1,193
Views
29
CrossRef citations to date
0
Altmetric
Research Paper

LysPGS formation in Listeria monocytogenes has broad roles in maintaining membrane integrity beyond antimicrobial peptide resistance

, , , &
Pages 534-546 | Received 20 Dec 2013, Accepted 25 Feb 2014, Published online: 06 Mar 2014

References

  • Ramaswamy V, Cresence VM, Rejitha JS, Lekshmi MU, Dharsana KS, Prasad SP, Vijila HM. Listeria--review of epidemiology and pathogenesis. J Microbiol Immunol Infect 2007; 40:4 - 13; PMID: 17332901
  • Gründling A, Burrack LS, Bouwer HG, Higgins DE. Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc Natl Acad Sci U S A 2004; 101:12318 - 23; http://dx.doi.org/10.1073/pnas.0404924101; PMID: 15302931
  • Peel M, Donachie W, Shaw A. Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting. J Gen Microbiol 1988; 134:2171 - 8; PMID: 3150978
  • Way SS, Thompson LJ, Lopes JE, Hajjar AM, Kollmann TR, Freitag NE, Wilson CB. Characterization of flagellin expression and its role in Listeria monocytogenes infection and immunity. Cell Microbiol 2004; 6:235 - 42; http://dx.doi.org/10.1046/j.1462-5822.2004.00360.x; PMID: 14764107
  • Tilney LG, Portnoy DA. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 1989; 109:1597 - 608; http://dx.doi.org/10.1083/jcb.109.4.1597; PMID: 2507553
  • Sleator RD, Watson D, Hill C, Gahan CG. The interaction between Listeria monocytogenes and the host gastrointestinal tract. Microbiology 2009; 155:2463 - 75; http://dx.doi.org/10.1099/mic.0.030205-0; PMID: 19542009
  • Thedieck K, Hain T, Mohamed W, Tindall BJ, Nimtz M, Chakraborty T, Wehland J, Jänsch L. The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes. Mol Microbiol 2006; 62:1325 - 39; http://dx.doi.org/10.1111/j.1365-2958.2006.05452.x; PMID: 17042784
  • Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 2001; 193:1067 - 76; http://dx.doi.org/10.1084/jem.193.9.1067; PMID: 11342591
  • Roy H, Ibba M. Broad range amino acid specificity of RNA-dependent lipid remodeling by multiple peptide resistance factors. J Biol Chem 2009; 284:29677 - 83; http://dx.doi.org/10.1074/jbc.M109.046367; PMID: 19734140
  • Roy H. Tuning the properties of the bacterial membrane with aminoacylated phosphatidylglycerol. IUBMB Life 2009; 61:940 - 53; http://dx.doi.org/10.1002/iub.240; PMID: 19787708
  • Haest CW, de Gier J, den Kamp JA OP, Bartels P, van Deenen LL. Chages in permeability of Staphylococcus aureus and derived liposomes with varying lipid composition. Biochim Biophys Acta 1972; 255:720 - 33; http://dx.doi.org/10.1016/0005-2736(72)90385-9; PMID: 5020221
  • Jones T, Yeaman MR, Sakoulas G, Yang SJ, Proctor RA, Sahl HG, Schrenzel J, Xiong YQ, Bayer AS. Failures in clinical treatment of Staphylococcus aureus Infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob Agents Chemother 2008; 52:269 - 78; AAC.00719-07 [pii] 10.1128/AAC.00719-07 http://dx.doi.org/10.1128/AAC.00719-07; PMID: 17954690
  • Vinuesa P, Neumann-Silkow F, Pacios-Bras C, Spaink HP, Martínez-Romero E, Werner D. Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Mol Plant Microbe Interact 2003; 16:159 - 68; http://dx.doi.org/10.1094/MPMI.2003.16.2.159; PMID: 12575750
  • Klein S, Lorenzo C, Hoffmann S, Walther JM, Storbeck S, Piekarski T, Tindall BJ, Wray V, Nimtz M, Moser J. Adaptation of Pseudomonas aeruginosa to various conditions includes tRNA-dependent formation of alanyl-phosphatidylglycerol. Mol Microbiol 2009; 71:551 - 65; http://dx.doi.org/10.1111/j.1365-2958.2008.06562.x; PMID: 19087229
  • Mastronicolis S, German J, Megoulas N, Petrou E, Foka P, Smith G. Influence of cold shock on the fatty-acid composition of different lipid classes of the food-borne pathogen Listeria monocytogenes. Food Microbiol 1998; 15:299 - 306; http://dx.doi.org/10.1006/fmic.1997.0170
  • Mastronicolis SK, Boura A, Karaliota A, Magiatis P, Arvanitis N, Litos C, Tsakirakis A, Paraskevas P, Moustaka H, Heropoulos G. Effect of cold temperature on the composition of different lipid classes of the foodborne pathogen Listeria monocytogenes: focus on neutral lipids. Food Microbiol 2006; 23:184 - 94; http://dx.doi.org/10.1016/j.fm.2005.03.001; PMID: 16943003
  • Salzberg LI, Helmann JD. Phenotypic and transcriptomic characterization of Bacillus subtilis mutants with grossly altered membrane composition. J Bacteriol 2008; 190:7797 - 807; JB.00720-08 [pii] 10.1128/JB.00720-08 http://dx.doi.org/10.1128/JB.00720-08; PMID: 18820022
  • Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 2006; 4:529 - 36; http://dx.doi.org/10.1038/nrmicro1441; PMID: 16778838
  • Staubitz P, Peschel A. MprF-mediated lysinylation of phospholipids in Bacillus subtilis--protection against bacteriocins in terrestrial habitats?. Microbiology 2002; 148:3331 - 2; PMID: 12427923
  • Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M. The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 2007; 66:1136 - 47; http://dx.doi.org/10.1111/j.1365-2958.2007.05986.x; PMID: 17961141
  • Kristian SA, Dürr M, Van Strijp JA, Neumeister B, Peschel A. MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygen-independent neutrophil killing. Infect Immun 2003; 71:546 - 9; http://dx.doi.org/10.1128/IAI.71.1.546-549.2003; PMID: 12496209
  • Begley M, Gahan CG, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev 2005; 29:625 - 51; http://dx.doi.org/10.1016/j.femsre.2004.09.003; PMID: 16102595
  • Dussurget O, Cabanes D, Dehoux P, Lecuit M, Buchrieser C, Glaser P, Cossart P, European Listeria Genome Consortium. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 2002; 45:1095 - 106; http://dx.doi.org/10.1046/j.1365-2958.2002.03080.x; PMID: 12180927
  • López D, Kolter R. Functional microdomains in bacterial membranes. Genes Dev 2010; 24:1893 - 902; http://dx.doi.org/10.1101/gad.1945010; PMID: 20713508
  • Kowalski MP, Pier GB. Localization of cystic fibrosis transmembrane conductance regulator to lipid rafts of epithelial cells is required for Pseudomonas aeruginosa-induced cellular activation. J Immunol 2004; 172:418 - 25; PMID: 14688350
  • Ichihashi N, Kurokawa K, Matsuo M, Kaito C, Sekimizu K. Inhibitory effects of basic or neutral phospholipid on acidic phospholipid-mediated dissociation of adenine nucleotide bound to DnaA protein, the initiator of chromosomal DNA replication. J Biol Chem 2003; 278:28778 - 86; http://dx.doi.org/10.1074/jbc.M212202200; PMID: 12767975
  • Arias-Cartin R, Grimaldi S, Arnoux P, Guigliarelli B, Magalon A. Cardiolipin binding in bacterial respiratory complexes: structural and functional implications. Biochim Biophys Acta 2012; 1817:1937 - 49; http://dx.doi.org/10.1016/j.bbabio.2012.04.005; PMID: 22561115
  • Dowhan W, Bogdanov M. Lipid-protein interactions as determinants of membrane protein structure and function. Biochem Soc Trans 2011; 39:767 - 74; http://dx.doi.org/10.1042/BST0390767; PMID: 21599647
  • Sievers S, Ernst CM, Geiger T, Hecker M, Wolz C, Becher D, Peschel A. Changing the phospholipid composition of Staphylococcus aureus causes distinct changes in membrane proteome and membrane-sensory regulators. Proteomics 2010; 10:1685 - 93; http://dx.doi.org/10.1002/pmic.200900772; PMID: 20162562
  • Witte CE, Archer KA, Rae CS, Sauer JD, Woodward JJ, Portnoy DA. Innate immune pathways triggered by Listeria monocytogenes and their role in the induction of cell-mediated immunity. Adv Immunol 2012; 113:135 - 56; http://dx.doi.org/10.1016/B978-0-12-394590-7.00002-6; PMID: 22244582
  • Sauer JD, Pereyre S, Archer KA, Burke TP, Hanson B, Lauer P, Portnoy DA. Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity. Proc Natl Acad Sci U S A 2011; 108:12419 - 24; http://dx.doi.org/10.1073/pnas.1019041108; PMID: 21746921
  • Shen A, Kamp HD, Gründling A, Higgins DE. A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev 2006; 20:3283 - 95; http://dx.doi.org/10.1101/gad.1492606; PMID: 17158746
  • Kamp HD, Higgins DE. A protein thermometer controls temperature-dependent transcription of flagellar motility genes in Listeria monocytogenes. PLoS Pathog 2011; 7:e1002153; http://dx.doi.org/10.1371/journal.ppat.1002153; PMID: 21829361
  • Kamp HD, Higgins DE. Transcriptional and post-transcriptional regulation of the GmaR antirepressor governs temperature-dependent control of flagellar motility in Listeria monocytogenes. Mol Microbiol 2009; 74:421 - 35; http://dx.doi.org/10.1111/j.1365-2958.2009.06874.x; PMID: 19796338
  • Shen A, Higgins DE. The MogR transcriptional repressor regulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes. PLoS Pathog 2006; 2:e30; http://dx.doi.org/10.1371/journal.ppat.0020030; PMID: 16617375
  • Staubitz P, Neumann H, Schneider T, Wiedemann I, Peschel A. MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol Lett 2004; 231:67 - 71; http://dx.doi.org/10.1016/S0378-1097(03)00921-2; PMID: 14769468
  • Friedman L, Alder JD, Silverman JA. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50:2137 - 45; http://dx.doi.org/10.1128/AAC.00039-06; PMID: 16723576
  • Otto M. Bacterial sensing of antimicrobial peptides. Contrib Microbiol 2009; 16:136 - 49; http://dx.doi.org/10.1159/000219377; PMID: 19494583
  • Yang SJ, Bayer AS, Mishra NN, Meehl M, Ledala N, Yeaman MR, Xiong YQ, Cheung AL. The Staphylococcus aureus two-component regulatory system, GraRS, senses and confers resistance to selected cationic antimicrobial peptides. Infect Immun 2012; 80:74 - 81; http://dx.doi.org/10.1128/IAI.05669-11; PMID: 21986630
  • Barák I, Muchová K, Wilkinson AJ, O’Toole PJ, Pavlendová N. Lipid spirals in Bacillus subtilis and their role in cell division. Mol Microbiol 2008; 68:1315 - 27; http://dx.doi.org/10.1111/j.1365-2958.2008.06236.x; PMID: 18430139
  • Hachmann AB, Angert ER, Helmann JD. Genetic analysis of factors affecting susceptibility of Bacillus subtilis to daptomycin. Antimicrob Agents Chemother 2009; 53:1598 - 609; AAC.01329-08 [pii] 10.1128/AAC.01329-08 http://dx.doi.org/10.1128/AAC.01329-08; PMID: 19164152
  • Gahan CG, Hill C. Gastrointestinal phase of Listeria monocytogenes infection. J Appl Microbiol 2005; 98:1345 - 53; http://dx.doi.org/10.1111/j.1365-2672.2005.02559.x; PMID: 15916648
  • Begley M, Sleator RD, Gahan CG, Hill C. Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect Immun 2005; 73:894 - 904; http://dx.doi.org/10.1128/IAI.73.2.894-904.2005; PMID: 15664931
  • Ogle CK, Noel JG, Guo X, Wells DA, Valente JF, Ogle JD, Alexander JW. The ability of endotoxin-stimulated enterocytes to produce bactericidal factors. Crit Care Med 2002; 30:428 - 34; http://dx.doi.org/10.1097/00003246-200202000-00027; PMID: 11889324
  • Wehkamp J, Schwind B, Herrlinger KR, Baxmann S, Schmidt K, Duchrow M, Wohlschläger C, Feller AC, Stange EF, Fellermann K. Innate immunity and colonic inflammation: enhanced expression of epithelial alpha-defensins. Dig Dis Sci 2002; 47:1349 - 55; http://dx.doi.org/10.1023/A:1015334917273; PMID: 12064812
  • O’Neil DA, Porter EM, Elewaut D, Anderson GM, Eckmann L, Ganz T, Kagnoff MF. Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. J Immunol 1999; 163:6718 - 24; PMID: 10586069
  • Gueriri I, Cyncynatus C, Dubrac S, Arana AT, Dussurget O, Msadek T. The DegU orphan response regulator of Listeria monocytogenes autorepresses its own synthesis and is required for bacterial motility, virulence and biofilm formation. Microbiology 2008; 154:2251 - 64; http://dx.doi.org/10.1099/mic.0.2008/017590-0; PMID: 18667558
  • Mishra NN, Yang SJ, Sawa A, Rubio A, Nast CC, Yeaman MR, Bayer AS. Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2009; 53:2312 - 8; AAC.01682-08 [pii] 10.1128/AAC.01682-08 http://dx.doi.org/10.1128/AAC.01682-08; PMID: 19332678
  • Wu J, Fernandes-Alnemri T, Alnemri ES. Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J Clin Immunol 2010; 30:693 - 702; http://dx.doi.org/10.1007/s10875-010-9425-2; PMID: 20490635
  • Thedieck K, Hain T, Mohamed W, Tindall BJ, Nimtz M, Chakraborty T, Wehland J, Jänsch L. The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes. Mol Microbiol 2006; 62:1325 - 39; http://dx.doi.org/10.1111/j.1365-2958.2006.05452.x; PMID: 17042784
  • Roy H, Ibba M. Monitoring Lys-tRNA(Lys) phosphatidylglycerol transferase activity. Methods 2008; 44:164 - 9; http://dx.doi.org/10.1016/j.ymeth.2007.09.002; PMID: 18241797
  • Jonquières R, Bierne H, Fiedler F, Gounon P, Cossart P. Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of gram-positive bacteria. Mol Microbiol 1999; 34:902 - 14; http://dx.doi.org/10.1046/j.1365-2958.1999.01652.x; PMID: 10594817
  • Monk IR, Cook GM, Monk BC, Bremer PJ. Morphotypic conversion in Listeria monocytogenes biofilm formation: biological significance of rough colony isolates. Appl Environ Microbiol 2004; 70:6686 - 94; http://dx.doi.org/10.1128/AEM.70.11.6686-6694.2004; PMID: 15528535
  • Vadia S, Arnett E, Haghighat AC, Wilson-Kubalek EM, Tweten RK, Seveau S. The pore-forming toxin listeriolysin O mediates a novel entry pathway of L. monocytogenes into human hepatocytes. PLoS Pathog 2011; 7:e1002356; http://dx.doi.org/10.1371/journal.ppat.1002356; PMID: 22072970
  • Arnett E, Lehrer RI, Pratikhya P, Lu W, Seveau S. Defensins enable macrophages to inhibit the intracellular proliferation of Listeria monocytogenes. Cell Microbiol 2011; 13:635 - 51; http://dx.doi.org/10.1111/j.1462-5822.2010.01563.x; PMID: 21143570
  • Shetron-Rama LM, Mueller K, Bravo JM, Bouwer HG, Way SS, Freitag NE. Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products. Mol Microbiol 2003; 48:1537 - 51; http://dx.doi.org/10.1046/j.1365-2958.2003.03534.x; PMID: 12791137
  • Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 2005; 4:1265 - 72; http://dx.doi.org/10.1074/mcp.M500061-MCP200; PMID: 15958392

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.