3,320
Views
63
CrossRef citations to date
0
Altmetric
REVIEWS

Interplay between genetic regulation of phosphate homeostasis and bacterial virulence

, &
Pages 786-793 | Published online: 31 Oct 2014

References

  • Parkinson JS. Signal transduction schemes of bacteria. Cell 1993; 73:857-71; PMID:8098993; http://dx.doi.org/10.1016/0092-8674(93)90267-T
  • Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H, Mizuno T. Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 2002; 46:281-91; PMID:12366850; http://dx.doi.org/10.1046/j.1365-2958.2002.03170.x
  • Mizuno T. Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res 1997; 4:161-8; PMID:9205844; http://dx.doi.org/10.1093/dnares/4.2.161
  • Yang C, Huang TW, Wen SY, Chang CY, Tsai SF, Wu WF, Chang CH. Genome-wide PhoB binding and gene expression profiles reveal the hierarchical gene regulatory network of phosphate starvation in Escherichia coli. PLoS One 2012; 7:e47314; PMID:23071782; http://dx.doi.org/10.1371/journal.pone.0047314
  • Hsieh YJ, Wanner BL. Global regulation by the seven-component Pi signaling system. Curr Opin Microbiol 2010; 13:198-203; PMID:20171928; http://dx.doi.org/10.1016/j.mib.2010.01.014
  • Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 2009; 7:263-73; PMID:19287449; http://dx.doi.org/10.1038/nrmicro2109
  • Rao NN, Torriani A. Molecular aspects of phosphate transport in Escherichia coli. Mol Microbiol 1990; 4:1083-90; PMID:1700257; http://dx.doi.org/10.1111/j.1365-2958.1990.tb00682.x
  • Chan FY, Torriani A. PstB protein of the phosphate-specific transport system of Escherichia coli is an ATPase. J Bacteriol 1996; 178:3974-7; PMID:8682808
  • Wanner BL. Signal transduction in the control of phosphate-regulated genes of Escherichia coli. Kidney Int 1996; 49:964-7; PMID:8691745; http://dx.doi.org/10.1038/ki.1996.136
  • Van Dien SJ, Keasling JD. A dynamic model of the Escherichia coli phosphate-starvation response. J Theor Biol 1998; 190:37-49; PMID:9473389; http://dx.doi.org/10.1006/jtbi.1997.0524
  • Makino K, Amemura M, Kim SK, Nakata A, Shinagawa H. Role of the sigma 70 subunit of RNA polymerase in transcriptional activation by activator protein PhoB in Escherichia coli. Genes Dev 1993; 7:149-60; PMID:8422984; http://dx.doi.org/10.1101/gad.7.1.149
  • Bachhawat P, Swapna GV, Montelione GT, Stock AM. Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states. Structure 2005; 13:1353-63; PMID:16154092; http://dx.doi.org/10.1016/j.str.2005.06.006
  • McCleary WR. The activation of PhoB by acetylphosphate. Mol Microbiol 1996; 20:1155-63; PMID:8809768; http://dx.doi.org/10.1111/j.1365-2958.1996.tb02636.x
  • Ritzefeld M, Walhorn V, Kleineberg C, Bieker A, Kock K, Herrmann C, Anselmetti D, Sewald N. Cooperative binding of PhoB(DBD) to its cognate DNA sequence-a combined application of single-molecule and ensemble methods. Biochemistry 2013; 52:8177-86; PMID:24199636; http://dx.doi.org/10.1021/bi400718r
  • Kim SK, Makino K, Amemura M, Nakata A, Shinagawa H. Mutational analysis of the role of the first helix of region 4.2 of the sigma 70 subunit of Escherichia coli RNA polymerase in transcriptional activation by activator protein PhoB. Mol Gen Genet 1995; 248:1-8; PMID:7651320; http://dx.doi.org/10.1007/BF02456607
  • Sola-Landa A, Rodríguez-García A, Apel AK, Martín JF. Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor. Nucleic Acids Res 2008; 36:1358-68; PMID:18187507; http://dx.doi.org/10.1093/nar/gkm1150
  • Santos-Beneit F, Barriuso-Iglesias M, Fernández-Martínez LT, Martínez-Castro M, Sola-Landa A, Rodríguez-García A, Martín JF. The RNA polymerase omega factor RpoZ is regulated by PhoP and has an important role in antibiotic biosynthesis and morphological differentiation in Streptomyces coelicolor. Appl Environ Microbiol 2011; 77:7586-94; PMID:21908625; http://dx.doi.org/10.1128/AEM.00465-11
  • Pratt JT, Ismail AM, Camilli A. PhoB regulates both environmental and virulence gene expression in Vibrio cholerae. Mol Microbiol 2010; 77:1595-605; PMID:20659293; http://dx.doi.org/10.1111/j.1365-2958.2010.07310.x
  • Haldimann A, Daniels LL, Wanner BL. Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the Escherichia coli phosphate regulon. J Bacteriol 1998; 180:1277-86; PMID:9495769
  • Fisher SL, Jiang W, Wanner BL, Walsh CT. Cross-talk between the histidine protein kinase VanS and the response regulator PhoB. Characterization and identification of a VanS domain that inhibits activation of PhoB. J Biol Chem 1995; 270:23143-9; PMID:7559459; http://dx.doi.org/10.1074/jbc.270.39.23143
  • Zhou L, Grégori G, Blackman J, Robinson JP, Wanner BL. Stochastic activation of the response regulator PhoB by noncognate histidine kinases. J Integr Bioinform 2005; 2:11-24
  • Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci U S A 1998; 95:3134-9; PMID:9501228; http://dx.doi.org/10.1073/pnas.95.6.3134
  • Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 1996; 272:1910-4; PMID:8658163; http://dx.doi.org/10.1126/science.272.5270.1910
  • Kaper JB, Morris JG Jr., Levine MM. Cholera. Clin Microbiol Rev 1995; 8:48-86; PMID:7704895
  • Ryan RP, Fouhy Y, Lucey JF, Dow JM. Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol 2006; 188:8327-34; PMID:17028282; http://dx.doi.org/10.1128/JB.01079-06
  • Jenal U, Malone J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 2006; 40:385-407; PMID:16895465; http://dx.doi.org/10.1146/annurev.genet.40.110405.090423
  • Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013; 77:1-52; PMID:23471616; http://dx.doi.org/10.1128/MMBR.00043-12
  • Tamayo R, Tischler AD, Camilli A. The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J Biol Chem 2005; 280:33324-30; PMID:16081414; http://dx.doi.org/10.1074/jbc.M506500200
  • Tischler AD, Camilli A. Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun 2005; 73:5873-82; PMID:16113306; http://dx.doi.org/10.1128/IAI.73.9.5873-5882.2005
  • Tamayo R, Schild S, Pratt JT, Camilli A. Role of cyclic Di-GMP during el tor biotype Vibrio cholerae infection: characterization of the in vivo-induced cyclic Di-GMP phosphodiesterase CdpA. Infect Immun 2008; 76:1617-27; PMID:18227161; http://dx.doi.org/10.1128/IAI.01337-07
  • Beyhan S, Tischler AD, Camilli A, Yildiz FH. Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J Bacteriol 2006; 188:3600-13; PMID:16672614; http://dx.doi.org/10.1128/JB.188.10.3600-3613.2006
  • Tischler AD, Camilli A. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol 2004; 53:857-69; PMID:15255898; http://dx.doi.org/10.1111/j.1365-2958.2004.04155.x
  • Pratt JT, Tamayo R, Tischler AD, Camilli A. PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J Biol Chem 2007; 282:12860-70; PMID:17307739; http://dx.doi.org/10.1074/jbc.M611593200
  • Pratt JT, McDonough E, Camilli A. PhoB regulates motility, biofilms, and cyclic di-GMP in Vibrio cholerae. J Bacteriol 2009; 191:6632-42; PMID:19734314; http://dx.doi.org/10.1128/JB.00708-09
  • Gaspar MC, Couet W, Olivier JC, Pais AA, Sousa JJ. Pseudomonas aeruginosa infection in cystic fibrosis lung disease and new perspectives of treatment: a review. Eur J Clin Microbiol Infect Dis 2013; 32:1231-52; PMID:23619573; http://dx.doi.org/10.1007/s10096-013-1876-y
  • Tümmler B, Koopmann U, Grothues D, Weissbrodt H, Steinkamp G, von der Hardt H. Nosocomial acquisition of Pseudomonas aeruginosa by cystic fibrosis patients. J Clin Microbiol 1991; 29:1265-7; PMID:1907611
  • Weinberg ED. Iron and susceptibility to infectious disease. Science 1974; 184:952-6; PMID:4596821; http://dx.doi.org/10.1126/science.184.4140.952
  • Sanders NN, Franckx H, De Boeck K, Haustraete J, De Smedt SC, Demeester J. Role of magnesium in the failure of rhDNase therapy in patients with cystic fibrosis. Thorax 2006; 61:962-8; PMID:17071834; http://dx.doi.org/10.1136/thx.2006.060814
  • Ostroff RM, Vasil ML. Identification of a new phospholipase C activity by analysis of an insertional mutation in the hemolytic phospholipase C structural gene of Pseudomonas aeruginosa. J Bacteriol 1987; 169:4597-601; PMID:2820937
  • Lucchesi GI, Lisa TA, Domenech CE. Choline and betaine as inducer agents of Pseudomonas aeruginosa phospholipase C activity in high phosphate medium. FEMS Microbiol Lett 1989; 48:335-8; PMID:2498157; http://dx.doi.org/10.1111/j.1574-6968.1989.tb03359.x
  • Shortridge VD, Lazdunski A, Vasil ML. Osmoprotectants and phosphate regulate expression of phospholipase C in Pseudomonas aeruginosa. Mol Microbiol 1992; 6:863-71; PMID:1602966; http://dx.doi.org/10.1111/j.1365-2958.1992.tb01537.x
  • Terry JM, Piña SE, Mattingly SJ. Environmental conditions which influence mucoid conversion Pseudomonas aeruginosa PAO1. Infect Immun 1991; 59:471-7; PMID:1898904
  • Jensen V, Löns D, Zaoui C, Bredenbruch F, Meissner A, Dieterich G, Münch R, Häussler S. RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J Bacteriol 2006; 188:8601-6; PMID:17028277; http://dx.doi.org/10.1128/JB.01378-06
  • Shor R, Halabe A, Rishver S, Tilis Y, Matas Z, Fux A, Boaz M, Weinstein J. Severe hypophosphatemia in sepsis as a mortality predictor. Ann Clin Lab Sci 2006; 36:67-72; PMID:16501239
  • Glattard E, Welters ID, Lavaux T, Muller AH, Laux A, Zhang D, Schmidt AR, Delalande F, Laventie BJ, Dirrig-Grosch S, et al. Endogenous morphine levels are increased in sepsis: a partial implication of neutrophils. PLoS One 2010; 5:e8791; PMID:20098709; http://dx.doi.org/10.1371/journal.pone.0008791
  • Zaborin A, Gerdes S, Holbrook C, Liu DC, Zaborina OY, Alverdy JC. Pseudomonas aeruginosa overrides the virulence inducing effect of opioids when it senses an abundance of phosphate. PLoS One 2012; 7:e34883; PMID:22514685; http://dx.doi.org/10.1371/journal.pone.0034883
  • Long J, Zaborina O, Holbrook C, Zaborin A, Alverdy J. Depletion of intestinal phosphate after operative injury activates the virulence of P aeruginosa causing lethal gut-derived sepsis. Surgery 2008; 144:189-97; PMID:18656625; http://dx.doi.org/10.1016/j.surg.2008.03.045
  • Shah M, Zaborin A, Alverdy JC, Scott K, Zaborina O. Localization of DING proteins on PstS-containing outer-surface appendages of Pseudomonas aeruginosa. FEMS Microbiol Lett 2014; 352:54-61; PMID:24372739; http://dx.doi.org/10.1111/1574-6968.12368
  • Zaborina O, Holbrook C, Chen Y, Long J, Zaborin A, Morozova I, Fernandez H, Wang Y, Turner JR, Alverdy JC. Structure-function aspects of PstS in multi-drug-resistant Pseudomonas aeruginosa. PLoS Pathog 2008; 4:e43; PMID:18282104; http://dx.doi.org/10.1371/journal.ppat.0040043
  • Zaborin A, Romanowski K, Gerdes S, Holbrook C, Lepine F, Long J, Poroyko V, Diggle SP, Wilke A, Righetti K, et al. Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1. Proc Natl Acad Sci U S A 2009; 106:6327-32; PMID:19369215; http://dx.doi.org/10.1073/pnas.0813199106
  • Blus-Kadosh I, Zilka A, Yerushalmi G, Banin E. The effect of pstS and phoB on quorum sensing and swarming motility in Pseudomonas aeruginosa. PLoS One 2013; 8:e74444; PMID:24023943; http://dx.doi.org/10.1371/journal.pone.0074444
  • Bains M, Fernández L, Hancock RE. Phosphate starvation promotes swarming motility and cytotoxicity of Pseudomonas aeruginosa. Appl Environ Microbiol 2012; 78:6762-8; PMID:22773629; http://dx.doi.org/10.1128/AEM.01015-12
  • Monds RD, Newell PD, Gross RH, O’Toole GA. Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA. Mol Microbiol 2007; 63:656-79; PMID:17302799; http://dx.doi.org/10.1111/j.1365-2958.2006.05539.x
  • Monds RD, Newell PD, Wagner JC, Schwartzman JA, Lu W, Rabinowitz JD, O’Toole GA. Di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens via modulation of c-di-GMP-dependent pathways. J Bacteriol 2010; 192:3011-23; PMID:20154123; http://dx.doi.org/10.1128/JB.01571-09
  • Lamarche MG, Wanner BL, Crépin S, Harel J. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 2008; 32:461-73; PMID:18248418; http://dx.doi.org/10.1111/j.1574-6976.2008.00101.x
  • Crépin S, Chekabab SM, Le Bihan G, Bertrand N, Dozois CM, Harel J. The Pho regulon and the pathogenesis of Escherichia coli. Vet Microbiol 2011; 153:82-8; PMID:21700403; http://dx.doi.org/10.1016/j.vetmic.2011.05.043
  • Lamarche MG, Harel J. Membrane homeostasis requires intact pst in extraintestinal pathogenic Escherichia coli. Curr Microbiol 2010; 60:356-9; PMID:19937031; http://dx.doi.org/10.1007/s00284-009-9549-x
  • Daigle F, Fairbrother JM, Harel J. Identification of a mutation in the pst-phoU operon that reduces pathogenicity of an Escherichia coli strain causing septicemia in pigs. Infect Immun 1995; 63:4924-7; PMID:7591158
  • Crépin S, Houle S, Charbonneau ME, Mourez M, Harel J, Dozois CM. Decreased expression of type 1 fimbriae by a pst mutant of uropathogenic Escherichia coli reduces urinary tract infection. Infect Immun 2012; 80:2802-15; PMID:22665376; http://dx.doi.org/10.1128/IAI.00162-12
  • Bertrand N, Houle S, LeBihan G, Poirier É, Dozois CM, Harel J. Increased Pho regulon activation correlates with decreased virulence of an avian pathogenic Escherichia coli O78 strain. Infect Immun 2010; 78:5324-31; PMID:20921144; http://dx.doi.org/10.1128/IAI.00452-10
  • Cheng C, Tennant SM, Azzopardi KI, Bennett-Wood V, Hartland EL, Robins-Browne RM, Tauschek M. Contribution of the pst-phoU operon to cell adherence by atypical enteropathogenic Escherichia coli and virulence of Citrobacter rodentium. Infect Immun 2009; 77:1936-44; PMID:19255191; http://dx.doi.org/10.1128/IAI.01246-08
  • Cheng C, Wakefield MJ, Yang J, Tauschek M, Robins-Browne RM. Genome-wide analysis of the Pho regulon in a pstCA mutant of Citrobacter rodentium. PLoS One 2012; 7:e50682; PMID:23226353; http://dx.doi.org/10.1371/journal.pone.0050682
  • Chekabab SM, Jubelin G, Dozois CM, Harel J. PhoB activates Escherichia coli O157:H7 virulence factors in response to inorganic phosphate limitation. PLoS One 2014; 9:e94285; PMID:24710330; http://dx.doi.org/10.1371/journal.pone.0094285
  • Chekabab SM, Daigle F, Charette SJ, Dozois CM, Harel J. Survival of enterohemorrhagic Escherichia coli in the presence of Acanthamoeba castellanii and its dependence on Pho regulon. Microbiologyopen 2012; 1:427-37; PMID:23233434; http://dx.doi.org/10.1002/mbo3.40
  • Vital M, Hammes F, Egli T. Competition of Escherichia coli O157 with a drinking water bacterial community at low nutrient concentrations. Water Res 2012; 46:6279-90; PMID:23062788; http://dx.doi.org/10.1016/j.watres.2012.08.043
  • Danhorn T, Hentzer M, Givskov M, Parsek MR, Fuqua C. Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. J Bacteriol 2004; 186:4492-501; PMID:15231781; http://dx.doi.org/10.1128/JB.186.14.4492-4501.2004
  • Xu J, Kim J, Danhorn T, Merritt PM, Fuqua C. Phosphorus limitation increases attachment in Agrobacterium tumefaciens and reveals a conditional functional redundancy in adhesin biosynthesis. Res Microbiol 2012; 163:674-84; PMID:23103488; http://dx.doi.org/10.1016/j.resmic.2012.10.013
  • Stickler DJ, King JB, Winters C, Morris SL. Blockage of urethral catheters by bacterial biofilms. J Infect 1993; 27:133-5; PMID:8228293; http://dx.doi.org/10.1016/0163-4453(93)94620-Q
  • Mobley HL, Island MD, Massad G. Virulence determinants of uropathogenic Escherichia coli and Proteus mirabilis. Kidney Int Suppl 1994; 47:S129-36; PMID:7869662
  • Peerbooms PG, Verweij AM, MacLaren DM. Vero cell invasiveness of Proteus mirabilis. Infect Immun 1984; 43:1068-71; PMID:6365782
  • O’May GA, Jacobsen SM, Longwell M, Stoodley P, Mobley HL, Shirtliff ME. The high-affinity phosphate transporter Pst in Proteus mirabilis HI4320 and its importance in biofilm formation. Microbiology 2009; 155:1523-35; PMID:19372157; http://dx.doi.org/10.1099/mic.0.026500-0
  • Mah TF. Biofilm-specific antibiotic resistance. Future Microbiol 2012; 7:1061-72; PMID:22953707; http://dx.doi.org/10.2217/fmb.12.76
  • Donlan RM. Role of biofilms in antimicrobial resistance. ASAIO J 2000; 46:S47-52; PMID:11110294; http://dx.doi.org/10.1097/00002480-200011000-00037
  • Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001; 9:34-9; PMID:11166241; http://dx.doi.org/10.1016/S0966-842X(00)01913-2
  • Vilain S, Cosette P, Junter GA, Jouenne T. Phosphate deprivation is associated with high resistance to latamoxef of gel-entrapped, sessile-like Escherichia coli cells. J Antimicrob Chemother 2002; 49:315-20; PMID:11815573; http://dx.doi.org/10.1093/jac/49.2.315
  • Martin JF, Demain AL. Control of antibiotic biosynthesis. Microbiol Rev 1980; 44:230-51; PMID:6991900
  • Martin JF. Control of antibiotic synthesis by phosphate. In: Heidelberg SB, ed. Advances in Biochemical Engineering, 1977:105-27.
  • Yuan ZC, Zaheer R, Finan TM. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens. Mol Microbiol 2005; 58:877-94; PMID:16238634; http://dx.doi.org/10.1111/j.1365-2958.2005.04874.x
  • Sultan SZ, Silva AJ, Benitez JA. The PhoB regulatory system modulates biofilm formation and stress response in El Tor biotype Vibrio cholerae. FEMS Microbiol Lett 2010; 302:22-31; PMID:19909344; http://dx.doi.org/10.1111/j.1574-6968.2009.01837.x
  • Crépin S, Lamarche MG, Garneau P, Séguin J, Proulx J, Dozois CM, Harel J. Genome-wide transcriptional response of an avian pathogenic Escherichia coli (APEC) pst mutant. BMC Genomics 2008; 9:568; PMID:19038054; http://dx.doi.org/10.1186/1471-2164-9-568
  • Schlenker C, Surawicz CM. Emerging infections of the gastrointestinal tract. Best Pract Res Clin Gastroenterol 2009; 23:89-99; PMID:19258189; http://dx.doi.org/10.1016/j.bpg.2008.11.014
  • Janda JM, Abbott SL, Kroske-Bystrom S, Cheung WK, Powers C, Kokka RP, Tamura K. Pathogenic properties of Edwardsiella species. J Clin Microbiol 1991; 29:1997-2001; PMID:1774326
  • Zheng J, Leung KY. Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 2007; 66:1192-206; PMID:17986187; http://dx.doi.org/10.1111/j.1365-2958.2007.05993.x
  • Tan YP, Zheng J, Tung SL, Rosenshine I, Leung KY. Role of type III secretion in Edwardsiella tarda virulence. Microbiology 2005; 151:2301-13; PMID:16000720; http://dx.doi.org/10.1099/mic.0.28005-0
  • Chakraborty S, Sivaraman J, Leung KY, Mok YK. Two-component PhoB-PhoR regulatory system and ferric uptake regulator sense phosphate and iron to control virulence genes in type III and VI secretion systems of Edwardsiella tarda. J Biol Chem 2011; 286:39417-30; PMID:21953460; http://dx.doi.org/10.1074/jbc.M111.295188
  • Salem RR, Tray K. Hepatic resection-related hypophosphatemia is of renal origin as manifested by isolated hyperphosphaturia. Ann Surg 2005; 241:343-8; PMID:15650646; http://dx.doi.org/10.1097/01.sla.0000152093.43468.c0
  • Wakimoto S, Nakayama-Imaohji H, Ichimura M, Morita H, Hirakawa H, Hayashi T, Yasutomo K, Kuwahara T. PhoB regulates the survival of Bacteroides fragilis in peritoneal abscesses. PLoS One 2013; 8:e53829; PMID:23342014; http://dx.doi.org/10.1371/journal.pone.0053829
  • Tischler AD, Leistikow RL, Kirksey MA, Voskuil MI, McKinney JD. Mycobacterium tuberculosis requires phosphate-responsive gene regulation to resist host immunity. Infect Immun 2013; 81:317-28; PMID:23132496; http://dx.doi.org/10.1128/IAI.01136-12
  • Dozois CM, Daigle F, Curtiss R 3rd. Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci U S A 2003; 100:247-52; PMID:12506201; http://dx.doi.org/10.1073/pnas.232686799
  • Lamarche MG, Dozois CM, Daigle F, Caza M, Curtiss R 3rd, Dubreuil JD, Harel J. Inactivation of the pst system reduces the virulence of an avian pathogenic Escherichia coli O78 strain. Infect Immun 2005; 73:4138-45; PMID:15972503; http://dx.doi.org/10.1128/IAI.73.7.4138-4145.2005