2,660
Views
48
CrossRef citations to date
0
Altmetric
Special Focus Review

Small RNA-mediated regulation of host–pathogen interactions

, , &
Pages 785-795 | Received 14 May 2013, Accepted 12 Aug 2013, Published online: 19 Aug 2013

References

  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116:281 - 97; http://dx.doi.org/10.1016/S0092-8674(04)00045-5; PMID: 14744438
  • Waters LS, Storz G. Regulatory RNAs in bacteria. Cell 2009; 136:615 - 28; http://dx.doi.org/10.1016/j.cell.2009.01.043; PMID: 19239884
  • Shepherd DP, Li N, Micheva-Viteva SN, Munsky B, Hong-Geller E, Werner JH. Counting small RNA in pathogenic bacteria. Anal Chem 2013; 85:4938 - 43; http://dx.doi.org/10.1021/ac303792p; PMID: 23577771
  • Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011; 39:Database issue D152 - 7; http://dx.doi.org/10.1093/nar/gkq1027; PMID: 21037258
  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006; 34:Database issue D140 - 4; http://dx.doi.org/10.1093/nar/gkj112; PMID: 16381832
  • Griffiths-Jones S. miRBase: the microRNA sequence database. Methods Mol Biol 2006; 342:129 - 38; PMID: 16957372
  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res 2008; 36:Database issue D154 - 8; http://dx.doi.org/10.1093/nar/gkm952; PMID: 17991681
  • Griffin BE. Separation of 32P-labelled ribonucleic acid components. The use of polyethylenimine-cellulose (TLC) as a second dimension in separating oligoribonucleotides of ‘4.5 S’ and 5 S from E. coli. FEBS Lett 1971; 15:165 - 8; http://dx.doi.org/10.1016/0014-5793(71)80304-6; PMID: 11945838
  • Altuvia S. Identification of bacterial small non-coding RNAs: experimental approaches. Curr Opin Microbiol 2007; 10:257 - 61; http://dx.doi.org/10.1016/j.mib.2007.05.003; PMID: 17553733
  • Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, Hinton JC, Vogel J. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 2008; 4:e1000163; http://dx.doi.org/10.1371/journal.pgen.1000163; PMID: 18725932
  • Yoder-Himes DR, Chain PS, Zhu Y, Wurtzel O, Rubin EM, Tiedje JM, Sorek R. Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci U S A 2009; 106:3976 - 81; http://dx.doi.org/10.1073/pnas.0813403106; PMID: 19234113
  • Sridhar J, Gunasekaran P. Computational small RNA prediction in bacteria. Bioinform Biol Insights 2013; 7:83 - 95; PMID: 23516022
  • Washietl S, Hofacker IL, Stadler PF. Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A 2005; 102:2454 - 9; http://dx.doi.org/10.1073/pnas.0409169102; PMID: 15665081
  • Møller T, Franch T, Højrup P, Keene DR, Bächinger HP, Brennan RG, Valentin-Hansen P. Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell 2002; 9:23 - 30; http://dx.doi.org/10.1016/S1097-2765(01)00436-1; PMID: 11804583
  • Ramos CG, Sousa SA, Grilo AM, Feliciano JR, Leitão JH. The second RNA chaperone, Hfq2, is also required for survival under stress and full virulence of Burkholderia cenocepacia J2315. J Bacteriol 2011; 193:1515 - 26; http://dx.doi.org/10.1128/JB.01375-10; PMID: 21278292
  • Geng J, Song Y, Yang L, Feng Y, Qiu Y, Li G, Guo J, Bi Y, Qu Y, Wang W, et al. Involvement of the post-transcriptional regulator Hfq in Yersinia pestis virulence. PLoS One 2009; 4:e6213; http://dx.doi.org/10.1371/journal.pone.0006213; PMID: 19593436
  • Robertson GT, Roop RM Jr.. The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol 1999; 34:690 - 700; http://dx.doi.org/10.1046/j.1365-2958.1999.01629.x; PMID: 10564509
  • Meibom KL, Forslund AL, Kuoppa K, Alkhuder K, Dubail I, Dupuis M, Forsberg A, Charbit A. Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect Immun 2009; 77:1866 - 80; http://dx.doi.org/10.1128/IAI.01496-08; PMID: 19223477
  • Christiansen JK, Larsen MH, Ingmer H, Søgaard-Andersen L, Kallipolitis BH. The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J Bacteriol 2004; 186:3355 - 62; http://dx.doi.org/10.1128/JB.186.11.3355-3362.2004; PMID: 15150220
  • Bohn C, Rigoulay C, Bouloc P. No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiol 2007; 7:10; http://dx.doi.org/10.1186/1471-2180-7-10; PMID: 17291347
  • Koo JT, Alleyne TM, Schiano CA, Jafari N, Lathem WW. Global discovery of small RNAs in Yersinia pseudotuberculosis identifies Yersinia-specific small, noncoding RNAs required for virulence. Proc Natl Acad Sci U S A 2011; 108:E709 - 17; http://dx.doi.org/10.1073/pnas.1101655108; PMID: 21876162
  • Beauregard A, Smith EA, Petrone BL, Singh N, Karch C, McDonough KA, Wade JT. Identification and characterization of small RNAs in Yersinia pestis. RNA Biol 2013; 10:10; http://dx.doi.org/10.4161/rna.23590; PMID: 23324607
  • Qu Y, Bi L, Ji X, Deng Z, Zhang H, Yan Y, Wang M, Li A, Huang X, Yang R, et al. Identification by cDNA cloning of abundant sRNAs in a human-avirulent Yersinia pestis strain grown under five different growth conditions. Future Microbiol 2012; 7:535 - 47; http://dx.doi.org/10.2217/fmb.12.13; PMID: 22439729
  • Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 2010; 329:533 - 8; http://dx.doi.org/10.1126/science.1188308; PMID: 20671182
  • McArthur SD, Pulvermacher SC, Stauffer GV. The Yersinia pestis gcvB gene encodes two small regulatory RNA molecules. BMC Microbiol 2006; 6:52; http://dx.doi.org/10.1186/1471-2180-6-52; PMID: 16768793
  • Wadler CS, Vanderpool CK. Characterization of homologs of the small RNA SgrS reveals diversity in function. Nucleic Acids Res 2009; 37:5477 - 85; http://dx.doi.org/10.1093/nar/gkp591; PMID: 19620214
  • Heroven AK, Böhme K, Rohde M, Dersch P. A Csr-type regulatory system, including small non-coding RNAs, regulates the global virulence regulator RovA of Yersinia pseudotuberculosis through RovM. Mol Microbiol 2008; 68:1179 - 95; http://dx.doi.org/10.1111/j.1365-2958.2008.06218.x; PMID: 18430141
  • Mann B, van Opijnen T, Wang J, Obert C, Wang YD, Carter R, McGoldrick DJ, Ridout G, Camilli A, Tuomanen EI, et al. Control of virulence by small RNAs in Streptococcus pneumoniae. PLoS Pathog 2012; 8:e1002788; http://dx.doi.org/10.1371/journal.ppat.1002788; PMID: 22807675
  • Postic G, Dubail I, Frapy E, Dupuis M, Dieppedale J, Charbit A, Meibom KL. Identification of a novel small RNA modulating Francisella tularensis pathogenicity. PLoS One 2012; 7:e41999; http://dx.doi.org/10.1371/journal.pone.0041999; PMID: 22848684
  • Caswell CC, Gaines JM, Ciborowski P, Smith D, Borchers CH, Roux CM, Sayood K, Dunman PM, Roop Ii RM. Identification of two small regulatory RNAs linked to virulence in Brucella abortus 2308. Mol Microbiol 2012; 85:345 - 60; http://dx.doi.org/10.1111/j.1365-2958.2012.08117.x; PMID: 22690807
  • Schmidtke C, Findeiss S, Sharma CM, Kuhfuss J, Hoffmann S, Vogel J, Stadler PF, Bonas U. Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions. Nucleic Acids Res 2012; 40:2020 - 31; http://dx.doi.org/10.1093/nar/gkr904; PMID: 22080557
  • Zeng Q, McNally RR, Sundin GW. Global small RNA chaperone Hfq and regulatory small RNAs are important virulence regulators in Erwinia amylovora. J Bacteriol 2013; 195:1706 - 17; http://dx.doi.org/10.1128/JB.02056-12; PMID: 23378513
  • Qutob D, Chapman BP, Gijzen M. Transgenerational gene silencing causes gain of virulence in a plant pathogen. Nat Commun 2013; 4:1349; http://dx.doi.org/10.1038/ncomms2354; PMID: 23322037
  • Cao Y, Wu J, Liu Q, Zhao Y, Ying X, Cha L, Wang L, Li W. sRNATarBase: a comprehensive database of bacterial sRNA targets verified by experiments. RNA 2010; 16:2051 - 7; http://dx.doi.org/10.1261/rna.2193110; PMID: 20843985
  • Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 2011; 43:880 - 91; http://dx.doi.org/10.1016/j.molcel.2011.08.022; PMID: 21925377
  • Tjaden B. TargetRNA: a tool for predicting targets of small RNA action in bacteria. Nucleic Acids Res 2008; 36:Web Server issue W109-13; http://dx.doi.org/10.1093/nar/gkn264; PMID: 18477632
  • Ying X, Cao Y, Wu J, Liu Q, Cha L, Li W. sTarPicker: a method for efficient prediction of bacterial sRNA targets based on a two-step model for hybridization. PLoS One 2011; 6:e22705; http://dx.doi.org/10.1371/journal.pone.0022705; PMID: 21799937
  • Zhang Y, Sun S, Wu T, Wang J, Liu C, Chen L, Zhu X, Zhao Y, Zhang Z, Shi B, et al. Identifying Hfq-binding small RNA targets in Escherichia coli. Biochem Biophys Res Commun 2006; 343:950 - 5; http://dx.doi.org/10.1016/j.bbrc.2006.02.196; PMID: 16574072
  • Hong-Geller E, Li N. microRNAs as therapeutic targets to combat diverse human diseases. In: Rundfeldt C, editor. Drug Development-A Case Study Based Insight into Modern Strategies: Intech; 2011.
  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23:4051 - 60; http://dx.doi.org/10.1038/sj.emboj.7600385; PMID: 15372072
  • Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004; 10:1957 - 66; http://dx.doi.org/10.1261/rna.7135204; PMID: 15525708
  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425:415 - 9; http://dx.doi.org/10.1038/nature01957; PMID: 14508493
  • Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 2004; 14:2162 - 7; http://dx.doi.org/10.1016/j.cub.2004.11.001; PMID: 15589161
  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002; 21:4663 - 70; http://dx.doi.org/10.1093/emboj/cdf476; PMID: 12198168
  • Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17:3011 - 6; http://dx.doi.org/10.1101/gad.1158803; PMID: 14681208
  • Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293:834 - 8; http://dx.doi.org/10.1126/science.1062961; PMID: 11452083
  • Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001; 15:2654 - 9; http://dx.doi.org/10.1101/gad.927801; PMID: 11641272
  • Pillai RS, Artus CG, Filipowicz W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 2004; 10:1518 - 25; http://dx.doi.org/10.1261/rna.7131604; PMID: 15337849
  • Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19:92 - 105; http://dx.doi.org/10.1101/gr.082701.108; PMID: 18955434
  • Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet 2008; 9:102 - 14; http://dx.doi.org/10.1038/nrg2290; PMID: 18197166
  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003; 115:787 - 98; http://dx.doi.org/10.1016/S0092-8674(03)01018-3; PMID: 14697198
  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433:769 - 73; http://dx.doi.org/10.1038/nature03315; PMID: 15685193
  • Didiano D, Hobert O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat Struct Mol Biol 2006; 13:849 - 51; http://dx.doi.org/10.1038/nsmb1138; PMID: 16921378
  • Li N, Flynt AS, Kim HR, Solnica-Krezel L, Patton JG. Dispatched Homolog 2 is targeted by miR-214 through a combination of three weak microRNA recognition sites. Nucleic Acids Res 2008; 36:4277 - 85; http://dx.doi.org/10.1093/nar/gkn388; PMID: 18583362
  • Hon LS, Zhang Z. The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Genome Biol 2007; 8:R166; http://dx.doi.org/10.1186/gb-2007-8-8-r166; PMID: 17697356
  • Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet 2007; 39:1278 - 84; http://dx.doi.org/10.1038/ng2135; PMID: 17893677
  • Di Leva G, Croce CM. miRNA profiling of cancer. Curr Opin Genet Dev 2013; 23:3 - 11; http://dx.doi.org/10.1016/j.gde.2013.01.004; PMID: 23465882
  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 2006; 312:436 - 9; http://dx.doi.org/10.1126/science.1126088; PMID: 16627744
  • Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 2006; 103:12481 - 6; http://dx.doi.org/10.1073/pnas.0605298103; PMID: 16885212
  • Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, Pilozzi E, Liu CG, Negrini M, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 2008; 13:272 - 86; http://dx.doi.org/10.1016/j.ccr.2008.02.013; PMID: 18328430
  • Schnitger AK, Machova A, Mueller RU, Androulidaki A, Schermer B, Pasparakis M, Krönke M, Papadopoulou N. Listeria monocytogenes infection in macrophages induces vacuolar-dependent host miRNA response. PLoS One 2011; 6:e27435; http://dx.doi.org/10.1371/journal.pone.0027435; PMID: 22114673
  • Cremer TJ, Ravneberg DH, Clay CD, Piper-Hunter MG, Marsh CB, Elton TS, Gunn JS, Amer A, Kanneganti TD, Schlesinger LS, et al. MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response. PLoS One 2009; 4:e8508; http://dx.doi.org/10.1371/journal.pone.0008508; PMID: 20041145
  • Schulte LN, Eulalio A, Mollenkopf HJ, Reinhardt R, Vogel J. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J 2011; 30:1977 - 89; http://dx.doi.org/10.1038/emboj.2011.94; PMID: 21468030
  • Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007; 179:5082 - 9; PMID: 17911593
  • O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 2007; 104:1604 - 9; http://dx.doi.org/10.1073/pnas.0610731104; PMID: 17242365
  • Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA, Pierre P. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 2009; 106:2735 - 40; http://dx.doi.org/10.1073/pnas.0811073106; PMID: 19193853
  • Schulte LN, Westermann AJ, Vogel J. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res 2013; 41:542 - 53; http://dx.doi.org/10.1093/nar/gks1030; PMID: 23143100
  • Xiao B, Liu Z, Li BS, Tang B, Li W, Guo G, Shi Y, Wang F, Wu Y, Tong WD, et al. Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis 2009; 200:916 - 25; http://dx.doi.org/10.1086/605443; PMID: 19650740
  • Oertli M, Engler DB, Kohler E, Koch M, Meyer TF, Müller A. MicroRNA-155 is essential for the T cell-mediated control of Helicobacter pylori infection and for the induction of chronic Gastritis and Colitis. J Immunol 2011; 187:3578 - 86; http://dx.doi.org/10.4049/jimmunol.1101772; PMID: 21880981
  • Fassi Fehri L, Koch M, Belogolova E, Khalil H, Bolz C, Kalali B, Mollenkopf HJ, Beigier-Bompadre M, Karlas A, Schneider T, et al. Helicobacter pylori induces miR-155 in T cells in a cAMP-Foxp3-dependent manner. PLoS One 2010; 5:e9500; http://dx.doi.org/10.1371/journal.pone.0009500; PMID: 20209161
  • Belair C, Baud J, Chabas S, Sharma CM, Vogel J, Staedel C, Darfeuille F. Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression. Silence 2011; 2:7; http://dx.doi.org/10.1186/1758-907X-2-7; PMID: 22027184
  • Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, Xiao S, Lu H. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 2008; 88:1358 - 66; http://dx.doi.org/10.1038/labinvest.2008.94; PMID: 18794849
  • Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie L. Serum microRNA signatures identified by Solexa sequencing predict sepsis patients’ mortality: a prospective observational study. PLoS One 2012; 7:e38885; http://dx.doi.org/10.1371/journal.pone.0038885; PMID: 22719975
  • Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007; 316:608 - 11; http://dx.doi.org/10.1126/science.1139253; PMID: 17463290
  • Clare S, John V, Walker AW, Hill JL, Abreu-Goodger C, Hale C, Goulding D, Lawley TD, Mastroeni P, Frankel G, et al. Enhanced susceptibility to Citrobacter rodentium infection in microRNA-155-deficient mice. Infect Immun 2013; 81:723 - 32; http://dx.doi.org/10.1128/IAI.00969-12; PMID: 23264052
  • Lind EF, Elford AR, Ohashi PS. Micro-RNA 155 is required for optimal CD8+ T cell responses to acute viral and intracellular bacterial challenges. J Immunol 2013; 190:1210 - 6; http://dx.doi.org/10.4049/jimmunol.1202700; PMID: 23275599
  • Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, et al. Regulation of the germinal center response by microRNA-155. Science 2007; 316:604 - 8; http://dx.doi.org/10.1126/science.1141229; PMID: 17463289
  • Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 2009; 30:80 - 91; http://dx.doi.org/10.1016/j.immuni.2008.11.010; PMID: 19144316
  • Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigorito E. Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol 2009; 182:2578 - 82; http://dx.doi.org/10.4049/jimmunol.0803162; PMID: 19234151
  • Rajaram MV, Ni B, Morris JD, Brooks MN, Carlson TK, Bakthavachalu B, Schoenberg DR, Torrelles JB, Schlesinger LS. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc Natl Acad Sci U S A 2011; 108:17408 - 13; http://dx.doi.org/10.1073/pnas.1112660108; PMID: 21969554
  • Wang C, Yang S, Sun G, Tang X, Lu S, Neyrolles O, Gao Q. Comparative miRNA expression profiles in individuals with latent and active tuberculosis. PLoS One 2011; 6:e25832; http://dx.doi.org/10.1371/journal.pone.0025832; PMID: 22003408
  • Matsushima K, Isomoto H, Inoue N, Nakayama T, Hayashi T, Nakayama M, Nakao K, Hirayama T, Kohno S. MicroRNA signatures in Helicobacter pylori-infected gastric mucosa. Int J Cancer 2011; 128:361 - 70; http://dx.doi.org/10.1002/ijc.25348; PMID: 20333682
  • Izar B, Mannala GK, Mraheil MA, Chakraborty T, Hain T. microRNA Response to Listeria monocytogenes Infection in Epithelial Cells. Int J Mol Sci 2012; 13:1173 - 85; http://dx.doi.org/10.3390/ijms13011173; PMID: 22312311
  • Chen XM, Splinter PL, O’Hara SP, LaRusso NF. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem 2007; 282:28929 - 38; http://dx.doi.org/10.1074/jbc.M702633200; PMID: 17660297
  • Bakre A, Mitchell P, Coleman JK, Jones LP, Saavedra G, Teng M, Tompkins SM, Tripp RA. Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. J Gen Virol 2012; 93:2346 - 56; http://dx.doi.org/10.1099/vir.0.044255-0; PMID: 22894925
  • Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol 2006; 7:131 - 7; http://dx.doi.org/10.1038/ni1303; PMID: 16424890
  • Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saïb A, Voinnet O. A cellular microRNA mediates antiviral defense in human cells. Science 2005; 308:557 - 60; http://dx.doi.org/10.1126/science.1108784; PMID: 15845854
  • Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 2007; 449:919 - 22; http://dx.doi.org/10.1038/nature06205; PMID: 17943132
  • Wilkins C, Dishongh R, Moore SC, Whitt MA, Chow M, Machaca K. RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 2005; 436:1044 - 7; http://dx.doi.org/10.1038/nature03957; PMID: 16107852
  • de Vries W, Berkhout B. RNAi suppressors encoded by pathogenic human viruses. Int J Biochem Cell Biol 2008; 40:2007 - 12; http://dx.doi.org/10.1016/j.biocel.2008.04.015; PMID: 18571459
  • Bennasser Y, Jeang KT. HIV-1 Tat interaction with Dicer: requirement for RNA. Retrovirology 2006; 3:95; http://dx.doi.org/10.1186/1742-4690-3-95; PMID: 17181864
  • Bucher E, Hemmes H, de Haan P, Goldbach R, Prins M. The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. J Gen Virol 2004; 85:983 - 91; http://dx.doi.org/10.1099/vir.0.19734-0; PMID: 15039540
  • Haasnoot J, de Vries W, Geutjes EJ, Prins M, de Haan P, Berkhout B. The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 2007; 3:e86; http://dx.doi.org/10.1371/journal.ppat.0030086; PMID: 17590081
  • Li WX, Li H, Lu R, Li F, Dus M, Atkinson P, Brydon EW, Johnson KL, García-Sastre A, Ball LA, et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci U S A 2004; 101:1350 - 5; http://dx.doi.org/10.1073/pnas.0308308100; PMID: 14745017
  • Richt JA, Lekcharoensuk P, Lager KM, Vincent AL, Loiacono CM, Janke BH, Wu WH, Yoon KJ, Webby RJ, Solórzano A, et al. Vaccination of pigs against swine influenza viruses by using an NS1-truncated modified live-virus vaccine. J Virol 2006; 80:11009 - 18; http://dx.doi.org/10.1128/JVI.00787-06; PMID: 16943300
  • Andersson MG, Haasnoot PC, Xu N, Berenjian S, Berkhout B, Akusjärvi G. Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 2005; 79:9556 - 65; http://dx.doi.org/10.1128/JVI.79.15.9556-9565.2005; PMID: 16014917
  • Bhat RA, Thimmappaya B. Two small RNAs encoded by Epstein-Barr virus can functionally substitute for the virus-associated RNAs in the lytic growth of adenovirus 5. Proc Natl Acad Sci U S A 1983; 80:4789 - 93; http://dx.doi.org/10.1073/pnas.80.15.4789; PMID: 6308649
  • Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, et al. Identification of virus-encoded microRNAs. Science 2004; 304:734 - 6; http://dx.doi.org/10.1126/science.1096781; PMID: 15118162
  • Kincaid RP, Burke JM, Sullivan CS. RNA virus microRNA that mimics a B-cell oncomiR. Proc Natl Acad Sci U S A 2012; 109:3077 - 82; http://dx.doi.org/10.1073/pnas.1116107109; PMID: 22308400
  • Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R. Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 2007; 81:12836 - 45; http://dx.doi.org/10.1128/JVI.01804-07; PMID: 17881434
  • Schopman NC, Willemsen M, Liu YP, Bradley T, van Kampen A, Baas F, Berkhout B, Haasnoot J. Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs. Nucleic Acids Res 2012; 40:414 - 27; http://dx.doi.org/10.1093/nar/gkr719; PMID: 21911362
  • Nathans R, Chu CY, Serquina AK, Lu CC, Cao H, Rana TM. Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol Cell 2009; 34:696 - 709; http://dx.doi.org/10.1016/j.molcel.2009.06.003; PMID: 19560422
  • Parameswaran P, Sklan E, Wilkins C, Burgon T, Samuel MA, Lu R, Ansel KM, Heissmeyer V, Einav S, Jackson W, et al. Six RNA viruses and forty-one hosts: viral small RNAs and modulation of small RNA repertoires in vertebrate and invertebrate systems. PLoS Pathog 2010; 6:e1000764; http://dx.doi.org/10.1371/journal.ppat.1000764; PMID: 20169186
  • Perez JT, Varble A, Sachidanandam R, Zlatev I, Manoharan M, García-Sastre A, tenOever BR. Influenza A virus-generated small RNAs regulate the switch from transcription to replication. Proc Natl Acad Sci U S A 2010; 107:11525 - 30; http://dx.doi.org/10.1073/pnas.1001984107; PMID: 20534471
  • Li Y, Chan EY, Li J, Ni C, Peng X, Rosenzweig E, Tumpey TM, Katze MG. MicroRNA expression and virulence in pandemic influenza virus-infected mice. J Virol 2010; 84:3023 - 32; http://dx.doi.org/10.1128/JVI.02203-09; PMID: 20071585
  • Terrier O, Textoris J, Carron C, Marcel V, Bourdon JC, Rosa-Calatrava M. Host microRNA molecular signatures associated with human H1N1 and H3N2 influenza A viruses reveal an unanticipated antiviral activity for miR-146a. J Gen Virol 2013; 94:985 - 95; http://dx.doi.org/10.1099/vir.0.049528-0; PMID: 23343627
  • Rosenberger CM, Podyminogin RL, Navarro G, Zhao GW, Askovich PS, Weiss MJ, Aderem A. miR-451 regulates dendritic cell cytokine responses to influenza infection. J Immunol 2012; 189:5965 - 75; http://dx.doi.org/10.4049/jimmunol.1201437; PMID: 23169590
  • Moissiard G, Voinnet O. RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc Natl Acad Sci U S A 2006; 103:19593 - 8; http://dx.doi.org/10.1073/pnas.0604627103; PMID: 17164336
  • Smith NA, Eamens AL, Wang MB. Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog 2011; 7:e1002022; http://dx.doi.org/10.1371/journal.ppat.1002022; PMID: 21573142
  • Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba J, Sueda K, Burgyán J, Masuta C. A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog 2011; 7:e1002021; http://dx.doi.org/10.1371/journal.ppat.1002021; PMID: 21573143
  • Ding B. The biology of viroid-host interactions. Annu Rev Phytopathol 2009; 47:105 - 31; http://dx.doi.org/10.1146/annurev-phyto-080508-081927; PMID: 19400635
  • Schnell RJ, Olano CT, Kuhn DN. Detection of avocado sunblotch viroid variants using fluorescent single-strand conformation polymorphism analysis. Electrophoresis 2001; 22:427 - 32; http://dx.doi.org/10.1002/1522-2683(200102)22:3<427::AID-ELPS427>3.0.CO;2-8; PMID: 11258750
  • Qi Y, Ding B. Inhibition of cell growth and shoot development by a specific nucleotide sequence in a noncoding viroid RNA. Plant Cell 2003; 15:1360 - 74; http://dx.doi.org/10.1105/tpc.011585; PMID: 12782729
  • Schnölzer M, Haas B, Raam K, Hofmann H, Sänger HL. Correlation between structure and pathogenicity of potato spindle tuber viroid (PSTV). EMBO J 1985; 4:2181 - 90; PMID: 15938051
  • Itaya A, Zhong X, Bundschuh R, Qi Y, Wang Y, Takeda R, Harris AR, Molina C, Nelson RS, Ding B. A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J Virol 2007; 81:2980 - 94; http://dx.doi.org/10.1128/JVI.02339-06; PMID: 17202210
  • Vaishnaw AK, Gollob J, Gamba-Vitalo C, Hutabarat R, Sah D, Meyers R, de Fougerolles T, Maraganore J. A status report on RNAi therapeutics. Silence 2010; 1:14; http://dx.doi.org/10.1186/1758-907X-1-14; PMID: 20615220
  • Davidson BL, McCray PB Jr.. Current prospects for RNA interference-based therapies. Nat Rev Genet 2011; 12:329 - 40; http://dx.doi.org/10.1038/nrg2968; PMID: 21499294