4,954
Views
64
CrossRef citations to date
0
Altmetric
REVIEWS

Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide

, &
Pages 794-809 | Received 26 Sep 2013, Accepted 09 Jan 2014, Published online: 31 Oct 2014

References

  • Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol 2003; 57:395-418; PMID:14527285; http://dx.doi.org/10.1146/annurev.micro.57.030502.090938
  • Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 2008; 77:755-76; PMID:18173371; http://dx.doi.org/10.1146/annurev.biochem.77.061606.161055
  • Robinson MA, Baumgardner JE, Otto CM. Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic Biol Med 2011; 51:1952-65; PMID:21958548; http://dx.doi.org/10.1016/j.freeradbiomed.2011.08.034
  • Bowman LA, McLean S, Poole RK, Fukuto JM. The diversity of microbial responses to nitric oxide and agents of nitrosative stress close cousins but not identical twins. Adv Microb Physiol 2011; 59:135-219; PMID:22114842; http://dx.doi.org/10.1016/B978–0–12–387661–4.00006–9
  • Crack JC, Green J, Thomson AJ, Le Brun NE. Iron-sulfur cluster sensor-regulators. Curr Opin Chem Biol 2012; 16:35-44; PMID:22387135; http://dx.doi.org/10.1016/j.cbpa.2012.02.009
  • Crack JC, Green J, Hutchings MI, Thomson AJ, Le Brun NE. Bacterial iron-sulfur regulatory proteins as biological sensor-switches. Antioxid Redox Signal 2012; 17:1215-31; PMID:22239203; http://dx.doi.org/10.1089/ars.2012.4511
  • Green J, Crack JC, Thomson AJ, LeBrun NE. Bacterial sensors of oxygen. Curr Opin Microbiol 2009; 12:145-51; PMID:19246238; http://dx.doi.org/10.1016/j.mib.2009.01.008
  • Sharrocks AD, Green J, Guest JR. In vivo and in vitro mutants of FNR the anaerobic transcriptional regulator of E. coli. FEBS Lett 1990; 270:119-22; PMID:2226775; http://dx.doi.org/10.1016/0014–5793(90)81248-M
  • Green J, Sharrocks AD, Green B, Geisow M, Guest JR. Properties of FNR proteins substituted at each of the five cysteine residues. Mol Microbiol 1993; 8:61-8; PMID:8497198; http://dx.doi.org/10.1111/j.1365–2958.1993.tb01203.x
  • Moore LJ, Mettert EL, Kiley PJ. Regulation of FNR dimerization by subunit charge repulsion. J Biol Chem 2006; 281:33268-75; PMID:16959764; http://dx.doi.org/10.1074/jbc.M608331200
  • Green J, Irvine AS, Meng W, Guest JR. FNR-DNA interactions at natural and semi-synthetic promoters. Mol Microbiol 1996; 19:125-37; PMID:8821942; http://dx.doi.org/10.1046/j.1365–2958.1996.353884.x
  • Scott C, Partridge JD, Stephenson JR, Green J. DNA target sequence and FNR-dependent gene expression. FEBS Lett 2003; 541:97-101; PMID:12706827; http://dx.doi.org/10.1016/S0014–5793(03)00312–0
  • Myers KS, Yan H, Ong IM, Chung D, Liang K, Tran F, Keleş S, Landick R, Kiley PJ. Genome-scale analysis of escherichia coli FNR reveals complex features of transcription factor binding. PLoS Genet 2013; 9:e1003565; PMID:23818864; http://dx.doi.org/10.1371/journal.pgen.1003565
  • Jordan PA, Thomson AJ, Ralph ET, Guest JR, Green J. FNR is a direct oxygen sensor having a biphasic response curve. FEBS Lett 1997; 416:349-52; PMID:9373183; http://dx.doi.org/10.1016/S0014–5793(97)01219–2
  • Khoroshilova N, Popescu C, Münck E, Beinert H, Kiley PJ. Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity. Proc Natl Acad Sci U S A 1997; 94:6087-92; PMID:9177174; http://dx.doi.org/10.1073/pnas.94.12.6087
  • Popescu CV, Bates DM, Beinert H, Münck E, Kiley PJ. Mössbauer spectroscopy as a tool for the study of activation/inactivation of the transcription regulator FNR in whole cells of Escherichia coli. Proc Natl Acad Sci U S A 1998; 95:13431-5; PMID:9811817; http://dx.doi.org/10.1073/pnas.95.23.13431
  • Becker S, Holighaus G, Gabrielczyk T, Unden G. O2 as the regulatory signal for FNR-dependent gene regulation in Escherichia coli. J Bacteriol 1996; 178:4515-21; PMID:8755879
  • Green J, Bennett B, Jordan P, Ralph ET, Thomson AJ, Guest JR. Reconstitution of the [4Fe-4S] cluster in FNR and demonstration of the aerobic-anaerobic transcription switch in vitro. Biochem J 1996; 316:887-92; PMID:8670167
  • Lazazzera BA, Beinert H, Khoroshilova N, Kennedy MC, Kiley PJ. DNA binding and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by oxygen. J Biol Chem 1996; 271:2762-8; PMID:8576252; http://dx.doi.org/10.1074/jbc.271.5.2762
  • Sutton VR, Stubna A, Patschkowski T, Münck E, Beinert H, Kiley PJ. Superoxide destroys the [2Fe-2S]2+ cluster of FNR from Escherichia coli. Biochemistry 2004; 43:791-8; PMID:14730984; http://dx.doi.org/10.1021/bi0357053
  • Reinhart F, Achebach S, Koch T, Unden G. Reduced apo-fumarate nitrate reductase regulator (apoFNR) as the major form of FNR in aerobically growing Escherichia coli. J Bacteriol 2008; 190:879-86; PMID:18055593; http://dx.doi.org/10.1128/JB.01374–07
  • Achebach S, Selmer T, Unden G. Properties and significance of apoFNR as a second form of air-inactivated [4Fe-4S].FNR of Escherichia coli. FEBS J 2005; 272:4260-9; PMID:16098206; http://dx.doi.org/10.1111/j.1742–4658.2005.04840.x
  • Engel P, Trageser M, Unden G. Reversible interconversion of the functional state of the gene regulator FNR from Escherichia coli in vivo by O2 and iron availability. Arch Microbiol 1991; 156:463-70; PMID:1785953
  • Mettert EL, Kiley PJ. ClpXP-dependent proteolysis of FNR upon loss of its O2-sensing [4Fe-4S] cluster. J Mol Biol 2005; 354:220-32; PMID:16243354; http://dx.doi.org/10.1016/j.jmb.2005.09.066
  • Dibden DP, Green J. In vivo cycling of the Escherichia coli transcription factor FNR between active and inactive states. Microbiology 2005; 151:4063-70; PMID:16339951; http://dx.doi.org/10.1099/mic.0.28253–0
  • Zhang B, Crack JC, Subramanian S, Green J, Thomson AJ, Le Brun NE, Johnson MK. Reversible cycling between cysteine persulfide-ligated [2Fe-2S] and cysteine-ligated [4Fe-4S] clusters in the FNR regulatory protein. Proc Natl Acad Sci U S A 2012; 109:15734-9; PMID:23019358; http://dx.doi.org/10.1073/pnas.1208787109
  • Jervis AJ, Crack JC, White G, Artymiuk PJ, Cheesman MR, Thomson AJ, Le Brun NE, Green J. The O2 sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion. Proc Natl Acad Sci U S A 2009; 106:4659-64; PMID:19261852; http://dx.doi.org/10.1073/pnas.0804943106
  • Sutton VR, Mettert EL, Beinert H, Kiley PJ. Kinetic analysis of the oxidative conversion of the [4Fe-4S]2+ cluster of FNR to a [2Fe-2S]2+ Cluster. J Bacteriol 2004; 186:8018-25; PMID:15547274; http://dx.doi.org/10.1128/JB.186.23.8018–8025.2004
  • Fink RC, Evans MR, Porwollik S, Vazquez-Torres A, Jones-Carson J, Troxell B, Libby SJ, McClelland M, Hassan HM. FNR is a global regulator of virulence and anaerobic metabolism in Salmonella enterica serovar Typhimurium (ATCC 14028s). J Bacteriol 2007; 189:2262-73; PMID:17220229; http://dx.doi.org/10.1128/JB.00726–06
  • Wood GE, Khelef N, Guiso N, Friedman RL. Identification of Btr-regulated genes using a titration assay. Search for a role for this transcriptional regulator in the growth and virulence of Bordetella pertussis. Gene 1998; 209:51-8; PMID:9583950; http://dx.doi.org/10.1016/S0378–1119(98)00031–6
  • Bartolini E, Frigimelica E, Giovinazzi S, Galli G, Shaik Y, Genco C, Welsch JA, Granoff DM, Grandi G, Grifantini R. Role of FNR and FNR-regulated, sugar fermentation genes in Neisseria meningitidis infection. Mol Microbiol 2006; 60:963-72; PMID:16677307; http://dx.doi.org/10.1111/j.1365–2958.2006.05163.x
  • Jackson AA, Gross MJ, Daniels EF, Hampton TH, Hammond JH, Vallet-Gely I, Dove SL, Stanton BA, Hogan DA. Anr and its activation by PlcH activity in Pseudomonas aeruginosa host colonization and virulence. J Bacteriol 2013; 195:3093-104; PMID:23667230; http://dx.doi.org/10.1128/JB.02169–12
  • Kuntumalla S, Zhang Q, Braisted JC, Fleischmann RD, Peterson SN, Donohue-Rolfe A, Tzipori S, Pieper R. In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism. BMC Microbiol 2011; 11:147; PMID:21702961; http://dx.doi.org/10.1186/1471–2180–11–147
  • Lai XH, Arencibia I, Johansson A, Wai SN, Oscarsson J, Kalfas S, Sundqvist KG, Mizunoe Y, Sjöstedt A, Uhlin BE. Cytocidal and apoptotic effects of the ClyA protein from Escherichia coli on primary and cultured monocytes and macrophages. Infect Immun 2000; 68:4363-7; PMID:10858262; http://dx.doi.org/10.1128/IAI.68.7.4363–4367.2000
  • Mueller M, Grauschopf U, Maier T, Glockshuber R, Ban N. The structure of a cytolytic α-helical toxin pore reveals its assembly mechanism. Nature 2009; 459:726-30; PMID:19421192; http://dx.doi.org/10.1038/nature08026
  • Ong EB, Anthony AA, Ismail A, Lim TS. Cloning, expression, and purification of the hemolysin/cytolysin (HlyE antigen) from Salmonella enterica serovar Typhi: potential application for immunoassay development. Diagn Microbiol Infect Dis 2013
  • Suez J, Porwollik S, Dagan A, Marzel A, Schorr YI, Desai PT, Agmon V, McClelland M, Rahav G, Gal-Mor O. Virulence gene profiling and pathogenicity characterization of non-typhoidal Salmonella accounted for invasive disease in humans. PLoS One 2013; 8:e58449; PMID:23505508; http://dx.doi.org/10.1371/journal.pone.0058449
  • von Rhein C, Bauer S, López Sanjurjo EJ, Benz R, Goebel W, Ludwig A. ClyA cytolysin from Salmonella: distribution within the genus, regulation of expression by SlyA, and pore-forming characteristics. Int J Med Microbiol 2009; 299:21-35; PMID:18715828; http://dx.doi.org/10.1016/j.ijmm.2008.06.004
  • Wallace AJ, Stillman TJ, Atkins A, Jamieson SJ, Bullough PA, Green J, Artymiuk PJ. E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy. Cell 2000; 100:265-76; PMID:10660049; http://dx.doi.org/10.1016/S0092–8674(00)81564–0
  • Wyborn NR, Clark A, Roberts RE, Jamieson SJ, Tzokov S, Bullough PA, Stillman TJ, Artymiuk PJ, Galen JE, Zhao L, et al. Properties of haemolysin E (HlyE) from a pathogenic Escherichia coli avian isolate and studies of HlyE export. Microbiology 2004; 150:1495-505; PMID:15133111; http://dx.doi.org/10.1099/mic.0.26877–0
  • Green J, Baldwin ML. The molecular basis for the differential regulation of the hlyE-encoded haemolysin of Escherichia coli by FNR and HlyX lies in the improved activating region 1 contact of HlyX. Microbiology 1997; 143:3785-93; PMID:9421903; http://dx.doi.org/10.1099/00221287–143–12–3785
  • Lithgow JK, Haider F, Roberts IS, Green J. Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12. Mol Microbiol 2007; 66:685-98; PMID:17892462; http://dx.doi.org/10.1111/j.1365–2958.2007.05950.x
  • Murase K, Ooka T, Iguchi A, Ogura Y, Nakayama K, Asadulghani M, Islam MR, Hiyoshi H, Kodama T, Beutin L, et al. Haemolysin E- and enterohaemolysin-derived haemolytic activity of O55/O157 strains and other Escherichia coli lineages. Microbiology 2012; 158:746-58; PMID:22194351; http://dx.doi.org/10.1099/mic.0.054775–0
  • Westermark M, Oscarsson J, Mizunoe Y, Urbonaviciene J, Uhlin BE. Silencing and activation of ClyA cytotoxin expression in Escherichia coli. J Bacteriol 2000; 182:6347-57; PMID:11053378; http://dx.doi.org/10.1128/JB.182.22.6347–6357.2000
  • Wyborn NR, Stapleton MR, Norte VA, Roberts RE, Grafton J, Green J. Regulation of Escherichia coli hemolysin E expression by H-NS and Salmonella SlyA. J Bacteriol 2004; 186:1620-8; PMID:14996792; http://dx.doi.org/10.1128/JB.186.6.1620–1628.2004
  • Fuentes JA, Villagra N, Castillo-Ruiz M, Mora GC. The Salmonella Typhi hlyE gene plays a role in invasion of cultured epithelial cells and its functional transfer to S. Typhimurium promotes deep organ infection in mice. Res Microbiol 2008; 159:279-87; PMID:18434098; http://dx.doi.org/10.1016/j.resmic.2008.02.006
  • Hunt S, Green J, Artymiuk PJ. Hemolysin E (HlyE, ClyA, SheA) and related toxins. Adv Exp Med Biol 2010; 677:116-26; PMID:20687485; http://dx.doi.org/10.1007/978–1–4419–6327–7_10
  • Esbelin J, Armengaud J, Zigha A, Duport C. ResDE-dependent regulation of enterotoxin gene expression in Bacillus cereus: evidence for multiple modes of binding for ResD and interaction with Fnr. J Bacteriol 2009; 191:4419-26; PMID:19395489; http://dx.doi.org/10.1128/JB.00321–09
  • Esbelin J, Jouanneau Y, Armengaud J, Duport C. ApoFnr binds as a monomer to promoters regulating the expression of enterotoxin genes of Bacillus cereus. J Bacteriol 2008; 190:4242-51; PMID:18424517; http://dx.doi.org/10.1128/JB.00336–08
  • Esbelin J, Jouanneau Y, Duport C. Bacillus cereus Fnr binds a [4Fe-4S] cluster and forms a ternary complex with ResD and PlcR. BMC Microbiol 2012; 12:125; PMID:22731107; http://dx.doi.org/10.1186/1471–2180–12–125
  • Marteyn B, West NP, Browning DF, Cole JA, Shaw JG, Palm F, Mounier J, Prévost MC, Sansonetti P, Tang CM. Modulation of Shigella virulence in response to available oxygen in vivo. Nature 2010; 465:355-8; PMID:20436458; http://dx.doi.org/10.1038/nature08970
  • O’Callaghan J, Reen FJ, Adams C, Casey PG, Gahan CG, O’Gara F. A novel host-responsive sensor mediates virulence and type III secretion during Pseudomonas aeruginosa-host cell interactions. Microbiology 2012; 158:1057-70; PMID:22262100; http://dx.doi.org/10.1099/mic.0.056127–0
  • Bekker M, Alexeeva S, Laan W, Sawers G, Teixeira de Mattos J, Hellingwerf K. The ArcBA two-component system of Escherichia coli is regulated by the redox state of both the ubiquinone and the menaquinone pool. J Bacteriol 2010; 192:746-54; PMID:19933363; http://dx.doi.org/10.1128/JB.01156–09
  • Georgellis D, Kwon O, Lin EC. Quinones as the redox signal for the arc two-component system of bacteria. Science 2001; 292:2314-6; PMID:11423658; http://dx.doi.org/10.1126/science.1059361
  • Malpica R, Franco B, Rodriguez C, Kwon O, Georgellis D. Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc Natl Acad Sci U S A 2004; 101:13318-23; PMID:15326287; http://dx.doi.org/10.1073/pnas.0403064101
  • Boll EJ, Nielsen LN, Krogfelt KA, Struve C. Novel screening assay for in vivo selection of Klebsiella pneumoniae genes promoting gastrointestinal colonisation. BMC Microbiol 2012; 12:201; PMID:22967317; http://dx.doi.org/10.1186/1471–2180–12–201
  • Boulette ML, Payne SM. Anaerobic regulation of Shigella flexneri virulence: ArcA regulates Fur and iron acquisition genes. J Bacteriol 2007; 189:6957-67; PMID:17660284; http://dx.doi.org/10.1128/JB.00621–07
  • Lu S, Killoran PB, Fang FC, Riley LW. The global regulator ArcA controls resistance to reactive nitrogen and oxygen intermediates in Salmonella enterica serovar Enteritidis. Infect Immun 2002; 70:451-61; PMID:11796570; http://dx.doi.org/10.1128/IAI.70.2.451–461.2002
  • Serna A, Espinosa E, Camacho EM, Casadesús J. Regulation of bacterial conjugation in microaerobiosis by host-encoded functions ArcAB and sdhABCD. Genetics 2010; 184:947-58; PMID:20083612; http://dx.doi.org/10.1534/genetics.109.109918
  • Wong SM, Akerley BJ. Genome-scale approaches to identify genes essential for Haemophilus influenzae pathogenesis. Front Cell Infect Microbiol 2012; 2:23; PMID:22919615; http://dx.doi.org/10.3389/fcimb.2012.00023
  • Wong SM, St Michael F, Cox A, Ram S, Akerley BJ. ArcA-regulated glycosyltransferase lic2B promotes complement evasion and pathogenesis of nontypeable Haemophilus influenzae. Infect Immun 2011; 79:1971-83; PMID:21357723; http://dx.doi.org/10.1128/IAI.01269–10
  • Sengupta N, Paul K, Chowdhury R. The global regulator ArcA modulates expression of virulence factors in Vibrio cholerae. Infect Immun 2003; 71:5583-9; PMID:14500477; http://dx.doi.org/10.1128/IAI.71.10.5583–5589.2003
  • Buettner FF, Maas A, Gerlach GF. An Actinobacillus pleuropneumoniae arcA deletion mutant is attenuated and deficient in biofilm formation. Vet Microbiol 2008; 127:106-15; PMID:17881160; http://dx.doi.org/10.1016/j.vetmic.2007.08.005
  • Stern AM, Liu B, Bakken LR, Shapleigh JP, Zhu J. A novel protein protects bacterial iron-dependent metabolism from nitric oxide. J Bacteriol 2013; 195:4702-8; PMID:23935055; http://dx.doi.org/10.1128/JB.00836–13
  • Hausladen A, Gow A, Stamler JS. Flavohemoglobin denitrosylase catalyzes the reaction of a nitroxyl equivalent with molecular oxygen. Proc Natl Acad Sci U S A 2001; 98:10108-12; PMID:11517313; http://dx.doi.org/10.1073/pnas.181199698
  • Gilberthorpe NJ, Lee ME, Stevanin TM, Read RC, Poole RK. NsrR: a key regulator circumventing Salmonella enterica serovar Typhimurium oxidative and nitrosative stress in vitro and in IFN-gamma-stimulated J774.2 macrophages. Microbiology 2007; 153:1756-71; PMID:17526833; http://dx.doi.org/10.1099/mic.0.2006/003731–0
  • Bang IS, Liu L, Vazquez-Torres A, Crouch ML, Stamler JS, Fang FC. Maintenance of nitric oxide and redox homeostasis by the salmonella flavohemoglobin hmp. J Biol Chem 2006; 281:28039-47; PMID:16873371; http://dx.doi.org/10.1074/jbc.M605174200
  • Svensson L, Poljakovic M, Säve S, Gilberthorpe N, Schön T, Strid S, Corker H, Poole RK, Persson K. Role of flavohemoglobin in combating nitrosative stress in uropathogenic Escherichia coli–implications for urinary tract infection. Microb Pathog 2010; 49:59-66; PMID:20399845; http://dx.doi.org/10.1016/j.micpath.2010.04.001
  • Arai H, Iiyama K. Role of nitric oxide-detoxifying enzymes in the virulence of Pseudomonas aeruginosa against the silkworm, Bombyx mori. Biosci Biotechnol Biochem 2013; 77:198-200; PMID:23291757; http://dx.doi.org/10.1271/bbb.120656
  • Vinogradov SN, Tinajero-Trejo M, Poole RK, Hoogewijs D. Bacterial and archaeal globins - a revised perspective. Biochim Biophys Acta 2013; 1834:1789-800; PMID:23541529; http://dx.doi.org/10.1016/j.bbapap.2013.03.021
  • Tinajero-Trejo M, Vreugdenhil A, Sedelnikova SE, Davidge KS, Poole RK. Nitric oxide reactivities of the two globins of the foodborne pathogen Campylobacter jejuni: roles in protection from nitrosative stress and analysis of potential reductants. Nitric Oxide 2013; 34:65-75; PMID:23764490; http://dx.doi.org/10.1016/j.niox.2013.06.002
  • Elvers KT, Wu G, Gilberthorpe NJ, Poole RK, Park SF. Role of an inducible single-domain hemoglobin in mediating resistance to nitric oxide and nitrosative stress in Campylobacter jejuni and Campylobacter coli. J Bacteriol 2004; 186:5332-41; PMID:15292134; http://dx.doi.org/10.1128/JB.186.16.5332–5341.2004
  • Elvers KT, Turner SM, Wainwright LM, Marsden G, Hinds J, Cole JA, Poole RK, Penn CW, Park SF. NssR, a member of the Crp-Fnr superfamily from Campylobacter jejuni, regulates a nitrosative stress-responsive regulon that includes both a single-domain and a truncated haemoglobin. Mol Microbiol 2005; 57:735-50; PMID:16045618; http://dx.doi.org/10.1111/j.1365–2958.2005.04723.x
  • Gardner AM, Helmick RA, Gardner PR. Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli. J Biol Chem 2002; 277:8172-7; PMID:11751865; http://dx.doi.org/10.1074/jbc.M110471200
  • Shimizu T, Tsutsuki H, Matsumoto A, Nakaya H, Noda M. The nitric oxide reductase of enterohaemorrhagic Escherichia coli plays an important role for the survival within macrophages. Mol Microbiol 2012; 85:492-512; PMID:22716767; http://dx.doi.org/10.1111/j.1365–2958.2012.08122.x
  • Justino MC, Ecobichon C, Fernandes AF, Boneca IG, Saraiva LM. Helicobacter pylori has an unprecedented nitric oxide detoxifying system. Antioxid Redox Signal 2012; 17:1190-200; PMID:22236381; http://dx.doi.org/10.1089/ars.2011.4304
  • Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 2012; 16:819-52; PMID:22098259; http://dx.doi.org/10.1089/ars.2011.4051
  • van Wonderen JH, Burlat B, Richardson DJ, Cheesman MR, Butt JN. The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli. J Biol Chem 2008; 283:9587-94; PMID:18245085; http://dx.doi.org/10.1074/jbc.M709090200
  • Mills PC, Rowley G, Spiro S, Hinton JC, Richardson DJ. A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments. Microbiology 2008; 154:1218-28; PMID:18375814; http://dx.doi.org/10.1099/mic.0.2007/014290–0
  • Vine CE, Cole JA. Unresolved sources, sinks, and pathways for the recovery of enteric bacteria from nitrosative stress. FEMS Microbiol Lett 2011; 325:99-107; PMID:22029434; http://dx.doi.org/10.1111/j.1574–6968.2011.02425.x
  • Rodionov DA, Dubchak IL, Arkin AP, Alm EJ, Gelfand MS. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput Biol 2005; 1:e55; PMID:16261196; http://dx.doi.org/10.1371/journal.pcbi.0010055
  • Tucker NP, Le Brun NE, Dixon R, Hutchings MI. There's NO stopping NsrR, a global regulator of the bacterial NO stress response. Trends Microbiol 2010; 18:149-56; PMID:20167493; http://dx.doi.org/10.1016/j.tim.2009.12.009
  • Partridge JD, Bodenmiller DM, Humphrys MS, Spiro S. NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol Microbiol 2009; 73:680-94; PMID:19656291; http://dx.doi.org/10.1111/j.1365–2958.2009.06799.x
  • Karlinsey JE, Bang IS, Becker LA, Frawley ER, Porwollik S, Robbins HF, Thomas VC, Urbano R, McClelland M, Fang FC. The NsrR regulon in nitrosative stress resistance of Salmonella enterica serovar Typhimurium. Mol Microbiol 2012; 85:1179-93; PMID:22831173; http://dx.doi.org/10.1111/j.1365–2958.2012.08167.x
  • Isabella VM, Lapek JD Jr., Kennedy EM, Clark VL. Functional analysis of NsrR, a nitric oxide-sensing Rrf2 repressor in Neisseria gonorrhoeae. Mol Microbiol 2009; 71:227-39; PMID:19007408; http://dx.doi.org/10.1111/j.1365–2958.2008.06522.x
  • Tucker NP, Hicks MG, Clarke TA, Crack JC, Chandra G, Le Brun NE, Dixon R, Hutchings MI. The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster. PLoS One 2008; 3:e3623; PMID:18989365; http://dx.doi.org/10.1371/journal.pone.0003623
  • Yukl ET, Elbaz MA, Nakano MM, Moënne-Loccoz P. Transcription factor NsrR from Bacillus subtilis senses nitric oxide with a 4Fe-4S cluster. Biochemistry 2008; 47:13084-92; PMID:19006327; http://dx.doi.org/10.1021/bi801342x
  • Kommineni S, Yukl E, Hayashi T, Delepine J, Geng H, Moënne-Loccoz P, Nakano MM. Nitric oxide-sensitive and -insensitive interaction of Bacillus subtilis NsrR with a ResDE-controlled promoter. Mol Microbiol 2010; 78:1280-93; PMID:21091510; http://dx.doi.org/10.1111/j.1365–2958.2010.07407.x
  • D’Autréaux B, Tucker NP, Dixon R, Spiro S. A non-haem iron centre in the transcription factor NorR senses nitric oxide. Nature 2005; 437:769-72; PMID:16193057; http://dx.doi.org/10.1038/nature03953
  • Tucker NP, D’Autréaux B, Yousafzai FK, Fairhurst SA, Spiro S, Dixon R. Analysis of the nitric oxide-sensing non-heme iron center in the NorR regulatory protein. J Biol Chem 2008; 283:908-18; PMID:18003617; http://dx.doi.org/10.1074/jbc.M705850200
  • Bush M, Ghosh T, Tucker N, Zhang X, Dixon R. Nitric oxide-responsive interdomain regulation targets the σ54-interaction surface in the enhancer binding protein NorR. Mol Microbiol 2010; 77:1278-88; PMID:20624215; http://dx.doi.org/10.1111/j.1365–2958.2010.07290.x
  • Tucker NP, Ghosh T, Bush M, Zhang X, Dixon R. Essential roles of three enhancer sites in sigma54-dependent transcription by the nitric oxide sensing regulatory protein NorR. Nucleic Acids Res 2010; 38:1182-94; PMID:19955233; http://dx.doi.org/10.1093/nar/gkp1065
  • Stern AM, Hay AJ, Liu Z, Desland FA, Zhang J, Zhong Z, Zhu J. The NorR regulon is critical for Vibrio cholerae resistance to nitric oxide and sustained colonization of the intestines. MBio 2012; 3:e00013-12; PMID:22511349; http://dx.doi.org/10.1128/mBio.00013–12
  • Smith HK, Shepherd M, Monk C, Green J, Poole RK. The NO-responsive hemoglobins of Campylobacter jejuni: concerted responses of two globins to NO and evidence in vitro for globin regulation by the transcription factor NssR. Nitric Oxide 2011; 25:234-41; PMID:21199674; http://dx.doi.org/10.1016/j.niox.2010.12.009
  • Cruz-Ramos H, Crack J, Wu G, Hughes MN, Scott C, Thomson AJ, Green J, Poole RK. NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J 2002; 21:3235-44; PMID:12093725; http://dx.doi.org/10.1093/emboj/cdf339
  • Crack JC, Le Brun NE, Thomson AJ, Green J, Jervis AJ. Reactions of nitric oxide and oxygen with the regulator of fumarate and nitrate reduction, a global transcriptional regulator, during anaerobic growth of Escherichia coli. Methods Enzymol 2008; 437:191-209; PMID:18433630; http://dx.doi.org/10.1016/S0076–6879(07)37011–0
  • Crack JC, Stapleton MR, Green J, Thomson AJ, Le Brun NE. Mechanism of [4Fe-4S](Cys)4 cluster nitrosylation is conserved among NO-responsive regulators. J Biol Chem 2013; 288:11492-502; PMID:23471974; http://dx.doi.org/10.1074/jbc.M112.439901
  • Pomposiello PJ, Bennik MH, Demple B. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 2001; 183:3890-902; PMID:11395452; http://dx.doi.org/10.1128/JB.183.13.3890–3902.2001
  • Gu M, Imlay JA. The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol Microbiol 2011; 79:1136-50; PMID:21226770; http://dx.doi.org/10.1111/j.1365–2958.2010.07520.x
  • Imlay J, Gu M. Many plants and bacteria excrete redox-cycling compounds. Free Radic Biol Med 2011; 50:1814-5; PMID:21466847; http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.034
  • Liochev SI, Fridovich I. Is superoxide able to induce SoxRS? Free Radic Biol Med 2011; 50:1813; PMID:21459140; http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.029
  • Dietrich LE, Teal TK, Price-Whelan A, Newman DK. Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 2008; 321:1203-6; PMID:18755976; http://dx.doi.org/10.1126/science.1160619
  • Piddock LJ. Fluoroquinolone resistance in Salmonella serovars isolated from humans and food animals. FEMS Microbiol Rev 2002; 26:3-16; PMID:12007640
  • Ha U, Jin S. Expression of the soxR gene of Pseudomonas aeruginosa is inducible during infection of burn wounds in mice and is required to cause efficient bacteremia. Infect Immun 1999; 67:5324-31; PMID:10496912
  • Palma M, Zurita J, Ferreras JA, Worgall S, Larone DH, Shi L, Campagne F, Quadri LE. Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response. Infect Immun 2005; 73:2958-66; PMID:15845502; http://dx.doi.org/10.1128/IAI.73.5.2958–2966.2005
  • Kang IH, Kim JS, Lee JK. The virulence of Vibrio vulnificus is affected by the cellular level of superoxide dismutase activity. J Microbiol Biotechnol 2007; 17:1399-402; PMID:18051612
  • Mahavihakanont A, Charoenlap N, Namchaiw P, Eiamphungporn W, Chattrakarn S, Vattanaviboon P, Mongkolsuk S. Novel roles of SoxR, a transcriptional regulator from Xanthomonas campestris, in sensing redox-cycling drugs and regulating a protective gene that have overall implications for bacterial stress physiology and virulence on a host plant. J Bacteriol 2012; 194:209-17; PMID:22056938; http://dx.doi.org/10.1128/JB.05603–11
  • Watanabe S, Kita A, Kobayashi K, Miki K. Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA. Proc Natl Acad Sci U S A 2008; 105:4121-6; PMID:18334645; http://dx.doi.org/10.1073/pnas.0709188105
  • Gorodetsky AA, Dietrich LE, Lee PE, Demple B, Newman DK, Barton JK. DNA binding shifts the redox potential of the transcription factor SoxR. Proc Natl Acad Sci U S A 2008; 105:3684-9; PMID:18316718; http://dx.doi.org/10.1073/pnas.0800093105
  • Koo MS, Lee JH, Rah SY, Yeo WS, Lee JW, Lee KL, Koh YS, Kang SO, Roe JH. A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J 2003; 22:2614-22; PMID:12773378; http://dx.doi.org/10.1093/emboj/cdg252
  • Griffith KL, Shah IM, Wolf RE Jr. Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. Mol Microbiol 2004; 51:1801-16; PMID:15009903; http://dx.doi.org/10.1046/j.1365–2958.2003.03952.x
  • Nunoshiba T, deRojas-Walker T, Wishnok JS, Tannenbaum SR, Demple B. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc Natl Acad Sci U S A 1993; 90:9993-7; PMID:8234347; http://dx.doi.org/10.1073/pnas.90.21.9993
  • Ding H, Demple B. Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proc Natl Acad Sci U S A 2000; 97:5146-50; PMID:10805777; http://dx.doi.org/10.1073/pnas.97.10.5146
  • Pullan ST, Gidley MD, Jones RA, Barrett J, Stevanin TM, Read RC, Green J, Poole RK. Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S nitrosation. J Bacteriol 2007; 189:1845-55; PMID:17189370; http://dx.doi.org/10.1128/JB.01354–06
  • Vasil’eva SV, Stupakova MV, Lobysheva II, Mikoyan VD, Vanin AF. Activation of the Escherichia coli SoxRS-regulon by nitric oxide and its physiological donors. Biochemistry (Mosc) 2001; 66:984-8; PMID:11703180; http://dx.doi.org/10.1023/A :1012317508971
  • Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 2001; 183:4562-70; PMID:11443091; http://dx.doi.org/10.1128/JB.183.15.4562–4570.2001
  • Choi H, Kim S, Mukhopadhyay P, Cho S, Woo J, Storz G, Ryu SE. Structural basis of the redox switch in the OxyR transcription factor. Cell 2001; 105:103-13; PMID:11301006; http://dx.doi.org/10.1016/S0092–8674(01)00300–2
  • Kim SO, Merchant K, Nudelman R, Beyer WF Jr., Keng T, DeAngelo J, Hausladen A, Stamler JS. OxyR: a molecular code for redox-related signaling. Cell 2002; 109:383-96; PMID:12015987; http://dx.doi.org/10.1016/S0092–8674(02)00723–7
  • Charoenlap N, Buranajitpakorn S, Duang-Nkern J, Namchaiw P, Vattanaviboon P, Mongkolsuk S. Evaluation of the virulence of Xanthomonas campestris pv. campestris mutant strains lacking functional genes in the OxyR regulon. Curr Microbiol 2011; 63:232-7; PMID:21710133; http://dx.doi.org/10.1007/s00284–011–9970–9
  • Erickson DL, Russell CW, Johnson KL, Hileman T, Stewart RM. PhoP and OxyR transcriptional regulators contribute to Yersinia pestis virulence and survival within Galleria mellonella. Microb Pathog 2011; 51:389-95; PMID:21964409; http://dx.doi.org/10.1016/j.micpath.2011.08.008
  • Flores-Cruz Z, Allen C. Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum. Appl Environ Microbiol 2011; 77:6426-32; PMID:21803891; http://dx.doi.org/10.1128/AEM.05813–11
  • Hennequin C, Forestier C. oxyR, a LysR-type regulator involved in Klebsiella pneumoniae mucosal and abiotic colonization. Infect Immun 2009; 77:5449-57; PMID:19786563; http://dx.doi.org/10.1128/IAI.00837–09
  • Johnson JR, Clabots C, Rosen H. Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli O1:K1:H7 in a mouse model of ascending urinary tract infection. Infect Immun 2006; 74:461-8; PMID:16369002; http://dx.doi.org/10.1128/IAI.74.1.461–468.2006
  • Johnson JR, Russo TA, Drawz SM, Clabots C, Olson R, Kuskowski MA, Rosen H. OxyR contributes to the virulence of a Clonal Group A Escherichia coli strain (O17:K+:H18) in animal models of urinary tract infection, subcutaneous infection, and systemic sepsis. Microb Pathog 2013; 64:1-5; PMID:23850958; http://dx.doi.org/10.1016/j.micpath.2013.07.001
  • Lau GW, Britigan BE, Hassett DJ. Pseudomonas aeruginosa OxyR is required for full virulence in rodent and insect models of infection and for resistance to human neutrophils. Infect Immun 2005; 73:2550-3; PMID:15784603; http://dx.doi.org/10.1128/IAI.73.4.2550–2553.2005
  • Moule MG, Monack DM, Schneider DS. Reciprocal analysis of Francisella novicida infections of a Drosophila melanogaster model reveal host-pathogen conflicts mediated by reactive oxygen and imd-regulated innate immune response. PLoS Pathog 2010; 6:e1001065; PMID:20865166; http://dx.doi.org/10.1371/journal.ppat.1001065
  • Pagán-Ramos E, Master SS, Pritchett CL, Reimschuessel R, Trucksis M, Timmins GS, Deretic V. Molecular and physiological effects of mycobacterial oxyR inactivation. J Bacteriol 2006; 188:2674-80; PMID:16547055; http://dx.doi.org/10.1128/JB.188.7.2674–2680.2006
  • Sund CJ, Rocha ER, Tzianabos AO, Wells WG, Gee JM, Reott MA, O’Rourke DP, Smith CJ. The Bacteroides fragilis transcriptome response to oxygen and H2O2: the role of OxyR and its effect on survival and virulence. Mol Microbiol 2008; 67:129-42; PMID:18047569; http://dx.doi.org/10.1111/j.1365–2958.2007.06031.x
  • Rychlik I, Barrow PA. Salmonella stress management and its relevance to behaviour during intestinal colonisation and infection. FEMS Microbiol Rev 2005; 29:1021-40; PMID:16023758; http://dx.doi.org/10.1016/j.femsre.2005.03.005
  • Hausladen A, Privalle CT, Keng T, DeAngelo J, Stamler JS. Nitrosative stress: activation of the transcription factor OxyR. Cell 1996; 86:719-29; PMID:8797819; http://dx.doi.org/10.1016/S0092–8674(00)80147–6
  • Seth D, Hausladen A, Wang YJ, Stamler JS. Endogenous protein S-Nitrosylation in E. coli: regulation by OxyR. Science 2012; 336:470-3; PMID:22539721; http://dx.doi.org/10.1126/science.1215643
  • Lowy FD. Staphylococcus aureus infections. N Engl J Med 1998; 339:520-32; PMID:9709046; http://dx.doi.org/10.1056/NEJM199808203390806
  • Härtig E, Jahn D. Regulation of the anaerobic metabolism in Bacillus subtilis. Adv Microb Physiol 2012; 61:195-216; PMID:23046954; http://dx.doi.org/10.1016/B978–0–12–394423–8.00005–6
  • Novick RP, Geisinger E. Quorum sensing in staphylococci. Annu Rev Genet 2008; 541-64; PMID:18713030; http://dx.doi.org/10.1146/annurev.genet.42.110807.091640
  • Pragman AA, Yarwood JM, Tripp TJ, Schlievert PM. Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus. J Bacteriol 2004; 186:2430-8; PMID:15060046; http://dx.doi.org/10.1128/JB.186.8.2430–2438.2004
  • Ulrich M, Bastian M, Cramton SE, Ziegler K, Pragman AA, Bragonzi A, Memmi G, Wolz C, Schlievert PM, Cheung A, et al. The staphylococcal respiratory response regulator SrrAB induces ica gene transcription and polysaccharide intercellular adhesin expression, protecting Staphylococcus aureus from neutrophil killing under anaerobic growth conditions. Mol Microbiol 2007; 65:1276-87; PMID:17697253; http://dx.doi.org/10.1111/j.1365–2958.2007.05863.x
  • Fedtke I, Kamps A, Krismer B, Götz F. The nitrate reductase and nitrite reductase operons and the narT gene of Staphylococcus carnosus are positively controlled by the novel two-component system NreBC. J Bacteriol 2002; 184:6624-34; PMID:12426351; http://dx.doi.org/10.1128/JB.184.23.6624–6634.2002
  • Kamps A, Achebach S, Fedtke I, Unden G, Götz F. Staphylococcal NreB: an O(2)-sensing histidine protein kinase with an O(2)-labile iron-sulphur cluster of the FNR type. Mol Microbiol 2004; 52:713-23; PMID:15101978; http://dx.doi.org/10.1111/j.1365–2958.2004.04024.x
  • Müllner M, Hammel O, Mienert B, Schlag S, Bill E, Unden G. A PAS domain with an oxygen labile [4Fe-4S](2+) cluster in the oxygen sensor kinase NreB of Staphylococcus carnosus. Biochemistry 2008; 13921-32; PMID:19102705; http://dx.doi.org/10.1021/bi8014086
  • Schlag S, Fuchs S, Nerz C, Gaupp R, Engelmann S, Liebeke M, Lalk M, Hecker M, Götz F. Characterization of the oxygen-responsive NreABC regulon of Staphylococcus aureus. J Bacteriol 2008; 190:7847-58; PMID:18820014; http://dx.doi.org/10.1128/JB.00905–08
  • Benton BM, Zhang JP, Bond S, Pope C, Christian T, Lee L, Winterberg KM, Schmid MB, Buysse JM. Large-scale identification of genes required for full virulence of Staphylococcus aureus. J Bacteriol 2004; 186:8478-89; PMID:15576798; http://dx.doi.org/10.1128/JB.186.24.8478–8489.2004
  • Moormeier DE, Endres JL, Mann EE, Sadykov MR, Horswill AR, Rice KC, Fey PD, Bayles KW. Use of microfluidic technology to analyze gene expression during Staphylococcus aureus biofilm formation reveals distinct physiological niches. Appl Environ Microbiol 2013; 79:3413-24; PMID:23524683; http://dx.doi.org/10.1128/AEM.00395–13
  • Sun F, Ji Q, Jones MB, Deng X, Liang H, Frank B, Telser J, Peterson SN, Bae T, He C. AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus. J Am Chem Soc 2012; 134:305-14; PMID:22122613; http://dx.doi.org/10.1021/ja2071835
  • Yan M, Hall JW, Yang J, Ji Y. The essential yhcSR two-component signal transduction system directly regulates the lac and opuCABCD operons of Staphylococcus aureus. PLoS One 2012; 7:e50608; PMID:23226327; http://dx.doi.org/10.1371/journal.pone.0050608
  • Gusarov I, Starodubtseva M, Wang ZQ, McQuade L, Lippard SJ, Stuehr DJ, Nudler E. Bacterial nitric-oxide synthases operate without a dedicated redox partner. J Biol Chem 2008; 283:13140-7; PMID:18316370; http://dx.doi.org/10.1074/jbc.M710178200
  • Gusarov I, Shatalin K, Starodubtseva M, Nudler E. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 2009; 325:1380-4; PMID:19745150; http://dx.doi.org/10.1126/science.1175439
  • Gusarov I, Nudler E. NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc Natl Acad Sci U S A 2005; 102:13855-60; PMID:16172391; http://dx.doi.org/10.1073/pnas.0504307102
  • Shatalin K, Gusarov I, Avetissova E, Shatalina Y, McQuade LE, Lippard SJ, Nudler E. Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages. Proc Natl Acad Sci U S A 2008; 105:1009-13; PMID:18215992; http://dx.doi.org/10.1073/pnas.0710950105
  • Kers JA, Wach MJ, Krasnoff SB, Widom J, Cameron KD, Bukhalid RA, Gibson DM, Crane BR, Loria R. Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature 2004; 429:79-82; PMID:15129284; http://dx.doi.org/10.1038/nature02504
  • van Sorge NM, Beasley FC, Gusarov I, Gonzalez DJ, von Köckritz-Blickwede M, Anik S, Borkowski AW, Dorrestein PC, Nudler E, Nizet V. Methicillin-resistant Staphylococcus aureus bacterial nitric-oxide synthase affects antibiotic sensitivity and skin abscess development. J Biol Chem 2013; 288:6417-26; PMID:23322784; http://dx.doi.org/10.1074/jbc.M112.448738
  • Vaish M, Singh VK. Antioxidant functions of nitric oxide synthase in a methicillin sensitive Staphylococcus aureus. Int J Microbiol 2013; 2013:312146; PMID:23690783; http://dx.doi.org/10.1155/2013/312146
  • Richardson AR, Dunman PM, Fang FC. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol 2006; 61:927-39; PMID:16859493; http://dx.doi.org/10.1111/j.1365–2958.2006.05290.x
  • Richardson AR, Libby SJ, Fang FC. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science 2008; 319:1672-6; PMID:18356528; http://dx.doi.org/10.1126/science.1155207
  • Gonçalves VL, Nobre LS, Vicente JB, Teixeira M, Saraiva LM. Flavohemoglobin requires microaerophilic conditions for nitrosative protection of Staphylococcus aureus. FEBS Lett 2006; 580:1817-21; PMID:16516202; http://dx.doi.org/10.1016/j.febslet.2006.02.039
  • World Health Organisation. (2011) Global Tuberculosis Control. WHO Press, Geneva, WHO/HTM/TB/2011.16.
  • O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP. The immune response in tuberculosis. Annu Rev Immunol 2013; 31:475-527; PMID:23516984; http://dx.doi.org/10.1146/annurev-immunol-032712–095939
  • Russell DG. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2001; 2:569-77; PMID:11483990; http://dx.doi.org/10.1038/35085034
  • Russell DG. Who puts the tubercle in tuberculosis? Nat Rev Microbiol 2007; 5:39-47; PMID:17160001; http://dx.doi.org/10.1038/nrmicro1538
  • Russell DG, Barry CE 3rd, Flynn JL. Tuberculosis: what we don't know can, and does, hurt us. Science 2010; 328:852-6; PMID:20466922; http://dx.doi.org/10.1126/science.1184784
  • Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, Eum SY, Taylor K, Klein E, Manjunatha U, Gonzales J, et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 2008; 76:2333-40; PMID:18347040; http://dx.doi.org/10.1128/IAI.01515–07
  • Wayne LG, Sohaskey CD. Nonreplicating persistence of mycobacterium tuberculosis. Annu Rev Microbiol 2001; 55:139-63; PMID:11544352; http://dx.doi.org/10.1146/annurev.micro.55.1.139
  • Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 2003; 198:705-13; PMID:12953092; http://dx.doi.org/10.1084/jem.20030205
  • Sardiwal S, Kendall SL, Movahedzadeh F, Rison SC, Stoker NG, Djordjevic S. A GAF domain in the hypoxia/NO-inducible Mycobacterium tuberculosis DosS protein binds haem. J Mol Biol 2005; 353:929-36; PMID:16213520; http://dx.doi.org/10.1016/j.jmb.2005.09.011
  • Sousa EH, Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA. DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Protein Sci 2007; 16:1708-19; PMID:17600145; http://dx.doi.org/10.1110/ps.072897707
  • Kumar A, Toledo JC, Patel RP, Lancaster JR Jr., Steyn AJ. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc Natl Acad Sci U S A 2007; 104:11568-73; PMID:17609369; http://dx.doi.org/10.1073/pnas.0705054104
  • Ioanoviciu A, Meharenna YT, Poulos TL, Ortiz de Montellano PR. DevS oxy complex stability identifies this heme protein as a gas sensor in Mycobacterium tuberculosis dormancy. Biochemistry 2009; 48:5839-48; PMID:19463006; http://dx.doi.org/10.1021/bi802309y
  • Sivaramakrishnan S, Ortiz de Montellano PR. The DosS-DosT/DosR mycobacterial sensor system. Biosensors 2013; 3:259-82; http://dx.doi.org/10.3390/bios3030259
  • Yukl ET, Ioanoviciu A, Sivaramakrishnan S, Nakano MM, Ortiz de Montellano PR, Moënne-Loccoz P. Nitric oxide dioxygenation reaction in DevS and the initial response to nitric oxide in Mycobacterium tuberculosis. Biochemistry 2011; 50:1023-8; PMID:21250657; http://dx.doi.org/10.1021/bi1015315
  • Honaker RW, Leistikow RL, Bartek IL, Voskuil MI. Unique roles of DosT and DosS in DosR regulon induction and Mycobacterium tuberculosis dormancy. Infect Immun 2009; 77:3258-63; PMID:19487478; http://dx.doi.org/10.1128/IAI.01449–08
  • Vos MH, Bouzhir-Sima L, Lambry JC, Luo H, Eaton-Rye JJ, Ioanoviciu A, Ortiz de Montellano PR, Liebl U. Ultrafast ligand dynamics in the heme-based GAF sensor domains of the histidine kinases DosS and DosT from Mycobacterium tuberculosis. Biochemistry 2012; 51:159-66; PMID:22142262; http://dx.doi.org/10.1021/bi201467c
  • Kim MJ, Park KJ, Ko IJ, Kim YM, Oh JI. Different roles of DosS and DosT in the hypoxic adaptation of Mycobacteria. J Bacteriol 2010; 192:4868-75; PMID:20675480; http://dx.doi.org/10.1128/JB.00550–10
  • Boon C, Dick T. Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J Bacteriol 2002; 184:6760-7; PMID:12446625; http://dx.doi.org/10.1128/JB.184.24.6760–6767.2002
  • Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, Schoolnik GK, Sherman DR. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 2003; 48:833-43; PMID:12694625; http://dx.doi.org/10.1046/j.1365–2958.2003.03474.x
  • Voskuil MI, Visconti KC, Schoolnik GK. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis (Edinb) 2004; 84:218-27; PMID:15207491; http://dx.doi.org/10.1016/j.tube.2004.02.003
  • Gengenbacher M, Kaufmann SH. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 2012; 36:514-32; PMID:22320122; http://dx.doi.org/10.1111/j.1574–6976.2012.00331.x
  • Leistikow RL, Morton RA, Bartek IL, Frimpong I, Wagner K, Voskuil MI. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol 2010; 192:1662-70; PMID:20023019; http://dx.doi.org/10.1128/JB.00926–09
  • Rustad TR, Sherrid AM, Minch KJ, Sherman DR. Hypoxia: a window into Mycobacterium tuberculosis latency. Cell Microbiol 2009; 11:1151-9; PMID:19388905; http://dx.doi.org/10.1111/j.1462–5822.2009.01325.x
  • den Hengst CD, Buttner MJ. Redox control in actinobacteria. Biochim Biophys Acta 2008; 1780:1201-16; PMID:18252205; http://dx.doi.org/10.1016/j.bbagen.2008.01.008
  • Soliveri JA, Gomez J, Bishai WR, Chater KF. Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology 2000; 146:333-43; PMID:10708372
  • Davis NK, Chater KF. The Streptomyces coelicolor whiB gene encodes a small transcription factor-like protein dispensable for growth but essential for sporulation. Mol Gen Genet 1992; 232:351-8; PMID:1316997; http://dx.doi.org/10.1007/BF00266237
  • Alam MS, Garg SK, Agrawal P. Molecular function of WhiB4/Rv3681c of Mycobacterium tuberculosis H37Rv: a [4Fe-4S] cluster co-ordinating protein disulphide reductase. Mol Microbiol 2007; 63:1414-31; PMID:17302817; http://dx.doi.org/10.1111/j.1365–2958.2007.05589.x
  • Alam MS, Garg SK, Agrawal P. Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv. FEBS J 2009; 276:76-93; PMID:19016840; http://dx.doi.org/10.1111/j.1742–4658.2008.06755.x
  • Jakimowicz P, Cheesman MR, Bishai WR, Chater KF, Thomson AJ, Buttner MJ. Evidence that the Streptomyces developmental protein WhiD, a member of the WhiB family, binds a [4Fe-4S] cluster. J Biol Chem 2005; 280:8309-15; PMID:15615709; http://dx.doi.org/10.1074/jbc.M412622200
  • Rybniker J, Nowag A, van Gumpel E, Nissen N, Robinson N, Plum G, Hartmann P. Insights into the function of the WhiB-like protein of mycobacteriophage TM4–a transcriptional inhibitor of WhiB2. Mol Microbiol 2010; 77:642-57; PMID:20545868; http://dx.doi.org/10.1111/j.1365–2958.2010.07235.x
  • Singh A, Guidry L, Narasimhulu KV, Mai D, Trombley J, Redding KE, Giles GI, Lancaster JR Jr., Steyn AJ. Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. Proc Natl Acad Sci U S A 2007; 104:11562-7; PMID:17609386; http://dx.doi.org/10.1073/pnas.0700490104
  • Smith LJ, Stapleton MR, Fullstone GJ, Crack JC, Thomson AJ, Le Brun NE, Hunt DM, Harvey E, Adinolfi S, Buxton RS, et al. Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron-sulfur cluster. Biochem J 2010; 432:417-27; PMID:20929442; http://dx.doi.org/10.1042/BJ20101440
  • Smith LJ, Stapleton MR, Buxton RS, Green J. Structure-function relationships of the Mycobacterium tuberculosis transcription factor WhiB1. PLoS One 2012; 7:e40407; PMID:22792304; http://dx.doi.org/10.1371/journal.pone.0040407
  • Crack JC, Smith LJ, Stapleton MR, Peck J, Watmough NJ, Buttner MJ, Buxton RS, Green J, Oganesyan VS, Thomson AJ, et al. Mechanistic insight into the nitrosylation of the [4Fe-4S] cluster of WhiB-like proteins. J Am Chem Soc 2011; 133:1112-21; PMID:21182249; http://dx.doi.org/10.1021/ja109581t
  • Stapleton MR, Smith LJ, Hunt DM, Buxton RS, Green J. Mycobacterium tuberculosis WhiB1 represses transcription of the essential chaperonin GroEL2. Tuberculosis (Edinb) 2012; 92:328-32; PMID:22464736; http://dx.doi.org/10.1016/j.tube.2012.03.001
  • Guo M, Feng H, Zhang J, Wang W, Wang Y, Li Y, Gao C, Chen H, Feng Y, He ZG. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res 2009; 19:1301-8; PMID:19228590; http://dx.doi.org/10.1101/gr.086595.108
  • Saini V, Farhana A, Steyn AJ. Mycobacterium tuberculosis WhiB3: a novel iron-sulfur cluster protein that regulates redox homeostasis and virulence. Antioxid Redox Signal 2012; 16:687-97; PMID:22010944; http://dx.doi.org/10.1089/ars.2011.4341
  • Singh A, Crossman DK, Mai D, Guidry L, Voskuil MI, Renfrow MB, Steyn AJ. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog 2009; 5:e1000545; PMID:19680450; http://dx.doi.org/10.1371/journal.ppat.1000545
  • Steyn AJ, Collins DM, Hondalus MK, Jacobs WR Jr., Kawakami RP, Bloom BR. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc Natl Acad Sci U S A 2002; 99:3147-52; PMID:11880648; http://dx.doi.org/10.1073/pnas.052705399
  • Banaiee N, Jacobs WR Jr., Ernst JD. Regulation of Mycobacterium tuberculosis whiB3 in the mouse lung and macrophages. Infect Immun 2006; 74:6449-57; PMID:16923787; http://dx.doi.org/10.1128/IAI.00190–06
  • Geiman DE, Raghunand TR, Agarwal N, Bishai WR. Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes. Antimicrob Agents Chemother 2006; 50:2836-41; PMID:16870781; http://dx.doi.org/10.1128/AAC.00295–06
  • Larsson C, Luna B, Ammerman NC, Maiga M, Agarwal N, Bishai WR. Gene expression of Mycobacterium tuberculosis putative transcription factors whiB1–7 in redox environments. PLoS One 2012; 7:e37516; PMID:22829866; http://dx.doi.org/10.1371/journal.pone.0037516