1,200
Views
15
CrossRef citations to date
0
Altmetric
Review

The ER stress response and host temperature adaptation in the human fungal pathogen Cryptococcus neoformans

&
Pages 351-356 | Received 05 Sep 2013, Accepted 13 Nov 2013, Published online: 19 Nov 2013

References

  • Blackwell M. The fungi: 1, 2, 3 ... 5.1 million species?. Am J Bot 2011; 98:426 - 38; http://dx.doi.org/10.3732/ajb.1000298; PMID: 21613136
  • Karkowska-Kuleta J, Rapala-Kozik M, Kozik A. Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus.. Acta Biochim Pol 2009; 56:211 - 24; PMID: 19543556
  • Reedy JL, Bastidas RJ, Heitman J. The virulence of human pathogenic fungi: notes from the South of France. Cell Host Microbe 2007; 2:77 - 83; http://dx.doi.org/10.1016/j.chom.2007.07.004; PMID: 18005722
  • Heitman J. Molecular principles of fungal pathogenesis. Washington, D.C.: ASM Press, 2006.
  • Casadevall A. Fungi and the rise of mammals. PLoS Pathog 2012; 8:e1002808; http://dx.doi.org/10.1371/journal.ppat.1002808; PMID: 22916007
  • Perfect JR. Cryptococcus neoformans: the yeast that likes it hot. FEMS Yeast Res 2006; 6:463 - 8; http://dx.doi.org/10.1111/j.1567-1364.2006.00051.x; PMID: 16696642
  • Robert VA, Casadevall A. Vertebrate endothermy restricts most fungi as potential pathogens. J Infect Dis 2009; 200:1623 - 6; http://dx.doi.org/10.1086/644642; PMID: 19827944
  • Casadevall A. Amoeba provide insight into the origin of virulence in pathogenic fungi. Adv Exp Med Biol 2012; 710:1 - 10; http://dx.doi.org/10.1007/978-1-4419-5638-5_1; PMID: 22127880
  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 2000; 11:4241 - 57; http://dx.doi.org/10.1091/mbc.11.12.4241; PMID: 11102521
  • Castells-Roca L, García-Martínez J, Moreno J, Herrero E, Bellí G, Pérez-Ortín JE. Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities. PLoS One 2011; 6:e17272; http://dx.doi.org/10.1371/journal.pone.0017272; PMID: 21364882
  • Hilgers V, Teixeira D, Parker R. Translation-independent inhibition of mRNA deadenylation during stress in Saccharomyces cerevisiae.. RNA 2006; 12:1835 - 45; http://dx.doi.org/10.1261/rna.241006; PMID: 16940550
  • Verghese J, Abrams J, Wang Y, Morano KA. Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115 - 58; http://dx.doi.org/10.1128/MMBR.05018-11; PMID: 22688810
  • Kraus PR, Boily MJ, Giles SS, Stajich JE, Allen A, Cox GM, Dietrich FS, Perfect JR, Heitman J. Identification of Cryptococcus neoformans temperature-regulated genes with a genomic-DNA microarray. Eukaryot Cell 2004; 3:1249 - 60; http://dx.doi.org/10.1128/EC.3.5.1249-1260.2004; PMID: 15470254
  • Steen BR, Lian T, Zuyderduyn S, MacDonald WK, Marra M, Jones SJ, Kronstad JW. Temperature-regulated transcription in the pathogenic fungus Cryptococcus neoformans.. Genome Res 2002; 12:1386 - 400; http://dx.doi.org/10.1101/gr.80202; PMID: 12213776
  • Bloom AL, Solomons JT, Havel VE, Panepinto JC. Uncoupling of mRNA synthesis and degradation impairs adaptation to host temperature in Cryptococcus neoformans.. Mol Microbiol 2013; 89:65 - 83; http://dx.doi.org/10.1111/mmi.12258; PMID: 23659661
  • Havel VE, Wool NK, Ayad D, Downey KM, Wilson CF, Larsen P, Djordjevic JT, Panepinto JC. Ccr4 promotes resolution of the endoplasmic reticulum stress response during host temperature adaptation in Cryptococcus neoformans.. Eukaryot Cell 2011; 10:895 - 901; http://dx.doi.org/10.1128/EC.00006-11; PMID: 21602483
  • Kronstad J, Jung WH, Hu G. Beyond the big three: systematic analysis of virulence factors in Cryptococcus neoformans.. Cell Host Microbe 2008; 4:308 - 10; http://dx.doi.org/10.1016/j.chom.2008.09.003; PMID: 18854233
  • Ma H, May RC. Virulence in Cryptococcus species. Adv Appl Microbiol 2009; 67:131 - 90; http://dx.doi.org/10.1016/S0065-2164(08)01005-8; PMID: 19245939
  • Panepinto J, Komperda K, Frases S, Park YD, Djordjevic JT, Casadevall A, Williamson PR. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans.. Mol Microbiol 2009; 71:1165 - 76; http://dx.doi.org/10.1111/j.1365-2958.2008.06588.x; PMID: 19210702
  • Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC, Casadevall A. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 2008; 7:58 - 67; http://dx.doi.org/10.1128/EC.00370-07; PMID: 18039940
  • Jung KW, Kang HA, Bahn YS. Essential roles of the Kar2/BiP molecular chaperone downstream of the UPR pathway in Cryptococcus neoformans.. PLoS One 2013; 8:e58956; http://dx.doi.org/10.1371/journal.pone.0058956; PMID: 23484059
  • Cheon SA, Jung KW, Chen YL, Heitman J, Bahn YS, Kang HA. Unique evolution of the UPR pathway with a novel bZIP transcription factor, Hxl1, for controlling pathogenicity of Cryptococcus neoformans.. PLoS Pathog 2011; 7:e1002177; http://dx.doi.org/10.1371/journal.ppat.1002177; PMID: 21852949
  • Castells-Roca L, Mühlenhoff U, Lill R, Herrero E, Bellí G. The oxidative stress response in yeast cells involves changes in the stability of Aft1 regulon mRNAs. Mol Microbiol 2011; 81:232 - 48; http://dx.doi.org/10.1111/j.1365-2958.2011.07689.x; PMID: 21542867
  • Kawai T, Fan J, Mazan-Mamczarz K, Gorospe M. Global mRNA stabilization preferentially linked to translational repression during the endoplasmic reticulum stress response. Mol Cell Biol 2004; 24:6773 - 87; http://dx.doi.org/10.1128/MCB.24.15.6773-6787.2004; PMID: 15254244
  • Kimmig P, Diaz M, Zheng J, Williams CC, Lang A, Aragón T, Li H, Walter P. The unfolded protein response in fission yeast modulates stability of select mRNAs to maintain protein homeostasis. Elife 2012; 1:e00048; http://dx.doi.org/10.7554/eLife.00048; PMID: 23066505
  • Molin C, Jauhiainen A, Warringer J, Nerman O, Sunnerhagen P. mRNA stability changes precede changes in steady-state mRNA amounts during hyperosmotic stress. RNA 2009; 15:600 - 14; http://dx.doi.org/10.1261/rna.1403509; PMID: 19223440
  • Feng X, Krishnan K, Richie DL, Aimanianda V, Hartl L, Grahl N, Powers-Fletcher MV, Zhang M, Fuller KK, Nierman WC, et al. HacA-independent functions of the ER stress sensor IreA synergize with the canonical UPR to influence virulence traits in Aspergillus fumigatus.. PLoS Pathog 2011; 7:e1002330; http://dx.doi.org/10.1371/journal.ppat.1002330; PMID: 22028661
  • Richie DL, Feng X, Hartl L, Aimanianda V, Krishnan K, Powers-Fletcher MV, Watson DS, Galande AK, White SM, Willett T, et al. The virulence of the opportunistic fungal pathogen Aspergillus fumigatus requires cooperation between the endoplasmic reticulum-associated degradation pathway (ERAD) and the unfolded protein response (UPR). Virulence 2011; 2:12 - 21; http://dx.doi.org/10.4161/viru.2.1.13345; PMID: 21217201
  • Richie DL, Hartl L, Aimanianda V, Winters MS, Fuller KK, Miley MD, White S, McCarthy JW, Latgé JP, Feldmesser M, et al. A role for the unfolded protein response (UPR) in virulence and antifungal susceptibility in Aspergillus fumigatus.. PLoS Pathog 2009; 5:e1000258; http://dx.doi.org/10.1371/journal.ppat.1000258; PMID: 19132084
  • Bates S, MacCallum DM, Bertram G, Munro CA, Hughes HB, Buurman ET, Brown AJ, Odds FC, Gow NA. Candida albicans Pmr1p, a secretory pathway P-type Ca2+/Mn2+-ATPase, is required for glycosylation and virulence. J Biol Chem 2005; 280:23408 - 15; http://dx.doi.org/10.1074/jbc.M502162200; PMID: 15843378
  • Powers-Fletcher MV, Jambunathan K, Brewer JL, Krishnan K, Feng X, Galande AK, Askew DS. Impact of the lectin chaperone calnexin on the stress response, virulence and proteolytic secretome of the fungal pathogen Aspergillus fumigatus.. PLoS One 2011; 6:e28865; http://dx.doi.org/10.1371/journal.pone.0028865; PMID: 22163332
  • Miyazaki T, Nakayama H, Nagayoshi Y, Kakeya H, Kohno S. Dissection of Ire1 functions reveals stress response mechanisms uniquely evolved in Candida glabrata.. PLoS Pathog 2013; 9:e1003160; http://dx.doi.org/10.1371/journal.ppat.1003160; PMID: 23382685
  • West L, Lowman DW, Mora-Montes HM, Grubb S, Murdoch C, Thornhill MH, Gow NA, Williams D, Haynes K. Differential virulence of Candida glabrata glycosylation mutants. J Biol Chem 2013; 288:22006 - 18; http://dx.doi.org/10.1074/jbc.M113.478743; PMID: 23720756
  • Hall RA, Bates S, Lenardon MD, Maccallum DM, Wagener J, Lowman DW, Kruppa MD, Williams DL, Odds FC, Brown AJ, et al. The Mnn2 mannosyltransferase family modulates mannoprotein fibril length, immune recognition and virulence of Candida albicans.. PLoS Pathog 2013; 9:e1003276; http://dx.doi.org/10.1371/journal.ppat.1003276; PMID: 23633946
  • Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005; 569:29 - 63; http://dx.doi.org/10.1016/j.mrfmmm.2004.06.056; PMID: 15603751
  • Pincus D, Chevalier MW, Aragón T, van Anken E, Vidal SE, El-Samad H, Walter P. BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol 2010; 8:e1000415; http://dx.doi.org/10.1371/journal.pbio.1000415; PMID: 20625545
  • Lee KP, Dey M, Neculai D, Cao C, Dever TE, Sicheri F. Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing. Cell 2008; 132:89 - 100; http://dx.doi.org/10.1016/j.cell.2007.10.057; PMID: 18191223
  • Konarska MM, Grabowski PJ, Padgett RA, Sharp PA. Characterization of the branch site in lariat RNAs produced by splicing of mRNA precursors. Nature 1985; 313:552 - 7; http://dx.doi.org/10.1038/313552a0; PMID: 2578627
  • Gonzalez TN, Sidrauski C, Dörfler S, Walter P. Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway. EMBO J 1999; 18:3119 - 32; http://dx.doi.org/10.1093/emboj/18.11.3119; PMID: 10357823
  • Hooks KB, Griffiths-Jones S. Conserved RNA structures in the non-canonical Hac1/Xbp1 intron. RNA Biol 2011; 8:552 - 6; http://dx.doi.org/10.4161/rna.8.4.15396; PMID: 21593604
  • Trotta CR, Miao F, Arn EA, Stevens SW, Ho CK, Rauhut R, Abelson JN. The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. Cell 1997; 89:849 - 58; http://dx.doi.org/10.1016/S0092-8674(00)80270-6; PMID: 9200603
  • Rüegsegger U, Leber JH, Walter P. Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell 2001; 107:103 - 14; http://dx.doi.org/10.1016/S0092-8674(01)00505-0; PMID: 11595189
  • Yanagitani K, Kimata Y, Kadokura H, Kohno K. Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA. Science 2011; 331:586 - 9; http://dx.doi.org/10.1126/science.1197142; PMID: 21233347
  • Yanagitani K, Imagawa Y, Iwawaki T, Hosoda A, Saito M, Kimata Y, Kohno K. Cotranslational targeting of XBP1 protein to the membrane promotes cytoplasmic splicing of its own mRNA. Mol Cell 2009; 34:191 - 200; http://dx.doi.org/10.1016/j.molcel.2009.02.033; PMID: 19394296
  • Aragón T, van Anken E, Pincus D, Serafimova IM, Korennykh AV, Rubio CA, Walter P. Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature 2009; 457:736 - 40; http://dx.doi.org/10.1038/nature07641; PMID: 19079237
  • Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 2009; 186:323 - 31; http://dx.doi.org/10.1083/jcb.200903014; PMID: 19651891
  • Gaddam D, Stevens N, Hollien J. Comparison of mRNA localization and regulation during endoplasmic reticulum stress in Drosophila cells. Mol Biol Cell 2013; 24:14 - 20; http://dx.doi.org/10.1091/mbc.E12-06-0491; PMID: 23135994
  • Hollien J, Weissman JS. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 2006; 313:104 - 7; http://dx.doi.org/10.1126/science.1129631; PMID: 16825573
  • Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 2005; 169:871 - 84; http://dx.doi.org/10.1083/jcb.200502088; PMID: 15967811
  • Mitchell SF, Jain S, She M, Parker R. Global analysis of yeast mRNPs. Nat Struct Mol Biol 2013; 20:127 - 33; http://dx.doi.org/10.1038/nsmb.2468; PMID: 23222640
  • Buchan JR, Yoon JH, Parker R. Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae. J Cell Sci 2011; 124:228 - 39; http://dx.doi.org/10.1242/jcs.078444; PMID: 21172806
  • Ko YJ, Yu YM, Kim GB, Lee GW, Maeng PJ, Kim S, Floyd A, Heitman J, Bahn YS. Remodeling of global transcription patterns of Cryptococcus neoformans genes mediated by the stress-activated HOG signaling pathways. Eukaryot Cell 2009; 8:1197 - 217; http://dx.doi.org/10.1128/EC.00120-09; PMID: 19542307
  • Trusina A, Papa FR, Tang C. Rationalizing translation attenuation in the network architecture of the unfolded protein response. Proc Natl Acad Sci U S A 2008; 105:20280 - 5; http://dx.doi.org/10.1073/pnas.0803476105; PMID: 19075238
  • Shalem O, Dahan O, Levo M, Martinez MR, Furman I, Segal E, Pilpel Y. Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation. Mol Syst Biol 2008; 4:223; http://dx.doi.org/10.1038/msb.2008.59; PMID: 18854817