2,049
Views
26
CrossRef citations to date
0
Altmetric
Research Paper

Biofilm-degrading enzymes from Lysobacter gummosus

, &
Pages 378-387 | Received 19 Nov 2013, Accepted 20 Jan 2014, Published online: 11 Feb 2014

References

  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 2013; 3:a010306; http://dx.doi.org/10.1101/cshperspect.a010306; PMID: 23545571
  • Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 2012; 33:5967 - 82; http://dx.doi.org/10.1016/j.biomaterials.2012.05.031; PMID: 22695065
  • Cooper RA. Inhibition of biofilms by glucose oxidase, lactoperoxidase and guaiacol: the active antibacterial component in an enzyme alginogel. Int Wound J 2013; Forthcoming http://dx.doi.org/10.1111/iwj.12083; PMID: 23672196
  • Regina VR, Søhoel H, Lokanathan AR, Bischoff C, Kingshott P, Revsbech NP, Meyer RL. Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications. ACS Appl Mater Interfaces 2012; 4:5915 - 21; http://dx.doi.org/10.1021/am301554m; PMID: 23020255
  • Chaignon P, Sadovskaya I, Ragunah Ch, Ramasubbu N, Kaplan JB, Jabbouri S. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 2007; 75:125 - 32; http://dx.doi.org/10.1007/s00253-006-0790-y; PMID: 17221196
  • Berg CH, Kalfas S, Malmsten M, Arnebrant T. Proteolytic degradation of oral biofilms in vitro and in vivo: potential of proteases originating from Euphausia superba for plaque control. Eur J Oral Sci 2001; 109:316 - 24; http://dx.doi.org/10.1034/j.1600-0722.2001.00099.x; PMID: 11695752
  • Cordeiro AL, Hippius C, Werner C. Immobilized enzymes affect biofilm formation. Biotechnol Lett 2011; 33:1897 - 904; http://dx.doi.org/10.1007/s10529-011-0643-3; PMID: 21618024
  • Sass P, Bierbaum G. Lytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus.. Appl Environ Microbiol 2007; 73:347 - 52; http://dx.doi.org/10.1128/AEM.01616-06; PMID: 17085695
  • Domenech M, García E, Moscoso M. In vitro destruction of Streptococcus pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases. Antimicrob Agents Chemother 2011; 55:4144 - 8; http://dx.doi.org/10.1128/AAC.00492-11; PMID: 21746941
  • Wu JA, Kusuma C, Mond JJ, Kokai-Kun JF. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob Agents Chemother 2003; 47:3407 - 14; http://dx.doi.org/10.1128/AAC.47.11.3407-3414.2003; PMID: 14576095
  • Izano EA, Amarante MA, Kher WB, Kaplan JB. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 2008; 74:470 - 6; http://dx.doi.org/10.1128/AEM.02073-07; PMID: 18039822
  • Kaplan JB, Ragunath C, Ramasubbu N, Fine DH. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. J Bacteriol 2003; 185:4693 - 8; http://dx.doi.org/10.1128/JB.185.16.4693-4698.2003; PMID: 12896987
  • Gökçen A, Vilcinskas A, Wiesner J. Methods to identify enzymes that degrade the main extracellular polysaccharide component of Staphylococcus epidermidis biofilms. Virulence 2013; 4:260 - 70; http://dx.doi.org/10.4161/viru.23560; PMID: 23357872
  • Schommer NN, Christner M, Hentschke M, Ruckdeschel K, Aepfelbacher M, Rohde H. Staphylococcus epidermidis uses distinct mechanisms of biofilm formation to interfere with phagocytosis and activation of mouse macrophage-like cells 774A.1. Infect Immun 2011; 79:2267 - 76; http://dx.doi.org/10.1128/IAI.01142-10; PMID: 21402760
  • Pavlukhina SV, Kaplan JB, Xu L, Chang W, Yu X, Madhyastha S, Yakandawala N, Mentbayeva A, Khan B, Sukhishvili SA. Noneluting enzymatic antibiofilm coatings. ACS Appl Mater Interfaces 2012; 4:4708 - 16; http://dx.doi.org/10.1021/am3010847; PMID: 22909396
  • Christensen P, Cook FD. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 1978; 28:367 - 93; http://dx.doi.org/10.1099/00207713-28-3-367
  • Reichenbach H. The genus Lysobacter, p 939–957. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (ed), Prokaryotes 2006; Springer, New York.
  • Hayward AC, Fegan N, Fegan M, Stirling GR. Stenotrophomonas and Lysobacter: ubiquitous plant-associated gamma-proteobacteria of developing significance in applied microbiology. J Appl Microbiol 2010; 108:756 - 70; http://dx.doi.org/10.1111/j.1365-2672.2009.04471.x; PMID: 19702860
  • Schoenfelder SM, Lange C, Eckart M, Hennig S, Kozytska S, Ziebuhr W. Success through diversity - how Staphylococcus epidermidis establishes as a nosocomial pathogen. Int J Med Microbiol 2010; 300:380 - 6; http://dx.doi.org/10.1016/j.ijmm.2010.04.011; PMID: 20451447
  • Brucker RM, Baylor CM, Walters RL, Lauer A, Harris RN, Minbiole KP. The identification of 2,4-diacetylphloroglucinol as an antifungal metabolite produced by cutaneous bacteria of the salamander Plethodon cinereus.. J Chem Ecol 2008; 34:39 - 43; http://dx.doi.org/10.1007/s10886-007-9352-8; PMID: 18058176
  • Riggio MP, Dempsey KE, Lennon A, Allan D, Ramage G, Bagg J. Molecular detection of transcriptionally active bacteria from failed prosthetic hip joints removed during revision arthroplasty. Eur J Clin Microbiol Infect Dis 2010; 29:823 - 34; http://dx.doi.org/10.1007/s10096-010-0934-y; PMID: 20449620
  • Whitaker DR. Lytic enzymes of Sorangium sp. Isolation and enzymatic properties of the alpha- and beta-lytic proteases. Can J Biochem 1965; 43:1935 - 54; http://dx.doi.org/10.1139/o65-217; PMID: 5326246
  • Olson MO, Nagabhushan N, Dzwiniel M, Smillie LB, Whitaker DR. Priaary structure of alpha-lytic protease: a bacterial homologue of the pancreatic serine proteases. Nature 1970; 228:438 - 42; http://dx.doi.org/10.1038/228438a0; PMID: 5482494
  • Silen JL, McGrath CN, Smith KR, Agard DA. Molecular analysis of the gene encoding alpha-lytic protease: evidence for a preproenzyme. Gene 1988; 69:237 - 44; http://dx.doi.org/10.1016/0378-1119(88)90434-9; PMID: 3234766
  • Silen JL, Frank D, Fujishige A, Bone R, Agard DA. Analysis of prepro-alpha-lytic protease expression in Escherichia coli reveals that the pro region is required for activity. J Bacteriol 1989; 171:1320 - 5; PMID: 2646278
  • Fujishige A, Smith KR, Silen JL, Agard DA. Correct folding of alpha-lytic protease is required for its extracellular secretion from Escherichia coli.. J Cell Biol 1992; 118:33 - 42; http://dx.doi.org/10.1083/jcb.118.1.33; PMID: 1618906
  • Cunningham EL, Agard DA. Disabling the folding catalyst is the last critical step in alpha-lytic protease folding. Protein Sci 2004; 13:325 - 31; http://dx.doi.org/10.1110/ps.03389704; PMID: 14739318
  • Muranova TA, Krasovskaya LA, Tsfasman IM, Stepnaya OA, Kulaev IS. Structural investigations and identification of the extracellular bacteriolytic endopeptidase L1 from Lysobacter sp. XL1. Biochemistry (Mosc) 2004; 69:501 - 5; http://dx.doi.org/10.1023/B:BIRY.0000029847.40511.26; PMID: 15193123
  • Lapteva YS, Zolova OE, Shlyapnikov MG, Tsfasman IM, Muranova TA, Stepnaya OA, Kulaev IS, Granovsky IE. Cloning and expression analysis of genes encoding lytic endopeptidases L1 and L5 from Lysobacter sp. strain XL1. Appl Environ Microbiol 2012; 78:7082 - 9; http://dx.doi.org/10.1128/AEM.01621-12; PMID: 22865082
  • Li S, Norioka S, Sakiyama F. Purification, staphylolytic activity, and cleavage sites of alpha-lytic protease from Achromobacter lyticus.. J Biochem 1997; 122:772 - 8; http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021822; PMID: 9399581
  • Damaglou AP, Allen LC, Whitaker DR. Beta-lytic protease – Myxobacter 495, p 198. In Dayhoff MO (ed), Atlas of protein sequence and structure, vol 5. National Biomedical Research Foundation 1976; Washington DC.
  • Li SL, Norioka S, Sakiyama F. Molecular cloning and nucleotide sequence of the beta-lytic protease gene from Achromobacter lyticus.. J Bacteriol 1990; 172:6506 - 11; PMID: 2228973
  • Ahmed K, Chohnan S, Ohashi H, Hirata T, Masaki T, Sakiyama F. Purification, bacteriolytic activity, and specificity of beta-lytic protease from Lysobacter sp. IB-9374. J Biosci Bioeng 2003; 95:27 - 34; PMID: 16233362
  • Oza NB. Beta-lytic protease, a neutral sorangiopeptidase. Int J Pept Protein Res 1973; 5:365 - 9; http://dx.doi.org/10.1111/j.1399-3011.1973.tb02341.x; PMID: 4782638
  • Li S, Norioka S, Sakiyama F. Bacteriolytic activity and specificity of Achromobacter beta-lytic protease. J Biochem 1998; 124:332 - 9; http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022116; PMID: 9685723
  • Kessler E, Safrin M, Gustin JK, Ohman DE. Elastase and the LasA protease of Pseudomonas aeruginosa are secreted with their propeptides. J Biol Chem 1998; 273:30225 - 31; http://dx.doi.org/10.1074/jbc.273.46.30225; PMID: 9804780
  • Masaki T, Tanabe M, Nakamura K, Soejima M. Studies on a new proteolytic enzyme from A chromobacter lyticus M497-1. I. Purification and some enzymatic properties. Biochim Biophys Acta 1981; 660:44 - 50; http://dx.doi.org/10.1016/0005-2744(81)90106-6; PMID: 6791693
  • Sakiyama F, Masaki T. Lysyl endopeptidase of Achromobacter lyticus.. Methods Enzymol 1994; 244:126 - 37; http://dx.doi.org/10.1016/0076-6879(94)44011-5; PMID: 7845202
  • Kuhlman PA, Chen R, Alcantara J, Szarka S. Rapid purification of Lys-C from Lysobacter enzymogenes cultures: A sequential chromatography technique. BioProcess Int 2009; 7:28 - 38
  • Ohara T, Makino K, Shinagawa H, Nakata A, Norioka S, Sakiyama F. Cloning, nucleotide sequence, and expression of Achromobacter protease I gene. J Biol Chem 1989; 264:20625 - 31; PMID: 2684982
  • Chohnan S, Nonaka J, Teramoto K, Taniguchi K, Kameda Y, Tamura H, Kurusu Y, Norioka S, Masaki T, Sakiyama F. Lysobacter strain with high lysyl endopeptidase production. FEMS Microbiol Lett 2002; 213:13 - 20; http://dx.doi.org/10.1111/j.1574-6968.2002.tb11279.x; PMID: 12127482
  • Chohnan S, Shiraki K, Yokota K, Ohshima M, Kuroiwa N, Ahmed K, Masaki T, Sakiyama F. A second lysine-specific serine protease from Lysobacter sp. strain IB-9374. J Bacteriol 2004; 186:5093 - 100; http://dx.doi.org/10.1128/JB.186.15.5093-5100.2004; PMID: 15262946
  • Elliott BW Jr., Cohen C. Isolation and characterization of a lysine-specific protease from Pseudomonas aeruginosa.. J Biol Chem 1986; 261:11259 - 65; PMID: 3090046
  • Traidej M, Marquart ME, Caballero AR, Thibodeaux BA, O’Callaghan RJ. Identification of the active site residues of Pseudomonas aeruginosa protease IV. Importance of enzyme activity in autoprocessing and activation. J Biol Chem 2003; 278:2549 - 53; http://dx.doi.org/10.1074/jbc.M208973200; PMID: 12419815
  • Lutfullah G, Amin F, Khan Z, Azhar N, Azim MK, Noor S, Shoukat K. Homology modeling of hemagglutinin/protease [HA/P (vibriolysin)] from Vibrio cholerae: sequence comparision, residue interactions and molecular mechanism. Protein J 2008; 27:105 - 14; http://dx.doi.org/10.1007/s10930-007-9113-0; PMID: 18074211
  • Booth BA, Boesman-Finkelstein M, Finkelstein RA. Vibrio cholerae soluble hemagglutinin/protease is a metalloenzyme. Infect Immun 1983; 42:639 - 44; PMID: 6417020
  • Häse CC, Finkelstein RA. Cloning and nucleotide sequence of the Vibrio cholerae hemagglutinin/protease (HA/protease) gene and construction of an HA/protease-negative strain. J Bacteriol 1991; 173:3311 - 7; PMID: 2045361
  • Miyoshi S, Wakae H, Tomochika K, Shinoda S. Functional domains of a zinc metalloprotease from Vibrio vulnificus.. J Bacteriol 1997; 179:7606 - 9; PMID: 9393733
  • Chang AK, Park JW, Lee EH, Lee JS. The N-terminal propeptide of Vibrio vulnificus extracellular metalloprotease is both an inhibitor of and a substrate for the enzyme. J Bacteriol 2007; 189:6832 - 8; http://dx.doi.org/10.1128/JB.00396-07; PMID: 17644589
  • Parsons LM, Lin F, Orban J. Peptidoglycan recognition by Pal, an outer membrane lipoprotein. Biochemistry 2006; 45:2122 - 8; http://dx.doi.org/10.1021/bi052227i; PMID: 16475801
  • Pautsch A, Schulz GE. Structure of the outer membrane protein A transmembrane domain. Nat Struct Biol 1998; 5:1013 - 7; http://dx.doi.org/10.1038/2983; PMID: 9808047
  • Kovacs-Simon A, Titball RW, Michell SL. Lipoproteins of bacterial pathogens. Infect Immun 2011; 79:548 - 61; http://dx.doi.org/10.1128/IAI.00682-10; PMID: 20974828
  • Vasilyeva NV, Tsfasman IM, Suzina NE, Stepnaya OA, Kulaev IS. Secretion of bacteriolytic endopeptidase L5 of Lysobacter sp. XL1 into the medium by means of outer membrane vesicles. FEBS J 2008; 275:3827 - 35; http://dx.doi.org/10.1111/j.1742-4658.2008.06530.x; PMID: 18573103
  • Vasilyeva NV, Tsfasman IM, Kudryakova IV, Suzina NE, Shishkova NA, Kulaev IS, Stepnaya OA. The role of membrane vesicles in secretion of Lysobacter sp. bacteriolytic enzymes. J Mol Microbiol Biotechnol 2013; 23:142 - 51; http://dx.doi.org/10.1159/000346550; PMID: 23615202
  • Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2001; Chapter 2:Unit 2.4. doi: http://dx.doi.org/10.1002/0471142727.mb0204s56.