. Recent developments in avian influenza research: epidemiology and immunoprophylaxis. Vet J 2002; 164:202 - 15; http://dx.doi.org/10.1053/tvjl.2002.0716; PMID: 12505393
  • Cheung TK, Poon LL. Biology of influenza a virus. Ann N Y Acad Sci 2007; 1102:1 - 25; http://dx.doi.org/10.1196/annals.1408.001; PMID: 17470908
  • Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev 1992; 56:152 - 79; PMID: 1579108
  • Brown EG. Influenza virus genetics. Biomed Pharmacother 2000; 54:196 - 209; http://dx.doi.org/10.1016/S0753-3322(00)89026-5; PMID: 10872718
  • Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 2005; 79:2814 - 22; http://dx.doi.org/10.1128/JVI.79.5.2814-2822.2005; PMID: 15709000
  • Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A 2012; 109:4269 - 74; PMID: 22371588
  • Webby RJ, Perez DR, Coleman JS, Guan Y, Knight JH, Govorkova EA, et al. Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet 2004; 363:1099 - 103; http://dx.doi.org/10.1016/S0140-6736(04)15892-3; PMID: 15064027
  • Matrosovich M, Zhou N, Kawaoka Y, Webster R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 1999; 73:1146 - 55; PMID: 9882316
  • Perdue ML, Swayne DE. Public health risk from avian influenza viruses. Avian Dis 2005; 49:317 - 27; http://dx.doi.org/10.1637/7390-060305R.1; PMID: 16252482
  • Rott R. The pathogenic determinant of influenza virus. Vet Microbiol 1992; 33:303 - 10; http://dx.doi.org/10.1016/0378-1135(92)90058-2; PMID: 1481363
  • Webster RG, Wright SM, Castrucci MR, Bean WJ, Kawaoka Y. Influenza--a model of an emerging virus disease. Intervirology 1993; 35:16 - 25; PMID: 8407243
  • Ferguson NM, Galvani AP, Bush RM. Ecological and immunological determinants of influenza evolution. Nature 2003; 422:428 - 33; http://dx.doi.org/10.1038/nature01509; PMID: 12660783
  • Peiris JS, de Jong MD, Guan Y. Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev 2007; 20:243 - 67; http://dx.doi.org/10.1128/CMR.00037-06; PMID: 17428885
  • Swayne DE. Avian influenza vaccines and therapies for poultry. Comp Immunol Microbiol Infect Dis 2009; 32:351 - 63; http://dx.doi.org/10.1016/j.cimid.2008.01.006; PMID: 18442853
  • Alexander DJ. A review of avian influenza in different bird species. Vet Microbiol 2000; 74:3 - 13; http://dx.doi.org/10.1016/S0378-1135(00)00160-7; PMID: 10799774
  • Halvorson DA. The control of H5 or H7 mildly pathogenic avian influenza: a role for inactivated vaccine. Avian Pathol 2002; 31:5 - 12; http://dx.doi.org/10.1080/03079450120106570; PMID: 12430550
  • Alexander DJ. Avian influenza.Chapter 2.3.4. In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2010. World Organisation for Animal Health, Paris, France 2009:http://www.oie.int/eng/normes/mmanual/2008/pdf/2.03.04 AI.pdf.
  • Garten W, Klenk HD. Characterization of the carboxypeptidase involved in the proteolytic cleavage of the influenza haemagglutinin. J Gen Virol 1983; 64:2127 - 37; http://dx.doi.org/10.1099/0022-1317-64-10-2127; PMID: 6619800
  • Bosch FX, Garten W, Klenk HD, Rott R. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of Avian influenza viruses. Virology 1981; 113:725 - 35; http://dx.doi.org/10.1016/0042-6822(81)90201-4; PMID: 7023022
  • Kawaoka Y, Nestorowicz A, Alexander DJ, Webster RG. Molecular analyses of the hemagglutinin genes of H5 influenza viruses: origin of a virulent turkey strain. Virology 1987; 158:218 - 27; http://dx.doi.org/10.1016/0042-6822(87)90256-X; PMID: 3576972
  • Klenk HD, Rott R. The molecular biology of influenza virus pathogenicity. Adv Virus Res 1988; 34:247 - 81; http://dx.doi.org/10.1016/S0065-3527(08)60520-5; PMID: 3046255
  • Horimoto T, Kawaoka Y. Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J Virol 1994; 68:3120 - 8; PMID: 8151777
  • Wood GW, Banks J, McCauley JW, Alexander DJ. Deduced amino acid sequences of the haemagglutinin of H5N1 avian influenza virus isolates from an outbreak in turkeys in Norfolk, England. Arch Virol 1994; 134:185 - 94; http://dx.doi.org/10.1007/BF01379117; PMID: 7506519
  • Garten W, Bosch FX, Linder D, Rott R, Klenk HD. Proteolytic activation of the influenza virus hemagglutinin: The structure of the cleavage site and the enzymes involved in cleavage. Virology 1981; 115:361 - 74; http://dx.doi.org/10.1016/0042-6822(81)90117-3; PMID: 7032055
  • Steinhauer DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 1999; 258:1 - 20; http://dx.doi.org/10.1006/viro.1999.9716; PMID: 10329563
  • Munch M, Nielsen LP, Handberg KJ, Jørgensen PH. Detection and subtyping (H5 and H7) of avian type A influenza virus by reverse transcription-PCR and PCR-ELISA. Arch Virol 2001; 146:87 - 97; http://dx.doi.org/10.1007/s007050170193; PMID: 11266220
  • Kido H, Okumura Y, Takahashi E, Pan HY, Wang S, Chida J, et al. Host envelope glycoprotein processing proteases are indispensable for entry into human cells by seasonal and highly pathogenic avian influenza viruses. J Mol Genet Med 2008; 3:167 - 75; PMID: 19565019
  • Bertram S, Glowacka I, Steffen I, Kühl A, Pöhlmann S. Novel insights into proteolytic cleavage of influenza virus hemagglutinin. Rev Med Virol 2010; 20:298 - 310; http://dx.doi.org/10.1002/rmv.657; PMID: 20629046
  • Chambers TM, Hinshaw VS, Kawaoka Y, Easterday BC, Webster RG. Influenza viral infection of swine in the United States 1988-1989. Arch Virol 1991; 116:261 - 5; http://dx.doi.org/10.1007/BF01319247; PMID: 1848066
  • Horimoto T, Kawaoka Y. Molecular changes in virulent mutants arising from avirulent avian influenza viruses during replication in 14-day-old embryonated eggs. Virology 1995; 206:755 - 9; http://dx.doi.org/10.1016/S0042-6822(95)80004-2; PMID: 7831837
  • Capua I, Mutinelli F, Pozza MD, Donatelli I, Puzelli S, Cancellotti FM. The 1999-2000 avian influenza (H7N1) epidemic in Italy: veterinary and human health implications. Acta Trop 2002; 83:7 - 11; http://dx.doi.org/10.1016/S0001-706X(02)00057-8; PMID: 12062787
  • Röhm C, Horimoto T, Kawaoka Y, Süss J, Webster RG. Do hemagglutinin genes of highly pathogenic avian influenza viruses constitute unique phylogenetic lineages?. Virology 1995; 209:664 - 70; http://dx.doi.org/10.1006/viro.1995.1301; PMID: 7778300
  • Swayne DE, Perdue ML, Garcia M, Rivera-Cruz E, Brugh M. Pathogenicity and diagnosis of H5N2 Mexican avian influenza viruses in chickens. Avian Dis 1997; 41:335 - 46; http://dx.doi.org/10.2307/1592187; PMID: 9201397
  • Goto H, Kawaoka Y. A novel mechanism for the acquisition of virulence by a human influenza A virus. Proc Natl Acad Sci U S A 1998; 95:10224 - 8; http://dx.doi.org/10.1073/pnas.95.17.10224; PMID: 9707628
  • Munier S, Larcher T, Cormier-Aline F, Soubieux D, Su B, Guigand L, et al. A genetically engineered waterfowl influenza virus with a deletion in the stalk of the neuraminidase has increased virulence for chickens. J Virol 2010; 84:940 - 52; http://dx.doi.org/10.1128/JVI.01581-09; PMID: 19889765
  • Ozawa M, Kawaoka Y. Taming influenza viruses. Virus Res 2011; 162:8 - 11; http://dx.doi.org/10.1016/j.virusres.2011.09.035; PMID: 21968297
  • Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 2000; 97:6108 - 13; http://dx.doi.org/10.1073/pnas.100133697; PMID: 10801978
  • Stech J, Stech O, Herwig A, Altmeppen H, Hundt J, Gohrbandt S, et al. Rapid and reliable universal cloning of influenza A virus genes by target-primed plasmid amplification. Nucleic Acids Res 2008; 36:e139; http://dx.doi.org/10.1093/nar/gkn646; PMID: 18832366
  • Gohrbandt S, Veits J, Hundt J, Bogs J, Breithaupt A, Teifke JP, et al. Amino acids adjacent to the haemagglutinin cleavage site are relevant for virulence of avian influenza viruses of subtype H5. J Gen Virol 2011; 92:51 - 9; http://dx.doi.org/10.1099/vir.0.023887-0; PMID: 20881092
  • Tada T, Suzuki K, Sakurai Y, Kubo M, Okada H, Itoh T, et al. Emergence of avian influenza viruses with enhanced transcription activity by a single amino acid substitution in the nucleoprotein during replication in chicken brains. J Virol 2011; 85:10354 - 63; http://dx.doi.org/10.1128/JVI.00605-11; PMID: 21795332
  • Kawaoka Y, Naeve CW, Webster RG. Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin?. Virology 1984; 139:303 - 16; http://dx.doi.org/10.1016/0042-6822(84)90376-3; PMID: 6516214
  • Kawaoka Y, Webster RG. Evolution of the A/Chicken/Pennsylvania/83 (H5N2) influenza virus. Virology 1985; 146:130 - 7; http://dx.doi.org/10.1016/0042-6822(85)90059-5; PMID: 4036005
  • Bean WJ, Kawaoka Y, Wood JM, Pearson JE, Webster RG. Characterization of virulent and avirulent A/chicken/Pennsylvania/83 influenza A viruses: potential role of defective interfering RNAs in nature. J Virol 1985; 54:151 - 60; PMID: 3973976
  • Wood JM, Webster RG, Nettles VF. Host range of A/Chicken/Pennsylvania/83 (H5N2) influenza virus. Avian Dis 1985; 29:198 - 207; http://dx.doi.org/10.2307/1590708; PMID: 3985875
  • Hinshaw VS, Wood JM, Webster RG, Deibel R, Turner B. Circulation of influenza viruses and paramyxoviruses in waterfowl originating from two different areas of North America. Bull World Health Organ 1985; 63:711 - 9; PMID: 3878741
  • Kawaoka Y, Webster RG. Molecular mechanism of acquisition of virulence in influenza virus in nature. Microb Pathog 1988; 5:311 - 8; http://dx.doi.org/10.1016/0882-4010(88)90032-0; PMID: 3070264
  • Ohuchi M, Orlich M, Ohuchi R, Simpson BE, Garten W, Klenk HD, et al. Mutations at the cleavage site of the hemagglutinin after the pathogenicity of influenza virus A/chick/Penn/83 (H5N2). Virology 1989; 168:274 - 80; http://dx.doi.org/10.1016/0042-6822(89)90267-5; PMID: 2916326
  • Brugh M, Perdue ML. Emergence of highly pathogenic virus during selective chicken passage of the prototype mildly pathogenic chicken/Pennsylvania/83 (H5N2) influenza virus. Avian Dis 1991; 35:824 - 33; http://dx.doi.org/10.2307/1591616; PMID: 1838476
  • Webster RG, Kawaoka Y, Bean WJ Jr.. Molecular changes in A/Chicken/Pennsylvania/83 (H5N2) influenza virus associated with acquisition of virulence. Virology 1986; 149:165 - 73; http://dx.doi.org/10.1016/0042-6822(86)90118-2; PMID: 3946082
  • Deshpande KL, Fried VA, Ando M, Webster RG. Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proc Natl Acad Sci U S A 1987; 84:36 - 40; http://dx.doi.org/10.1073/pnas.84.1.36; PMID: 3467357
  • Webster RG, Kawaoka Y, Bean WJ. What is the potential of avirulent influenza viruses to complement a cleavable hemagglutinin and generate virulent strains?. Virology 1989; 171:484 - 92; http://dx.doi.org/10.1016/0042-6822(89)90618-1; PMID: 2763464
  • Deshpande KL, Naeve CW, Webster RG. The neuraminidases of the virulent and avirulent A/Chicken/Pennsylvania/83 (H5N2) influenza A viruses: sequence and antigenic analyses. Virology 1985; 147:49 - 60; http://dx.doi.org/10.1016/0042-6822(85)90226-0; PMID: 2414922
  • Horimoto T, Rivera E, Pearson J, Senne D, Krauss S, Kawaoka Y, et al. Origin and molecular changes associated with emergence of a highly pathogenic H5N2 influenza virus in Mexico. Virology 1995; 213:223 - 30; http://dx.doi.org/10.1006/viro.1995.1562; PMID: 7483266
  • Senne DA, Panigrahy B, Kawaoka Y, Pearson JE, Süss J, Lipkind M, et al. Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis 1996; 40:425 - 37; http://dx.doi.org/10.2307/1592241; PMID: 8790895
  • García M, Crawford JM, Latimer JW, Rivera-Cruz E, Perdue ML. Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. J Gen Virol 1996; 77:1493 - 504; http://dx.doi.org/10.1099/0022-1317-77-7-1493; PMID: 8757992
  • Perdue ML, García M, Senne D, Fraire M. Virulence-associated sequence duplication at the hemagglutinin cleavage site of avian influenza viruses. Virus Res 1997; 49:173 - 86; http://dx.doi.org/10.1016/S0168-1702(97)01468-8; PMID: 9213392
  • Lee CW, Senne DA, Suarez DL. Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. J Virol 2004; 78:8372 - 81; http://dx.doi.org/10.1128/JVI.78.15.8372-8381.2004; PMID: 15254209
  • Lee CW, Senne DA, Linares JA, Woolcock PR, Stallknecht DE, Spackman E, et al. Characterization of recent H5 subtype avian influenza viruses from US poultry. Avian Pathol 2004; 33:288 - 97; http://dx.doi.org/10.1080/0307945042000203407; PMID: 15223555
  • Senne DA. Avian influenza in North and South America, 2002-2005. Avian Dis 2007; 51:Suppl 167 - 73; http://dx.doi.org/10.1637/7621-042606R1.1; PMID: 17494549
  • Pillai SP, Pantin-Jackwood M, Suarez DL, Saif YM, Lee CW. Pathobiological characterization of low-pathogenicity H5 avian influenza viruses of diverse origins in chickens, ducks and turkeys. Arch Virol 2010; 155:1439 - 51; http://dx.doi.org/10.1007/s00705-010-0727-8; PMID: 20577770
  • Dlugolenski D, Jones L, Saavedra G, Tompkins SM, Tripp RA, Mundt E. Passage of low-pathogenic avian influenza (LPAI) viruses mediates rapid genetic adaptation of a wild-bird isolate in poultry. Arch Virol 2011; 156:565 - 76; http://dx.doi.org/10.1007/s00705-010-0891-x; PMID: 21197555
  • Lee CW, Swayne DE, Linares JA, Senne DA, Suarez DL. H5N2 avian influenza outbreak in Texas in 2004: the first highly pathogenic strain in the United States in 20 years?. J Virol 2005; 79:11412 - 21; http://dx.doi.org/10.1128/JVI.79.17.11412-11421.2005; PMID: 16103192
  • Pelzel AM, McCluskey BJ, Scott AE. Review of the highly pathogenic avian influenza outbreak in Texas, 2004. J Am Vet Med Assoc 2006; 228:1869 - 75; http://dx.doi.org/10.2460/javma.228.12.1869; PMID: 16784375
  • De Marco MA, Foni E, Campitelli L, Delogu M, Raffini E, Chiapponi C, et al. Influenza virus circulation in wild aquatic birds in Italy during H5N2 and H7N1 poultry epidemic periods (1998 to 2000). Avian Pathol 2005; 34:480 - 5; http://dx.doi.org/10.1080/03079450500368185; PMID: 16537162
  • De Marco MA, Campitelli L, Foni E, Raffini E, Barigazzi G, Delogu M, et al. Influenza surveillance in birds in Italian wetlands (1992-1998): is there a host restricted circulation of influenza viruses in sympatric ducks and coots?. Vet Microbiol 2004; 98:197 - 208; http://dx.doi.org/10.1016/j.vetmic.2003.10.018; PMID: 15036528
  • Banks J, Speidel ES, Moore E, Plowright L, Piccirillo A, Capua I, et al. Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy. Arch Virol 2001; 146:963 - 73; http://dx.doi.org/10.1007/s007050170128; PMID: 11448033
  • Capua I, Marangon S. The avian influenza epidemic in Italy, 1999-2000: a review. Avian Pathol 2000; 29:289 - 94; http://dx.doi.org/10.1080/03079450050118403; PMID: 19184817
  • Capua I, Mutinelli F, Marangon S, Alexander DJ. H7N1 avian influenza in Italy (1999 to 2000) in intensively reared chickens and turkeys. Avian Pathol 2000; 29:537 - 43; http://dx.doi.org/10.1080/03079450020016779; PMID: 19184849
  • Capua I, Mutinelli F, Terregino C, Cattoli G, Manvell RJ, Burlini F. Highly pathogenic avian influenza (H7N1) in ostriches farmed in Italy. Vet Rec 2000; 146:356; PMID: 10777051
  • Capua I, Mutinelli F, Hablovarid MH. Avian embryo susceptibility to Italian H7N1 avian influenza viruses belonging to different genetic lineages. Arch Virol 2002; 147:1611 - 21; http://dx.doi.org/10.1007/s00705-002-0837-z; PMID: 12181679
  • Capua I, Mutinelli F. Mortality in Muscovy ducks (Cairina moschata) and domestic geese (Anser anser var. domestica) associated with natural infection with a highly pathogenic avian influenza virus of H7N1 subtype. Avian Pathol 2001; 30:179 - 83; http://dx.doi.org/10.1080/03079450120044597; PMID: 19184894
  • Zanella A, Dall’Ara P, Martino PA. Avian influenza epidemic in Italy due to serovar H7N1. Avian Dis 2001; 45:257 - 61; http://dx.doi.org/10.2307/1593038; PMID: 11332492
  • Magnino S, Fabbi M, Moreno A, Sala G, Lavazza A, Ghelfi E, et al. Avian influenza virus (H7 serotype) in a saker falcon in Italy. Vet Rec 2000; 146:740; PMID: 10901223
  • Bertran K, Pérez-Ramírez E, Busquets N, Dolz R, Ramis A, Darji A, et al. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa). Vet Res 2011; 42:24; http://dx.doi.org/10.1186/1297-9716-42-24; PMID: 21314907
  • Mutinelli F, Hablovarid H, Capua I. Avian embryo susceptibility to Italian H7N1 avian influenza viruses belonging to different lineages. Avian Dis 2003; 47:Suppl 1145 - 9; http://dx.doi.org/10.1637/0005-2086-47.s3.1145; PMID: 14575131
  • Hoffmann TW, Munier S, Larcher T, Soubieux D, Ledevin M, Esnault E, et al. Length variations in the NA stalk of an H7N1 influenza virus have opposite effects on viral excretion in chickens and ducks. J Virol 2012; 86:584 - 8; http://dx.doi.org/10.1128/JVI.05474-11; PMID: 22013034
  • Keiner B, Maenz B, Wagner R, Cattoli G, Capua I, Klenk HD. Intracellular distribution of NS1 correlates with the infectivity and interferon antagonism of an avian influenza virus (H7N1). J Virol 2010; 84:11858 - 65; http://dx.doi.org/10.1128/JVI.01011-10; PMID: 20844052
  • Soubies SM, Hoffmann TW, Croville G, Larcher T, Ledevin M, Soubieux D, et al. Deletion of the C-terminal ESEV domain of NS1 does not affect the replication of a low-pathogenic avian influenza virus H7N1 in ducks and chickens. J Gen Virol 2013; 94:50 - 8; http://dx.doi.org/10.1099/vir.0.045153-0; PMID: 23052391
  • Soubies SM, Volmer C, Guérin JL, Volmer R. Truncation of the NS1 protein converts a low pathogenic avian influenza virus into a strong interferon inducer in duck cells. Avian Dis 2010; 54:Suppl 527 - 31; http://dx.doi.org/10.1637/8707-031709-Reg.1; PMID: 20521689
  • Soubies SM, Volmer C, Croville G, Loupias J, Peralta B, Costes P, et al. Species-specific contribution of the four C-terminal amino acids of influenza A virus NS1 protein to virulence. J Virol 2010; 84:6733 - 47; http://dx.doi.org/10.1128/JVI.02427-09; PMID: 20410267
  • Capua I. Avian influenza in the EU. Zoonoses Public Health 2008; 55:1; http://dx.doi.org/10.1111/j.1863-2378.2007.01089.x; PMID: 18201320
  • Puzelli S, Di Trani L, Fabiani C, Campitelli L, De Marco MA, Capua I, et al. Serological analysis of serum samples from humans exposed to avian H7 influenza viruses in Italy between 1999 and 2003. J Infect Dis 2005; 192:1318 - 22; http://dx.doi.org/10.1086/444390; PMID: 16170747
  • Rigoni M, Shinya K, Toffan A, Milani A, Bettini F, Kawaoka Y, et al. Pneumo- and neurotropism of avian origin Italian highly pathogenic avian influenza H7N1 isolates in experimentally infected mice. Virology 2007; 364:28 - 35; http://dx.doi.org/10.1016/j.virol.2007.02.031; PMID: 17408714
  • Rigoni M, Toffan A, Viale E, Mancin M, Cilloni F, Bertoli E, et al. The mouse model is suitable for the study of viral factors governing transmission and pathogenesis of highly pathogenic avian influenza (HPAI) viruses in mammals. Vet Res 2010; 41:66; http://dx.doi.org/10.1051/vetres/2010038; PMID: 20546698
  • Whiteley A, Major D, Legastelois I, Campitelli L, Donatelli I, Thompson CI, et al. Generation of candidate human influenza vaccine strains in cell culture - rehearsing the European response to an H7N1 pandemic threat. Influenza Other Respi Viruses 2007; 1:157 - 66; http://dx.doi.org/10.1111/j.1750-2659.2007.00022.x; PMID: 19432631
  • Cox RJ, Major D, Hauge S, Madhun AS, Brokstad KA, Kuhne M, et al. A cell-based H7N1 split influenza virion vaccine confers protection in mouse and ferret challenge models. Influenza Other Respi Viruses 2009; 3:107 - 17; http://dx.doi.org/10.1111/j.1750-2659.2009.00082.x; PMID: 19453487
  • Hovden AO, Brokstad KA, Major D, Wood J, Haaheim LR, Cox RJ. A pilot study of the immune response to whole inactivated avian influenza H7N1 virus vaccine in mice. Influenza Other Respi Viruses 2009; 3:21 - 8; http://dx.doi.org/10.1111/j.1750-2659.2009.00075.x; PMID: 19453438
  • Aamir UB, Naeem K, Ahmed Z, Obert CA, Franks J, Krauss S, et al. Zoonotic potential of highly pathogenic avian H7N3 influenza viruses from Pakistan. Virology 2009; 390:212 - 20; http://dx.doi.org/10.1016/j.virol.2009.05.008; PMID: 19535120
  • Naeem K, Siddique N, Ayaz M, Jalalee MA. Avian influenza in Pakistan: outbreaks of low- and high-pathogenicity avian influenza in Pakistan during 2003-2006. Avian Dis 2007; 51:Suppl 189 - 93; http://dx.doi.org/10.1637/7617-042506R.1; PMID: 17494552
  • Abbas MA, Spackman E, Swayne DE, Ahmed Z, Sarmento L, Siddique N, et al. Sequence and phylogenetic analysis of H7N3 avian influenza viruses isolated from poultry in Pakistan 1995-2004. Virol J 2010; 7:137; http://dx.doi.org/10.1186/1743-422X-7-137; PMID: 20576101
  • Naeem K, Hussain M. An outbreak of avian influenza in poultry in Pakistan. Vet Rec 1995; 137:439; http://dx.doi.org/10.1136/vr.137.17.439; PMID: 8560706
  • Banks J, Speidel EC, McCauley JW, Alexander DJ. Phylogenetic analysis of H7 haemagglutinin subtype influenza A viruses. Arch Virol 2000; 145:1047 - 58; http://dx.doi.org/10.1007/s007050050695; PMID: 10881690
  • Naeem K, Siddique N. Use of strategic vaccination for the control of avian influenza in Pakistan. Dev Biol (Basel) 2006; 124:145 - 50; PMID: 16447505
  • Abbas MA, Spackman E, Fouchier R, Smith D, Ahmed Z, Siddique N, et al. H7 avian influenza virus vaccines protect chickens against challenge with antigenically diverse isolates. Vaccine 2011; 29:7424 - 9; http://dx.doi.org/10.1016/j.vaccine.2011.07.064; PMID: 21803098
  • Rojas H, Moreira R, Avalos P, Capua I, Marangon S. Avian influenza in poultry in Chile. Vet Rec 2002; 151:188; PMID: 12201269
  • Max V, Herrera J, Moreira R, Rojas H. Avian influenza in Chile: a successful experience. Avian Dis 2007; 51:Suppl 363 - 5; http://dx.doi.org/10.1637/7631-042806R1.1; PMID: 17494584
  • Suarez DL, Senne DA, Banks J, Brown IH, Essen SC, Lee CW, et al. Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis 2004; 10:693 - 9; http://dx.doi.org/10.3201/eid1004.030396; PMID: 15200862
  • Jones YL, Swayne DE. Comparative pathobiology of low and high pathogenicity H7N3 Chilean avian influenza viruses in chickens. Avian Dis 2004; 48:119 - 28; http://dx.doi.org/10.1637/7080; PMID: 15077805
  • Bowes VA, Ritchie SJ, Byrne S, Sojonky K, Bidulka JJ, Robinson JH. Virus characterization, clinical presentation, and pathology associated with H7N3 avian influenza in British Columbia broiler breeder chickens in 2004. Avian Dis 2004; 48:928 - 34; http://dx.doi.org/10.1637/7218-060304R; PMID: 15666877
  • Tweed SA, Skowronski DM, David ST, Larder A, Petric M, Lees W, et al. Human illness from avian influenza H7N3, British Columbia. Emerg Infect Dis 2004; 10:2196 - 9; http://dx.doi.org/10.3201/eid1012.040961; PMID: 15663860
  • Belser JA, Blixt O, Chen LM, Pappas C, Maines TR, Van Hoeven N, et al. Contemporary North American influenza H7 viruses possess human receptor specificity: Implications for virus transmissibility. Proc Natl Acad Sci U S A 2008; 105:7558 - 63; http://dx.doi.org/10.1073/pnas.0801259105; PMID: 18508975
  • Belser JA, Wadford DA, Xu J, Katz JM, Tumpey TM. Ocular infection of mice with influenza A (H7) viruses: a site of primary replication and spread to the respiratory tract. J Virol 2009; 83:7075 - 84; http://dx.doi.org/10.1128/JVI.00535-09; PMID: 19458003
  • Pasick J, Handel K, Robinson J, Copps J, Ridd D, Hills K, et al. Intersegmental recombination between the haemagglutinin and matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia. J Gen Virol 2005; 86:727 - 31; http://dx.doi.org/10.1099/vir.0.80478-0; PMID: 15722533
  • Hirst M, Astell CR, Griffith M, Coughlin SM, Moksa M, Zeng T, et al. Novel avian influenza H7N3 strain outbreak, British Columbia. Emerg Infect Dis 2004; 10:2192 - 5; http://dx.doi.org/10.3201/eid1012.040743; PMID: 15663859
  • Pasick J, Berhane Y, Hisanaga T, Kehler H, Hooper-McGrevy K, Handel K, et al. Diagnostic test results and pathology associated with the 2007 Canadian H7N3 highly pathogenic avian influenza outbreak. Avian Dis 2010; 54:Suppl 213 - 9; http://dx.doi.org/10.1637/8822-040209-Reg.1; PMID: 20521634
  • Berhane Y, Hisanaga T, Kehler H, Neufeld J, Manning L, Argue C, et al. Highly pathogenic avian influenza virus A (H7N3) in domestic poultry, Saskatchewan, Canada, 2007. Emerg Infect Dis 2009; 15:1492 - 5; http://dx.doi.org/10.3201/eid1509.080231; PMID: 19788823
  • Pasick J, Berhane Y, Hooper-McGrevy K. Avian influenza: the Canadian experience. Rev Sci Tech 2009; 28:349 - 58; PMID: 19618638
  • OIE. Immediate notification report: HPAI in Mexico report reference OIE 12067; Report date 21/06/2012. Avaialbel online at: http://web.oie.int/wahis/reports/en_imm_0000012067_20120622_132313.pdf. 2012.
  • FAO. Highly pathogenic avian influenza in Mexico (H7N3): A signifcant threat to poultry production not be underestimated. EMPRES WATCH. Rome, Italy, 2012.
  • Centers for Disease Control and Prevention (CDC). Notes from the field: Highly pathogenic avian influenza A (H7N3) virus infection in two poultry workers--Jalisco, Mexico, July 2012. MMWR Morb Mortal Wkly Rep 2012; 61:726 - 7; PMID: 22971746
  • WHO. Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. Wkly Epidemiol Rec 2012; 87:401 - 12; PMID: 23113329
  • de Wit JJ, Koch G, Fabri TH, Elbers AR. A cross-sectional serological survey of the Dutch commercial poultry population for the presence of low pathogenic avian influenza virus infections. Avian Pathol 2004; 33:565 - 70; http://dx.doi.org/10.1080/03079450400013196; PMID: 15763723
  • de Jong MC, Stegeman A, van der Goot J, Koch G. Intra- and interspecies transmission of H7N7 highly pathogenic avian influenza virus during the avian influenza epidemic in The Netherlands in 2003. Rev Sci Tech 2009; 28:333 - 40; PMID: 19618636
  • Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A 2004; 101:1356 - 61; http://dx.doi.org/10.1073/pnas.0308352100; PMID: 14745020
  • Metreveli G, Zohari S, Ejdersund A, Berg M. Phylogenetic analysis of the hemagglutinin gene of low pathogenic avian influenza virus H7N7 strains in mallards in Northern Europe. Avian Dis 2010; 54:Suppl 453 - 6; http://dx.doi.org/10.1637/8691-031309-ResNote.1; PMID: 20521678
  • Meijer A, Bosman A, van de Kamp EE, Wilbrink B, Du Ry van Beest Holle M, Koopmans M. Measurement of antibodies to avian influenza virus A(H7N7) in humans by hemagglutination inhibition test. J Virol Methods 2006; 132:113 - 20; http://dx.doi.org/10.1016/j.jviromet.2005.10.001; PMID: 16271401
  • Du Ry van Beest Holle M, Meijer A, Koopmans M, de Jager CM. Human-to-human transmission of avian influenza A/H7N7, The Netherlands, 2003. Euro Surveill 2005; 10:264 - 8; PMID: 16371696
  • Koopmans M, Wilbrink B, Conyn M, Natrop G, van der Nat H, Vennema H, et al. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 2004; 363:587 - 93; http://dx.doi.org/10.1016/S0140-6736(04)15589-X; PMID: 14987882
  • Munster VJ, de Wit E, van Riel D, Beyer WE, Rimmelzwaan GF, Osterhaus AD, et al. The molecular basis of the pathogenicity of the Dutch highly pathogenic human influenza A H7N7 viruses. J Infect Dis 2007; 196:258 - 65; http://dx.doi.org/10.1086/518792; PMID: 17570113
  • Olofsson S, Kumlin U, Dimock K, Arnberg N. Avian influenza and sialic acid receptors: more than meets the eye?. Lancet Infect Dis 2005; 5:184 - 8; PMID: 15766653
  • de Wit E, Munster VJ, van Riel D, Beyer WE, Rimmelzwaan GF, Kuiken T, et al. Molecular determinants of adaptation of highly pathogenic avian influenza H7N7 viruses to efficient replication in the human host. J Virol 2010; 84:1597 - 606; http://dx.doi.org/10.1128/JVI.01783-09; PMID: 19939933
  • de Wit E, Fouchier RA. Emerging influenza. J Clin Virol 2008; 41:1 - 6; http://dx.doi.org/10.1016/j.jcv.2007.10.017; PMID: 18340670
  • van Riel D, Rimmelzwaan GF, van Amerongen G, Osterhaus AD, Kuiken T. Highly pathogenic avian influenza virus H7N7 isolated from a fatal human case causes respiratory disease in cats but does not spread systemically. Am J Pathol 2010; 177:2185 - 90; http://dx.doi.org/10.2353/ajpath.2010.100401; PMID: 20847292
  • Alexander DJ, Lister SA, Johnson MJ, Randall CJ, Thomas PJ. An outbreak of highly pathogenic avian influenza in turkeys in Great Britain in 1991. Vet Rec 1993; 132:535 - 6; http://dx.doi.org/10.1136/vr.132.21.535; PMID: 8322444
  • Löndt BZ, Banks J, Gardner R, Cox WJ, Brown IH. Induced increase in virulence of low virulence highly [corrected] pathogenic avian influenza by serial intracerebral passage in chickens. Avian Dis 2007; 51:Suppl 396 - 400; http://dx.doi.org/10.1637/7665-061206R.1; PMID: 17494593
  • Banks J, Plowright L. Additional glycosylation at the receptor binding site of the hemagglutinin (HA) for H5 and H7 viruses may be an adaptation to poultry hosts, but does it influence pathogenicity?. Avian Dis 2003; 47:Suppl 942 - 50; http://dx.doi.org/10.1637/0005-2086-47.s3.942; PMID: 14575092
  • Li Z, Jiang Y, Jiao P, Wang A, Zhao F, Tian G, et al. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J Virol 2006; 80:11115 - 23; http://dx.doi.org/10.1128/JVI.00993-06; PMID: 16971424
  • Guo Y, Wang M, Xu X. [Nucleotide sequence of A/Goose/Guangdong/2/96 (H5N1) virus M and NS RNA]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 1999; 13:305 - 8; PMID: 12759964
  • Guo Y, Wang M, Guo J. [The complete nucleotide sequences of A/Goose/Guangdong/2/96(H5N1) virus RNA segment 1-3 and 5]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 1999; 13:205 - 8; PMID: 12569746
  • Xu X, Subbarao, Cox NJ, Guo Y. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 1999; 261:15 - 9; http://dx.doi.org/10.1006/viro.1999.9820; PMID: 10484749
  • Sims LD, Domenech J, Benigno C, Kahn S, Kamata A, Lubroth J, et al. Origin and evolution of highly pathogenic H5N1 avian influenza in Asia. Vet Rec 2005; 157:159 - 64; PMID: 16085721
  • WHO. Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to WHO, 2003-2013. Avilable online at: http://www.who.int/influenza/human_animal_interface/EN_GIP_20130604CumulativeNumberH5N1cases.pdf (Accessed 03.July.2013). 2013.
  • Schat KA, Bingham J, Butler JM, Chen LM, Lowther S, Crowley TM, et al. Role of position 627 of PB2 and the multibasic cleavage site of the hemagglutinin in the virulence of H5N1 avian influenza virus in chickens and ducks. PLoS One 2012; 7:e30960; http://dx.doi.org/10.1371/journal.pone.0030960; PMID: 22363523
  • Tada T, Suzuki K, Sakurai Y, Kubo M, Okada H, Itoh T, et al. NP body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens. J Virol 2011; 85:1834 - 46; http://dx.doi.org/10.1128/JVI.01648-10; PMID: 21123376
  • Wasilenko JL, Sarmento L, Pantin-Jackwood MJ. A single substitution in amino acid 184 of the NP protein alters the replication and pathogenicity of H5N1 avian influenza viruses in chickens. Arch Virol 2009; 154:969 - 79; http://dx.doi.org/10.1007/s00705-009-0399-4; PMID: 19475480
  • Korteweg C, Gu J. Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans. Am J Pathol 2008; 172:1155 - 70; http://dx.doi.org/10.2353/ajpath.2008.070791; PMID: 18403604
  • Cinatl J Jr., Michaelis M, Doerr HW. The threat of avian influenza A (H5N1). Part I: Epidemiologic concerns and virulence determinants. Med Microbiol Immunol 2007; 196:181 - 90; http://dx.doi.org/10.1007/s00430-007-0042-5; PMID: 17492465
  • Lycett SJ, Ward MJ, Lewis FI, Poon AF, Kosakovsky Pond SL, Brown AJ. Detection of mammalian virulence determinants in highly pathogenic avian influenza H5N1 viruses: multivariate analysis of published data. J Virol 2009; 83:9901 - 10; http://dx.doi.org/10.1128/JVI.00608-09; PMID: 19625397
  • Wasilenko JL, Lee CW, Sarmento L, Spackman E, Kapczynski DR, Suarez DL, et al. NP, PB1, and PB2 viral genes contribute to altered replication of H5N1 avian influenza viruses in chickens. J Virol 2008; 82:4544 - 53; http://dx.doi.org/10.1128/JVI.02642-07; PMID: 18305037
  • Homme PJ, Easterday BC. Avian influenza virus infections. I. Characteristics of influenza A-turkey-Wisconsin-1966 virus. Avian Dis 1970; 14:66 - 74; http://dx.doi.org/10.2307/1588557; PMID: 4314007
  • Smithies LK, Emerson FG, Robertson SM, Ruedy DD. Two different type A influenza virus infections in turkeys in Wisconsin. II. 1968 outbreak. Avian Dis 1969; 13:606 - 10; http://dx.doi.org/10.2307/1588535; PMID: 5818061
  • Smithies LK, Radloff DB, Friedell RW, Albright GW, Misner VE, Easterday BC. Two different type A influenza virus infections in turkeys in Wisconsin. I. 1965-66 outbreak. Avian Dis 1969; 13:603 - 6; http://dx.doi.org/10.2307/1588534; PMID: 5818060
  • Perdue ML, Wainright P, Palmieri S, Brugh M. In ovo competition between distinct virus populations in an avian influenza isolate. Avian Dis 1989; 33:695 - 706; http://dx.doi.org/10.2307/1591147; PMID: 2619663
  • Perdue ML. Naturally occurring NS gene variants in an avian influenza virus isolate. Virus Res 1992; 23:223 - 40; http://dx.doi.org/10.1016/0168-1702(92)90110-U; PMID: 1320795
  • García M, Suarez DL, Crawford JM, Latimer JW, Slemons RD, Swayne DE, et al. Evolution of H5 subtype avian influenza A viruses in North America. Virus Res 1997; 51:115 - 24; http://dx.doi.org/10.1016/S0168-1702(97)00087-7; PMID: 9498610
  • Turner AJ. The isolation of fowl plague virus in Victoria. Aust Vet J 1976; 52:384; http://dx.doi.org/10.1111/j.1751-0813.1976.tb09503.x; PMID: 985260
  • Westbury HA. History of Highly Pathogenic Avian Influenza in Australia. Proceedings of the Fourth International Symposium on Avian Influenza, 1997. Avian Dis 2003; 47:23 - 30
  • Bashiruddin JB, Gould AR, Westbury HA. Molecular pathotyping of two avian influenza viruses isolated during the Victoria 1976 outbreak. Aust Vet J 1992; 69:140 - 2; http://dx.doi.org/10.1111/j.1751-0813.1992.tb07485.x; PMID: 1642597
  • Westbury HA, Turner AJ, Amon L. Transmissibility of two avian influenza a viruses (H7 N6) between chickens. Avian Pathol 1981; 10:481 - 7; http://dx.doi.org/10.1080/03079458108418498; PMID: 18770163
  • Alexander DJ, Allan WH, Parsons DG, Parsons G. The pathogenicity of four avian influenza viruses for fowls, turkeys and ducks. Res Vet Sci 1978; 24:242 - 7; PMID: 653122
  • Westbury HA, Turner AJ, Kovesdy L. The pathogenicity of three Australian fowl plague viruses for chickens, turkeys and ducks. Vet Microbiol 1979; 4:223 - 34; http://dx.doi.org/10.1016/0378-1135(79)90058-0
  • Perdue ML, Latimer JW, Crawford JM. A novel carbohydrate addition site on the hemagglutinin protein of a highly pathogenic H7 subtype avian influenza virus. Virology 1995; 213:276 - 81; http://dx.doi.org/10.1006/viro.1995.1571; PMID: 7483275
  • Li J, Zu Dohna H, Cardona CJ, Miller J, Carpenter TE. Emergence and genetic variation of neuraminidase stalk deletions in avian influenza viruses. PLoS One 2011; 6:e14722; http://dx.doi.org/10.1371/journal.pone.0014722; PMID: 21373190
  • Bergmann M, García-Sastre A, Palese P. Transfection-mediated recombination of influenza A virus. J Virol 1992; 66:7576 - 80; PMID: 1279208
  • Orlich M, Gottwald H, Rott R. Nonhomologous recombination between the hemagglutinin gene and the nucleoprotein gene of an influenza virus. Virology 1994; 204:462 - 5; http://dx.doi.org/10.1006/viro.1994.1555; PMID: 8091680
  • Gibbs MJ, Armstrong JS, Gibbs AJ. The haemagglutinin gene, but not the neuraminidase gene, of ‘Spanish flu’ was a recombinant. Philos Trans R Soc Lond B Biol Sci 2001; 356:1845 - 55; http://dx.doi.org/10.1098/rstb.2001.0998; PMID: 11779383
  • Gibbs MJ, Armstrong JS, Gibbs AJ. Recombination in the hemagglutinin gene of the 1918 “Spanish flu”. Science 2001; 293:1842 - 5; http://dx.doi.org/10.1126/science.1061662; PMID: 11546876
  • Worobey M, Rambaut A, Pybus OG, Robertson DL. Questioning the evidence for genetic recombination in the 1918 “Spanish flu” virus. Science 2002; 296:211 - , discussion 211; http://dx.doi.org/10.1126/science.296.5566.211a; PMID: 11951002
  • Khatchikian D, Orlich M, Rott R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature 1989; 340:156 - 7; http://dx.doi.org/10.1038/340156a0; PMID: 2544809