2,365
Views
47
CrossRef citations to date
0
Altmetric
Special Focus Review

Emerging therapeutic strategies to prevent infection-related microvascular endothelial activation and dysfunction

&
Pages 572-582 | Received 01 Apr 2013, Accepted 12 Jul 2013, Published online: 16 Jul 2013

References

  • Goldenberg NM, Steinberg BE, Slutsky AS, Lee WL. Broken barriers: a new take on sepsis pathogenesis. Sci Transl Med 2011; 3:88ps25; http://dx.doi.org/10.1126/scitranslmed.3002011; PMID: 21697528
  • Mei SH, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 2007; 4:e269; http://dx.doi.org/10.1371/journal.pmed.0040269; PMID: 17803352
  • Dalrymple NA, Mackow ER. Endothelial cells elicit immune-enhancing responses to dengue virus infection. J Virol 2012; 86:6408 - 15; http://dx.doi.org/10.1128/JVI.00213-12; PMID: 22496214
  • Peters CJ, Zaki SR. Role of the endothelium in viral hemorrhagic fevers. Crit Care Med 2002; 30:Suppl S268 - 73; http://dx.doi.org/10.1097/00003246-200205001-00016; PMID: 12004247
  • Shrivastava-Ranjan P, Rollin PE, Spiropoulou CF. Andes virus disrupts the endothelial cell barrier by induction of vascular endothelial growth factor and downregulation of VE-cadherin. J Virol 2010; 84:11227 - 34; http://dx.doi.org/10.1128/JVI.01405-10; PMID: 20810734
  • Yuan SY, Rigor RR. Regulation of endothelial barrier function. San Rafael, CA: Morgan and Claypool Life Sciences, 2010.
  • Wójciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ. Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci 2001; 114:1343 - 55; PMID: 11257000
  • Vestweber D, Broermann A, Schulte D. Control of endothelial barrier function by regulating vascular endothelial-cadherin. Curr Opin Hematol 2010; 17:230 - 6; http://dx.doi.org/10.1097/MOH.0b013e328338664b; PMID: 20393283
  • Vandenbroucke E, Mehta D, Minshall R, Malik AB. Regulation of endothelial junctional permeability. Ann N Y Acad Sci 2008; 1123:134 - 45; http://dx.doi.org/10.1196/annals.1420.016; PMID: 18375586
  • Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 2006; 7:359 - 71; http://dx.doi.org/10.1038/nrm1911; PMID: 16633338
  • Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 2006; 8:1223 - 34; http://dx.doi.org/10.1038/ncb1486; PMID: 17060906
  • Gavard J, Patel V, Gutkind JS. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell 2008; 14:25 - 36; http://dx.doi.org/10.1016/j.devcel.2007.10.019; PMID: 18194650
  • Yang KY, Liu KT, Chen YC, Chen CS, Lee YC, Perng RP, et al. Plasma soluble vascular endothelial growth factor receptor-1 levels predict outcomes of pneumonia-related septic shock patients: a prospective observational study. Crit Care 2011; 15:R11; http://dx.doi.org/10.1186/cc9412; PMID: 21219633
  • Mankhambo LA, Banda DL, Jeffers G, White SA, Balmer P, Nkhoma S, et al, IPD Study Group. The role of angiogenic factors in predicting clinical outcome in severe bacterial infection in Malawian children. Crit Care 2010; 14:R91; http://dx.doi.org/10.1186/cc9025; PMID: 20492647
  • Pickkers P, Sprong T, Eijk Lv, Hoeven Hv, Smits P, Deuren Mv. Vascular endothelial growth factor is increased during the first 48 hours of human septic shock and correlates with vascular permeability. Shock 2005; 24:508 - 12; http://dx.doi.org/10.1097/01.shk.0000190827.36406.6e; PMID: 16317379
  • van der Flier M, van Leeuwen HJ, van Kessel KP, Kimpen JL, Hoepelman AI, Geelen SP. Plasma vascular endothelial growth factor in severe sepsis. Shock 2005; 23:35 - 8; http://dx.doi.org/10.1097/01.shk.0000150728.91155.41; PMID: 15614129
  • Shapiro NI, Aird WC. Sepsis and the broken endothelium. Crit Care 2011; 15:135; http://dx.doi.org/10.1186/cc10044; PMID: 21457513
  • Pilot Study of Bevacizumab (Avastin) in Patients With Septic Shock. Available at: http://clinicaltrials.gov/ct2/show/NCT01063010 Accessed March 10, 2013.
  • Gavrilovskaya IN, Gorbunova EE, Mackow NA, Mackow ER. Hantaviruses direct endothelial cell permeability by sensitizing cells to the vascular permeability factor VEGF, while angiopoietin 1 and sphingosine 1-phosphate inhibit hantavirus-directed permeability. J Virol 2008; 82:5797 - 806; http://dx.doi.org/10.1128/JVI.02397-07; PMID: 18367532
  • Gorbunova EE, Gavrilovskaya IN, Pepini T, Mackow ER. VEGFR2 and Src kinase inhibitors suppress Andes virus-induced endothelial cell permeability. J Virol 2011; 85:2296 - 303; http://dx.doi.org/10.1128/JVI.02319-10; PMID: 21177802
  • Yatomi Y, Ohmori T, Rile G, Kazama F, Okamoto H, Sano T, et al. Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood 2000; 96:3431 - 8; PMID: 11071638
  • Schaphorst KL, Chiang E, Jacobs KN, Zaiman A, Natarajan V, Wigley F, et al. Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. Am J Physiol Lung Cell Mol Physiol 2003; 285:L258 - 67; PMID: 12626332
  • Pyne S, Pyne NJ. Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 2000; 349:385 - 402; http://dx.doi.org/10.1042/0264-6021:3490385; PMID: 10880336
  • Lee MJ, Thangada S, Liu CH, Thompson BD, Hla T. Lysophosphatidic acid stimulates the G-protein-coupled receptor EDG-1 as a low affinity agonist. J Biol Chem 1998; 273:22105 - 12; http://dx.doi.org/10.1074/jbc.273.34.22105; PMID: 9705355
  • Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH, Kluk M, et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 1999; 99:301 - 12; http://dx.doi.org/10.1016/S0092-8674(00)81661-X; PMID: 10555146
  • Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN, Palmer D, et al. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest 2009; 119:1871 - 9; PMID: 19603543
  • Garcia JGN, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, et al. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest 2001; 108:689 - 701; PMID: 11544274
  • Su G, Atakilit A, Li JT, Wu N, Bhattacharya M, Zhu J, et al. Absence of integrin αvβ3 enhances vascular leak in mice by inhibiting endothelial cortical actin formation. Am J Respir Crit Care Med 2012; 185:58 - 66; http://dx.doi.org/10.1164/rccm.201108-1381OC; PMID: 21980034
  • Finney CA, Hawkes CA, Kain DC, Dhabangi A, Musoke C, Cserti-Gazdewich C, et al. S1P is associated with protection in human and experimental cerebral malaria. Mol Med 2011; 17:717 - 25; http://dx.doi.org/10.2119/molmed.2010.00214; PMID: 21556483
  • Feistritzer C, Riewald M. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 2005; 105:3178 - 84; http://dx.doi.org/10.1182/blood-2004-10-3985; PMID: 15626732
  • Looney MR, Esmon CT, Matthay MA. Role of coagulation pathways and treatment with activated protein C in hyperoxic lung injury. Thorax 2009; 64:114 - 20; http://dx.doi.org/10.1136/thx.2008.099135; PMID: 19008297
  • Abraham E, Laterre PF, Garg R, Levy H, Talwar D, Trzaskoma BL, et al, Administration of Drotrecogin Alfa (Activated) in Early Stage Severe Sepsis (ADDRESS) Study Group. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med 2005; 353:1332 - 41; http://dx.doi.org/10.1056/NEJMoa050935; PMID: 16192478
  • Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, et al, Recombinant human protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344:699 - 709; http://dx.doi.org/10.1056/NEJM200103083441001; PMID: 11236773
  • Nadel S, Goldstein B, Williams MD, Dalton H, Peters M, Macias WL, et al, REsearching severe Sepsis and Organ dysfunction in children: a gLobal perspective (RESOLVE) study group. Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet 2007; 369:836 - 43; http://dx.doi.org/10.1016/S0140-6736(07)60411-5; PMID: 17350452
  • Martí-Carvajal AJ, Solà I, Gluud C, Lathyris D, Cardona AF. Human recombinant protein C for severe sepsis and septic shock in adult and paediatric patients. Cochrane Database Syst Rev 2012; 12:CD004388; PMID: 23235609
  • Ranieri VM, Thompson BT, Barie PS, Dhainaut J-F, Douglas IS, Finfer S, et al, PROWESS-SHOCK Study Group. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med 2012; 366:2055 - 64; http://dx.doi.org/10.1056/NEJMoa1202290; PMID: 22616830
  • Kerschen EJ, Fernandez JA, Cooley BC, Yang XV, Sood R, Mosnier LO, et al. Endotoxemia and sepsis mortality reduction by non-anticoagulant activated protein C. J Exp Med 2007; 204:2439 - 48; http://dx.doi.org/10.1084/jem.20070404; PMID: 17893198
  • McVerry BJ, Peng X, Hassoun PM, Sammani S, Simon BA, Garcia JGN. Sphingosine 1-phosphate reduces vascular leak in murine and canine models of acute lung injury. Am J Respir Crit Care Med 2004; 170:987 - 93; http://dx.doi.org/10.1164/rccm.200405-684OC; PMID: 15282202
  • Sanna MG, Wang SK, Gonzalez-Cabrera PJ, Don A, Marsolais D, Matheu MP, et al. Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nat Chem Biol 2006; 2:434 - 41; http://dx.doi.org/10.1038/nchembio804; PMID: 16829954
  • Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 2002; 296:346 - 9; http://dx.doi.org/10.1126/science.1070238; PMID: 11923495
  • Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 2002; 277:21453 - 7; http://dx.doi.org/10.1074/jbc.C200176200; PMID: 11967257
  • Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 2010; 9:883 - 97; http://dx.doi.org/10.1038/nrd3248; PMID: 21031003
  • Pyne S, Pyne NJ. Translational aspects of sphingosine 1-phosphate biology. Trends Mol Med 2011; 17:463 - 72; http://dx.doi.org/10.1016/j.molmed.2011.03.002; PMID: 21514226
  • Sanchez T, Estrada-Hernandez T, Paik JH, Wu MT, Venkataraman K, Brinkmann V, et al. Phosphorylation and action of the immunomodulator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability. J Biol Chem 2003; 278:47281 - 90; http://dx.doi.org/10.1074/jbc.M306896200; PMID: 12954648
  • Walsh KB, Teijaro JR, Rosen H, Oldstone MB. Quelling the storm: utilization of sphingosine-1-phosphate receptor signaling to ameliorate influenza virus-induced cytokine storm. Immunol Res 2011; 51:15 - 25; http://dx.doi.org/10.1007/s12026-011-8240-z; PMID: 21901448
  • Teijaro JR, Walsh KB, Cahalan S, Fremgen DM, Roberts E, Scott F, et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 2011; 146:980 - 91; http://dx.doi.org/10.1016/j.cell.2011.08.015; PMID: 21925319
  • Puneet P, Yap CT, Wong L, Lam Y, Koh DR, Moochhala S, et al. SphK1 regulates proinflammatory responses associated with endotoxin and polymicrobial sepsis. Science 2010; 328:1290 - 4; http://dx.doi.org/10.1126/science.1188635; PMID: 20522778
  • Gonzalez-Cabrera PJ, Hla T, Rosen H. Mapping pathways downstream of sphingosine 1-phosphate subtype 1 by differential chemical perturbation and proteomics. J Biol Chem 2007; 282:7254 - 64; http://dx.doi.org/10.1074/jbc.M610581200; PMID: 17218309
  • Bach TL, Barsigian C, Yaen CH, Martinez J. Endothelial cell VE-cadherin functions as a receptor for the beta15-42 sequence of fibrin. J Biol Chem 1998; 273:30719 - 28; http://dx.doi.org/10.1074/jbc.273.46.30719; PMID: 9804847
  • Petzelbauer P, Zacharowski PA, Miyazaki Y, Friedl P, Wickenhauser G, Castellino FJ, et al. The fibrin-derived peptide Bbeta15-42 protects the myocardium against ischemia-reperfusion injury. Nat Med 2005; 11:298 - 304; http://dx.doi.org/10.1038/nm1198; PMID: 15723073
  • Gröger M, Pasteiner W, Ignatyev G, Matt U, Knapp S, Atrasheuskaya A, et al. Peptide Bbeta(15-42) preserves endothelial barrier function in shock. PLoS One 2009; 4:e5391; http://dx.doi.org/10.1371/journal.pone.0005391; PMID: 19401765
  • Jennewein C, Mehring M, Tran N, Paulus P, Ockelmann PA, Habeck K, et al. The fibrinopeptide bβ15-42 reduces inflammation in mice subjected to polymicrobial sepsis. Shock 2012; 38:275 - 80; http://dx.doi.org/10.1097/SHK.0b013e318264b95d; PMID: 22777114
  • Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 2008; 14:448 - 53; http://dx.doi.org/10.1038/nm1742; PMID: 18345009
  • Jones CA, Nishiya N, London NR, Zhu W, Sorensen LK, Chan AC, et al. Slit2-Robo4 signalling promotes vascular stability by blocking Arf6 activity. Nat Cell Biol 2009; 11:1325 - 31; http://dx.doi.org/10.1038/ncb1976; PMID: 19855388
  • London NR, Zhu W, Bozza FA, Smith MCP, Greif DM, Sorensen LK, et al. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med 2010; 2:23ra19; http://dx.doi.org/10.1126/scitranslmed.3000678; PMID: 20375003
  • Anand AR, Zhao H, Nagaraja T, Robinson LA, Ganju RK. N-terminal Slit2 inhibits HIV-1 replication by regulating the actin cytoskeleton. Retrovirology 2013; 10:2; http://dx.doi.org/10.1186/1742-4690-10-2; PMID: 23294842
  • Zhu W, London NR, Gibson CC, Davis CT, Tong Z, Sorensen LK, et al. Interleukin receptor activates a MYD88-ARNO-ARF6 cascade to disrupt vascular stability. Nature 2012; 492:252 - 5; http://dx.doi.org/10.1038/nature11603; PMID: 23143332
  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000; 407:242 - 8; http://dx.doi.org/10.1038/35025215; PMID: 11001067
  • Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 1996; 87:1161 - 9; http://dx.doi.org/10.1016/S0092-8674(00)81812-7; PMID: 8980223
  • Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 1999; 286:2511 - 4; http://dx.doi.org/10.1126/science.286.5449.2511; PMID: 10617467
  • Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000; 6:460 - 3; http://dx.doi.org/10.1038/74725; PMID: 10742156
  • Gamble JR, Drew J, Trezise L, Underwood A, Parsons M, Kasminkas L, et al. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res 2000; 87:603 - 7; http://dx.doi.org/10.1161/01.RES.87.7.603; PMID: 11009566
  • Jain RK, Munn LL. Leaky vessels? Call Ang1!. Nat Med 2000; 6:131 - 2; http://dx.doi.org/10.1038/72212; PMID: 10655092
  • Kim DH, Jung YJ, Lee AS, Lee S, Kang KP, Lee TH, et al. COMP-angiopoietin-1 decreases lipopolysaccharide-induced acute kidney injury. Kidney Int 2009; 76:1180 - 91; http://dx.doi.org/10.1038/ki.2009.387; PMID: 19812542
  • Witzenbichler B, Westermann D, Knueppel S, Schultheiss HP, Tschope C. Protective role of angiopoietin-1 in endotoxic shock. Circulation 2005; 111:97 - 105; http://dx.doi.org/10.1161/01.CIR.0000151287.08202.8E; PMID: 15611372
  • McCarter SD, Mei SH, Lai PF, Zhang QW, Parker CH, Suen RS, et al. Cell-based angiopoietin-1 gene therapy for acute lung injury. Am J Respir Crit Care Med 2007; 175:1014 - 26; http://dx.doi.org/10.1164/rccm.200609-1370OC; PMID: 17322110
  • Huang YQ, Sauthoff H, Herscovici P, Pipiya T, Cheng J, Heitner S, et al. Angiopoietin-1 increases survival and reduces the development of lung edema induced by endotoxin administration in a murine model of acute lung injury. Crit Care Med 2008; 36:262 - 7; http://dx.doi.org/10.1097/01.CCM.0000297955.02633.A4; PMID: 18007265
  • Kumpers P, Gueler F, David S, Slyke PV, Dumont DJ, Park JK, et al. The synthetic tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis. Crit Care 2011; 15:R261; http://dx.doi.org/10.1186/cc10523; PMID: 22040774
  • David S, Ghosh CC, Kümpers P, Shushakova N, Van Slyke P, Khankin EV, et al. Effects of a synthetic PEG-ylated Tie-2 agonist peptide on endotoxemic lung injury and mortality. Am J Physiol Lung Cell Mol Physiol 2011; 300:L851 - 62; http://dx.doi.org/10.1152/ajplung.00459.2010; PMID: 21421750
  • Alfieri A, Watson JJ, Kammerer RA, Tasab M, Progias P, Reeves K, et al. Angiopoietin-1 variant reduces LPS-induced microvascular dysfunction in a murine model of sepsis. Crit Care 2012; 16:R182; http://dx.doi.org/10.1186/cc11666; PMID: 23036162
  • Parikh SM, Mammoto T, Schultz A, Yuan HT, Christiani D, Karumanchi SA, et al. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 2006; 3:e46; http://dx.doi.org/10.1371/journal.pmed.0030046; PMID: 16417407
  • Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G, et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 2006; 12:235 - 9; http://dx.doi.org/10.1038/nm1351; PMID: 16462802
  • Kümpers P, Lukasz A, David S, Horn R, Hafer C, Faulhaber-Walter R, et al. Excess circulating angiopoietin-2 is a strong predictor of mortality in critically ill medical patients. Crit Care 2008; 12:R147; http://dx.doi.org/10.1186/cc7130; PMID: 19025590
  • Kümpers P, Hafer C, David S, Hecker H, Lukasz A, Fliser D, et al. Angiopoietin-2 in patients requiring renal replacement therapy in the ICU: relation to acute kidney injury, multiple organ dysfunction syndrome and outcome. Intensive Care Med 2010; 36:462 - 70; http://dx.doi.org/10.1007/s00134-009-1726-7; PMID: 19956923
  • David S, Mukherjee A, Ghosh CC, Yano M, Khankin EV, Wenger JB, et al. Angiopoietin-2 may contribute to multiple organ dysfunction and death in sepsis. Crit Care Med 2012; 40:3034 - 41; http://dx.doi.org/10.1097/CCM.0b013e31825fdc31; PMID: 22890252
  • Tzepi IM, Giamarellos-Bourboulis EJ, Carrer DP, Tsaganos T, Claus RA, Vaki I, et al. Angiopoietin-2 enhances survival in experimental sepsis induced by multidrug-resistant Pseudomonas aeruginosa. J Pharmacol Exp Ther 2012; 343:278 - 87; http://dx.doi.org/10.1124/jpet.112.195180; PMID: 22859861
  • Daly C, Pasnikowski E, Burova E, Wong V, Aldrich TH, Griffiths J, et al. Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc Natl Acad Sci U S A 2006; 103:15491 - 6; http://dx.doi.org/10.1073/pnas.0607538103; PMID: 17030814
  • Greenwood J, Mason JC. Statins and the vascular endothelial inflammatory response. Trends Immunol 2007; 28:88 - 98; http://dx.doi.org/10.1016/j.it.2006.12.003; PMID: 17197237
  • Bickel C, Rupprecht HJ, Blankenberg S, Espiniola-Klein C, Schlitt A, Rippin G, et al, AtheroGene Investigators. Relation of markers of inflammation (C-reactive protein, fibrinogen, von Willebrand factor, and leukocyte count) and statin therapy to long-term mortality in patients with angiographically proven coronary artery disease. Am J Cardiol 2002; 89:901 - 8; http://dx.doi.org/10.1016/S0002-9149(02)02236-1; PMID: 11950425
  • Ravi LI, Li L, Wong PS, Sutejo R, Tan BH, Sugrue RJ. Lovastatin treatment mitigates the pro-inflammatory cytokine response in respiratory syncytial virus infected macrophage cells. Antiviral Res 2013; 98:332 - 43; http://dx.doi.org/10.1016/j.antiviral.2013.03.015; PMID: 23523944
  • Darwish I, Mubareka S, Liles WC. Immunomodulatory therapy for severe influenza. Expert Rev Anti Infect Ther 2011; 9:807 - 22; http://dx.doi.org/10.1586/eri.11.56; PMID: 21810053
  • Omi H, Okayama N, Shimizu M, Fukutomi T, Imaeda K, Okouchi M, et al. Statins inhibit high glucose-mediated neutrophil-endothelial cell adhesion through decreasing surface expression of endothelial adhesion molecules by stimulating production of endothelial nitric oxide. Microvasc Res 2003; 65:118 - 24; http://dx.doi.org/10.1016/S0026-2862(02)00033-X; PMID: 12686169
  • Takeuchi S, Kawashima S, Rikitake Y, Ueyama T, Inoue N, Hirata K, et al. Cerivastatin suppresses lipopolysaccharide-induced ICAM-1 expression through inhibition of Rho GTPase in BAEC. Biochem Biophys Res Commun 2000; 269:97 - 102; http://dx.doi.org/10.1006/bbrc.2000.2238; PMID: 10694484
  • Dichtl W, Dulak J, Frick M, Alber HF, Schwarzacher SP, Ares MP, et al. HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2003; 23:58 - 63; http://dx.doi.org/10.1161/01.ATV.0000043456.48735.20; PMID: 12524225
  • Boyd AR, Hinojosa CA, Rodriguez PJ, Orihuela CJ. Impact of oral simvastatin therapy on acute lung injury in mice during pneumococcal pneumonia. BMC Microbiol 2012; 12:73; http://dx.doi.org/10.1186/1471-2180-12-73; PMID: 22587610
  • Sabrane K, Kruse MN, Fabritz L, Zetsche B, Mitko D, Skryabin BV, et al. Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. J Clin Invest 2005; 115:1666 - 74; http://dx.doi.org/10.1172/JCI23360; PMID: 15931395
  • Birukova AA, Xing J, Fu P, Yakubov B, Dubrovskyi O, Fortune JA, et al. Atrial natriuretic peptide attenuates LPS-induced lung vascular leak: role of PAK1. Am J Physiol Lung Cell Mol Physiol 2010; 299:L652 - 63; http://dx.doi.org/10.1152/ajplung.00202.2009; PMID: 20729389
  • Xing J, Birukova AA. ANP attenuates inflammatory signaling and Rho pathway of lung endothelial permeability induced by LPS and TNFalpha. Microvasc Res 2010; 79:56 - 62; http://dx.doi.org/10.1016/j.mvr.2009.11.006; PMID: 19931545
  • Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J 2000; 348:241 - 55; http://dx.doi.org/10.1042/0264-6021:3480241; PMID: 10816416
  • Hama N, Itoh H, Shirakami G, Suga S, Komatsu Y, Yoshimasa T, et al. Detection of C-type natriuretic peptide in human circulation and marked increase of plasma CNP level in septic shock patients. Biochem Biophys Res Commun 1994; 198:1177 - 82; http://dx.doi.org/10.1006/bbrc.1994.1166; PMID: 8117275
  • Baron DA, Lofton CE, Newman WH, Currie MG. Atriopeptin inhibition of thrombin-mediated changes in the morphology and permeability of endothelial monolayers. Proc Natl Acad Sci U S A 1989; 86:3394 - 8; http://dx.doi.org/10.1073/pnas.86.9.3394; PMID: 2524068
  • Pedram A, Razandi M, Levin ER. Deciphering vascular endothelial cell growth factor/vascular permeability factor signaling to vascular permeability. Inhibition by atrial natriuretic peptide. J Biol Chem 2002; 277:44385 - 98; http://dx.doi.org/10.1074/jbc.M202391200; PMID: 12213803
  • Klinger JR, Tsai SW, Green S, Grinnell KL, Machan JT, Harrington EO. Atrial natriuretic peptide attenuates agonist-induced pulmonary edema in mice with targeted disruption of the gene for natriuretic peptide receptor-A. J Appl Physiol 2013; 114:307 - 15; http://dx.doi.org/10.1152/japplphysiol.01249.2011; PMID: 23195629
  • Xing J, Moldobaeva N, Birukova AA. Atrial natriuretic peptide protects against Staphylococcus aureus-induced lung injury and endothelial barrier dysfunction. J Appl Physiol 2011; 110:213 - 24; http://dx.doi.org/10.1152/japplphysiol.00284.2010; PMID: 21051573
  • Mitaka C, Hirata Y, Nagura T, Tsunoda Y, Amaha K. Beneficial effect of atrial natriuretic peptide on pulmonary gas exchange in patients with acute lung injury. Chest 1998; 114:223 - 8; http://dx.doi.org/10.1378/chest.114.1.223; PMID: 9674473
  • Bindels AJGH, van der Hoeven JG, Groeneveld PHP, Frölich M, Meinders AE. Atrial natriuretic peptide infusion and nitric oxide inhalation in patients with acute respiratory distress syndrome. Crit Care 2001; 5:151 - 7; http://dx.doi.org/10.1186/cc1015; PMID: 11353932
  • Bianco P, Gehron Robey P. Marrow stromal stem cells. J Clin Invest 2000; 105:1663 - 8; http://dx.doi.org/10.1172/JCI10413; PMID: 10862779
  • Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 2005; 33:145 - 52; http://dx.doi.org/10.1165/rcmb.2004-0330OC; PMID: 15891110
  • Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 2003; 100:8407 - 11; http://dx.doi.org/10.1073/pnas.1432929100; PMID: 12815096
  • Xu J, Woods CR, Mora AL, Joodi R, Brigham KL, Iyer S, et al. Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 2007; 293:L131 - 41; http://dx.doi.org/10.1152/ajplung.00431.2006; PMID: 17416739
  • Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 2007; 179:1855 - 63; PMID: 17641052
  • Lee JW, Fang X, Gupta N, Serikov V, Matthay MA. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci U S A 2009; 106:16357 - 62; http://dx.doi.org/10.1073/pnas.0907996106; PMID: 19721001
  • Lee JW, Gupta N, Serikov V, Matthay MA. Potential application of mesenchymal stem cells in acute lung injury. Expert Opin Biol Ther 2009; 9:1259 - 70; http://dx.doi.org/10.1517/14712590903213651; PMID: 19691441
  • Mei SHJ, Haitsma JJ, Dos Santos CC, Deng Y, Lai PFH, Slutsky AS, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 2010; 182:1047 - 57; http://dx.doi.org/10.1164/rccm.201001-0010OC; PMID: 20558630
  • Németh K, Leelahavanichkul A, Yuen PST, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009; 15:42 - 9; http://dx.doi.org/10.1038/nm.1905; PMID: 19098906
  • Pati S, Gerber MH, Menge TD, Wataha KA, Zhao Y, Baumgartner JA, et al. Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock. PLoS One 2011; 6:e25171; http://dx.doi.org/10.1371/journal.pone.0025171; PMID: 21980392
  • dos Santos CC, Murthy S, Hu P, Shan Y, Haitsma JJ, Mei SH, et al. Network analysis of transcriptional responses induced by mesenchymal stem cell treatment of experimental sepsis. Am J Pathol 2012; 181:1681 - 92; http://dx.doi.org/10.1016/j.ajpath.2012.08.009; PMID: 23083833
  • Fang X, Neyrinck AP, Matthay MA, Lee JW. Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. J Biol Chem 2010; 285:26211 - 22; http://dx.doi.org/10.1074/jbc.M110.119917; PMID: 20554518
  • Wang L, Zeng H, Wang P, Soker S, Mukhopadhyay D. Neuropilin-1-mediated vascular permeability factor/vascular endothelial growth factor-dependent endothelial cell migration. J Biol Chem 2003; 278:48848 - 60; http://dx.doi.org/10.1074/jbc.M310047200; PMID: 14514674
  • Beauvais DM, Ell BJ, McWhorter AR, Rapraeger AC. Syndecan-1 regulates alphavbeta3 and alphavbeta5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J Exp Med 2009; 206:691 - 705; http://dx.doi.org/10.1084/jem.20081278; PMID: 19255147
  • Beauvais DM, Rapraeger AC. Syndecan-1 couples the insulin-like growth factor-1 receptor to inside-out integrin activation. J Cell Sci 2010; 123:3796 - 807; http://dx.doi.org/10.1242/jcs.067645; PMID: 20971705
  • Wheeler DS. Another potential therapeutic agent for the management of critically ill patients with sepsis syndrome: same old story, same old result?. Crit Care Med 2012; 40:1012 - 3; http://dx.doi.org/10.1097/CCM.0b013e31823c8b42; PMID: 22343861
  • Dyson A, Singer M. Animal models of sepsis: why does preclinical efficacy fail to translate to the clinical setting?. Crit Care Med 2009; 37:Suppl S30 - 7; http://dx.doi.org/10.1097/CCM.0b013e3181922bd3; PMID: 19104223
  • Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al, Inflammation and Host Response to Injury, Large Scale Collaborative Research Program. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 2013; 110:3507 - 12; http://dx.doi.org/10.1073/pnas.1222878110; PMID: 23401516